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Abstract:Coronavirus (COVID-19) epidemic outbreak has devastating effects
on daily lives and healthcare systems worldwide. This newly recognized virus is
highly transmissible, and no clinically approved vaccine or antiviral medicine
is currently available. Early diagnosis of infected patients through effective
screening is needed to control the rapid spread of this virus. Chest radiog-
raphy imaging is an effective diagnosis tool for COVID-19 virus and follow-
up. Here, a novel hybrid multimodal deep learning system for identifying
COVID-19 virus in chest X-ray (CX-R) images is developed and termed as
the COVID-DeepNet system to aid expert radiologists in rapid and accurate
image interpretation. First, Contrast-Limited Adaptive Histogram Equal-
ization (CLAHE) and Butterworth bandpass filter were applied to enhance
the contrast and eliminate the noise in CX-R images, respectively. Results
from two different deep learning approaches based on the incorporation of
a deep belief network and a convolutional deep belief network trained from
scratch using a large-scale dataset were then fused. Parallel architecture, which
provides radiologists a high degree of confidence to distinguish healthy and
COVID-19 infected people, was considered. The proposed COVID-DeepNet
system can correctly and accurately diagnose patients with COVID-19 with a
detection accuracy rate of 99.93%, sensitivity of 99.90%, specificity of 100%,
precision of 100%, F1-score of 99.93%, MSE of 0.021%, and RMSE of
0.016% in a large-scale dataset. This system shows efficiency and accuracy and
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can be used in a real clinical center for the early diagnosis of COVID-19 virus
and treatment follow-upwith less than 3 s per image tomake the final decision.

Keywords: Coronavirus epidemic; deep learning; deep belief network; con-
volutional deep belief network; chest radiography imaging

1 Introduction

COVID-19 epidemic outbreak has devastating effects on daily lives and healthcare systems
worldwide. This newly recognized virus is highly transmissible, and a clinically approved vaccine
or antiviral medicine is not yet available. The first positive COVID-19 case was detected in Wuhan
City in December 2019, and the disease then has rapidly spread to several cities in China and
subsequently in many countries worldwide [1]. The world has strived and fought to limit the
spread of this epidemic. To date, the number of positive recognized COVID-19 infections in
the worldwide is approximately 6,851,720 total cases, 398,260 death cases, and 3,351,419 were
recovered cases. Fig. 1 displays the distribution of confirmed COVID-19 cases in most affected
countries worldwide. The United States leads in the number of confirmed infections constituting
28.70% (1,965,912 cases) of the total confirmed cases worldwide. Similar to other flu types,
COVID-19 causes respiratory diseases, and the majority of the infected people may recover with-
out any need for special treatment. The elderly and those with chronic diseases, such as diabetes
chronic respiratory disease, cancer identification, chronic respiratory disease, and cardiovascular
disease, are highly likely to experience a dangerous infection [2]. The most common critical
symptoms are fever, dry cough, tiredness, headache, sore throat, sneezing, vomiting, dyspnea,
myalgia, nasal congestion, and rhinorrhea. Patients with severe COVID-19 infection suffer from
critical complications, such as cardiac injury, pulmonary edema, septic shock, and acute kidney
injury [3,4].

Figure 1: Global distribution of confirmed COVID-19 cases (6 June 2020) [5]

A key factor in confronting the COVID-19 epidemic is the early diagnosis and separation of
infected patients. An efficient screening technique for COVID-19 infected patients can substan-
tially limit the rapid spread of the COVID-19 virus. Several screening methods, such as reverse
transcriptase-polymerase chain reaction (RT-PCR) technique, are employed to reveal the onset
symptoms of the COVID-19 virus [6]. Although RT-PCR is commonly used for SARS-CoV-2
diagnosis, this process is tedious and time consuming and requires user interaction. The relia-
bility and validity of radiography imaging techniques (e.g., images of computed tomography or
CX-R) for early COVID-19 diagnosis have been established to overcome RT-PCR restrictions [7].
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Radiography imaging can display a wide degree of unpredictable ground-glass opacities that
rapidly advance after any infection and is therefore one of the most critical biomedical imaging
techniques in hospitals to detect chest abnormalities and COVID-19 infection. However, the main
problem of using chest radiograph imaging is that reading and interpreting the images require
a long time [8]. With COVID-19 virus identified as a pandemic, the number of patients who
require a chest X-ray (CX-R) image examination has dramatically increased and exceeded the
low number of available expert radiologists. As a result, the pressure on healthcare systems
and radiologists is increased, disease diagnosis is delayed, patient’s treatment and follow up are
affected, and virus transmission likely occurs. Hence, the real-time and fully automated interpreta-
tion of radiography images is needed to help radiologists and clinicians in precisely detecting the
COVID-19 infection. Computer-aided diagnostic systems based on deep learning approaches can
be employed to assists radiologists to rapidly and correctly interpret and understand the details
in the chest radiography images and overcome the limitations of the adopted imaging acquisition
techniques [9,10]. This paper proposes a novel hybrid deep learning system termed as a COVID-
DeepNet system for detecting COVID-19 pneumonia in CX-R images by using two discriminative
deep learning approaches. This system comprises four main steps: image pre-processing, feature
extraction, image classification, and fusion. The contrast of CX-R image is initially enhanced, and
the noise level is reduced using CLAHE and Butterworth bandpass filter. In feature extraction and
classification, two distinctive deep learning approaches based on DBN and CDBN are employed
for the automated COVID-19 infection detection in CX-R images. Finally, the results obtained
from these two approaches are fused to make the final decision. The primary contributions of
this research are outlined as follows:

1. A novel hybrid COVID-19 detection system is proposed and termed as a COVID-DeepNet
system to automatically differentiate between healthy and COVID-19 infected subjects by
using CX-R images with two successful modern deep learning methods (e.g., DBN and
CDBN). To the authors’ best knowledge, this work is the first to examine the possibility
of using DBN and CDBN in a unified system to detect COVID-19 infection by learning
high discriminative feature representations from CX-R images.

2. Different from most of the existing systems that make the final prediction using only one
trained model, the proposed COVID-DeepNet system makes the final prediction by fusing
the results obtained from two different deep learning approaches trained from scratch using
a large-scale dataset. Parallel architecture, which provides radiologists a high degree of
confidence to distinguish between healthy and COVID-19 infected subjects, is considered.

3. A large-scale CX-R images dataset is created and termed as the COVID19-vs.-Normal
dataset. To the authors’ best knowledge, this dataset has the largest size, contains the
largest number of CX-R images with confirmed COVID-19 infection among those currently
available in the public domain.

4. The possibility of reducing the computational complexity and improving the generalization
of the deep learning is further validated and examined using pre-processed CX-R images
as input data to produce useful features representations during the training phase instead
of using predefined features of raw images data.

5. A distinctive training procedure supported with various sets of training policies (e.g., data
augmentation, AdaGrad algorithm, and dropout method) is also adopted to increase the
generalization ability of the proposed COVID-DeepNet system and avoid overfitting.
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6. The efficiency and usefulness of the proposed COVID-DeepNet system are established
along with its possible clinical application for early COVID-19 diagnosis with less than 2 s
per image to obtain the required results.

The remainder of this paper is divided into five sections: Section 2 provides a brief overview
of the current related works, Section 3 discusses the strategy used to create the COVID-19
dataset and the implementation details of the COVID-DeepNet system, Section 4 presents the
experimental results, and Section 5 displays the conclusion and future work.

2 Related Works

Deep learning has been effectively applied in the medical field with promising results and
remarkable performance compared with human-level action in various challenging tasks, such as
breast cancer detection [11], skin cancer classification [12], nasopharyngeal carcinoma identifica-
tion [13,14], brain disease classification [15], lung segmentation [16], and pneumonia detection
in CX-R images [17]. Several medical imaging tools using deep learning methods have also
been established to help radiologists and clinicians in early COVID-19 detection, treatment, and
follow-up investigation [18]. For instance, Wang et al. [19] developed a tailored model termed as
COVID-Net to detect COVID-19 cases using CX-R images by classifying the input image into one
of three different classes (e.g., normal, non-COVID19, and COVID19). This model has the highest
accuracy rate of 92.4% as measured using a dataset containing 16,756 CX-R images collected from
two different datasets (COVID-19 CX-R dataset provided in [20] and RSNA Pneumonia Detection
Challenge dataset [21]). Hemdan et al. [22] proposed a deep learning system named as COVIDX-
Net to identify COVID-19 infection in CX-R images. A comparative study among seven deep
learning approaches (e.g., VGG19, ResNetV2, DenseNet201, Xception, MobileNetV2 Inception,
and InceptionV3) was conducted using a small dataset of 50 images (e.g., with 25 images of pos-
itive COVID-19 infection). The best performance was obtained by pre-trained DenseNet201with
an accuracy rate of 91%. Narin et al. [23] also conducted another comparison study among
three different deep CNN-based models (e.g., InceptionV3, ResNet50, and Inception-ResNetV2)
by using a dataset consisting of hundred CX-R images, half of which are infected COVID-19
cases. The best performance was achieved using the pre-trained ResNet50 model with an accuracy
rate of 98%. Mohammed et al. [24] proposed a novel benchmarking method for choosing the best
COVID-19 detection model by using the Entropy and TOPSIS method and established a decision
matrix of 10 evaluation criteria and 12 machine learning classifiers for identifying COVID-19
infection in 50 CX-R images. The highest closeness coefficient of 98.99% was achieved by the
linear SVM classifier. Kassani et al. [25] trained several CNN models as feature descriptors
to encode the input image into low dimensional feature vectors, which are then processed by
different classifiers to aggregate solutions. The performance was verified using the same dataset
presented in [20]. The highest accuracy rate was 99% using the pre-trained DenseNet121 model as
a feature descriptor and the Bagging tree classifier. Zhang et al. [26] used a pre-trained ResNet-
18 model as a feature descriptor to extract useful feature representations from the CX-R image.
These extracted features are then fed to a multi-layer perception to make the final decision. The
highest accuracy rate of 96.00% was obtained using a dataset of 100 images captured from 70
patients. Many researchers have attempted to detect COVID-19 infection in CX-R or CT images
using various deep learning approaches [27–31]. A review on COVID 19 detection and diagnosis
systems based on CX-R images revealed some limitations that need to be investigated. First, most
of the existing systems have been evaluated using small X-ray datasets with a few numbers of
positive COVID-19 cases. The dataset sizes are not sufficient to reveal the real performance of
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the proposed approaches. Second, although several studies have produced high accuracy rates
using pre-trained models via transfer learning, minimal attention has been given to building and
training a custom deep learning model from scratch mainly due to the unavailability of a large
dataset containing sufficient number of CX-R images with confirmed COVID-19 infection. In
addition, changing the architecture of pre-trained models by removing/adding some layers to
obtain an optimal model architecture with high confidence is difficult. Finally, most of these
studies only focused on training deep learning models on the top of raw images rather than pre-
processed images, thus limiting the generalization ability of the last trained model. To overcome
these limitations, the present work proposed a novel hybrid COVID-19 detection system termed
as COVID-DeepNet system to automatically differentiate between healthy and COVID-19 infected
subjects by using CX-R images under two successful modern deep learning approaches (e.g., DBN
and CDBN). The proposed COVID-DeepNet system is trained from scratch using a large-scale
and challenging dataset termed as the COVID19-vs.-Normal dataset.

3 Proposed COVID-DeepNet System

As depicted in Fig. 2, a novel hybrid COVID19 detection system was proposed and termed as
a COVID-DeepNet system to learn discriminative and useful feature representations by training
two discriminative deep learning approaches (DBN and CDBN) over the pre-processed CX-R
images. First, the adopted procedure to create the CX-R dataset was briefly described. Imple-
mentation details of the proposed approaches were then explained, such as the proposed image
pre-processing algorithm, the main architecture, and training methodology of the proposed deep
learning approaches (e.g., DBN and CDBN). Algorithm 1 shows the pseudo-code of the proposed
COVID-DeepNet system.

Figure 2: Block diagram of the proposed COVID-DeepNet detection system



2414 CMC, 2021, vol.67, no.2

Algorithm 1: Proposed COVID-DeepNet detection system
Input: X-Ray image.
Output: Healthy or COVID-19 infected
1. In the image enhancement stage.

➢ Applying the CLAHE method.
➢ Applying the Butterworth Bandpass filter.

2. In the Features extraction and classification stage.
➢ Producing Score 1 using the DBN model.
➢ Producing Score 2 using the CDBN model.

3. In the scores fusion stage.
➢ Fusing Score 1 and Score 2 to get the final decision.

3.1 COVID19-vs.-Normal Dataset
Several CX-R images were carefully selected from different sources to create a relatively large-

scale COVID-19 CX-R image dataset of confirmed infected cases. This dataset was named as
COVID19-vs.-Normal and then mixed with some CX-R images of normal cases for a reliable
diagnosis of COVID-19 virus. The sources of the COVID19-vs.-Normal dataset are as follows:

• A set of 200 CX-R images with confirmed COVID-19 infection of Cohen’s GitHub
repository [20].

• A set of 200 COVID-19 CX-R images with confirmed COVID-19 infection gathered from
three different sources: Radiopaedia dataset [32], Italian Society of Medical and Interven-
tional Radiology (SIRM) [33], and Radiological Society of North America (RSNA) [34].

• A set of 400 normal CX-R images from Kaggle’s CX-R image (Pneumonia [35]) dataset.

Samples of the COVID-19 and normal cases of the large-scale COVID-19 CX-R images are
shown in Fig. 3. The established COVID19-vs.-Normal dataset will have a constantly updated
number of the COVID-19 cases depending on the availability of new CX-R images with confirmed
COVID-19 infection and is available publicly at https://github.com/AlaaSulaiman/COVID19-vs.-
Normal-dataset. Data augmentation was applied to prevent overfitting and enhance the gener-
alization ability of the last trained model. First, the size of the original image was rescaled to
(224× 224) pixels, and five random image regions of size (128× 128) pixels were then extracted
from each image. Horizontal flip and rotation of 5 degrees (e.g., clockwise and counter-clockwise)
were then conducted for every single image in the dataset. A total of 24,000 CX-R images of
size (128 × 128) pixels were extracted from both classes (e.g., COVID-19 and normal images).
Data augmentation was implemented after dividing the COVID19-vs.-Normal dataset into three
mutually exclusive sets (e.g., training, validation, and testing set) to avoid generating biased
prediction results.

3.2 Image Pre-Processing Step
A raw CX-R image obtained by an electronic detector usually has poor quality and thus

may be unsuitable for detection and diagnosis. Image enhancement methods should be applied
to enhance the quality of CX-R images. Furthermore, training the DNNs on the top of pre-
processed images instead of using raw images data can substantially reduce the generalization
error of the DNNs and their training time. Hence, an effective image enhancement procedure was
proposed to enhance the CX-R image’s poor quality prior to feeding to the proposed approaches
(e.g., DBN and CDBN). First, the small details, textures, and low contrast of the CX-R image

https://github.com/AlaaSulaiman/COVID19-vs.-Normal-dataset
https://github.com/AlaaSulaiman/COVID19-vs.-Normal-dataset
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was enhanced through adaptive contrast enhancement based on CLAHE [36]. CLAHE is different
from the original histogram equalization method that computes several histograms (e.g., each one
corresponding to a distinct part of an image) to redistribute the lightness values of the input
image, as depicted in Fig. 4b. Hence, this method can improve the image local contrast and
enhance the visibility of the edges and curves in each part of an image. Second, the Butterworth
bandpass filter was employed to reduce the noise in the image produced from the previous step,
as shown in Fig. 4c. The Butterworth Bandpass filter was calculated by multiplying the low and
high pass filters as follows:

HLP (u, v)= 1

1+ [F(u, v)/FL]2n
, (1)

HHP (u, v)= 1− 1

1+ [F(u, v)/FH]
2n , (2)

HBP (u, v)=HLP (u, v) ∗HHP (u, v) , (3)

where FL and FH are the cut frequencies of the low and high pass filters set as 15 and 30,
respectively; n= 3 is the filter order; and is F (u, v) the distance from the origin.

Figure 3: An example of positive COVID-19 case versus negative COVID-19 case obtained from
the created dataset of COVID19 and normal CX-R images

3.3 Deep Learning for COVID-19 Detection
A hybrid deep learning detection system based on the incorporation of two discriminative

deep learning approaches (e.g., DBN and CDBN) was proposed to detect COVID-19 infection
in CX-R images. To the authors’ best knowledge, the possibility of using DBN and CDBN
in a unified system to detect the COVID-19 virus in the CX-R images has not been previ-
ously investigated. Fig. 2 shows that the enhanced image was fed into the visible units of the
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proposed deep learning approaches to learn high-level feature representations. DBN is a new
generative probabilistic model developed by Hinton et al. [37]. Different from other conventional
deep neural networks (DNNs), DBN has one visible layer and several hidden layers that can
learn the statistical correlations of the neurons in the previous layer [38]. Similar to other deep
learning approaches, DBNs are directly applied to raw image data. Although DBNs have been
effectively applied to solve many challenging problems (e.g., face recognition [39] and audio
classification [40]), scaling them to high dimensional images is challenging for two reasons. First,
the input image with a high dimensionality can increase the complexity of the learning process
and require a long-time for convergence. Second, the features learned by DBNs are highly sensitive
to image translations, especially when the raw image data are assigned directly to the visible
layer. This phenomenon can lead to discarding most of the fine details in the input image, thus
seriously affecting their performance. As a solution, the proposed DBN model was trained on
the top of pre-processed images rather than raw image data to remarkably reduce the training
time and learn additional discriminative feature representations [41]. Assigning pre-processed CX-
R images to the input layers of DBN and CDBN can remarkably improve their ability to learn
essential and prominent feature representations with less time require to obtain the last trained
models. As depicted in Fig. 5, the main architecture of the proposed DBN is composed of
stacking five RBMs as hidden layers. The first four RBMs can be viewed as non-linear features
descriptors trained sequentially using the CD learning algorithm in an unsupervised greedy layer-
wised manner to learn a multi-layer non-linear generative model. The last RBM is a discriminative
RBM (DRBM) trained as a non-linear classifier associated with SoftMax function to produce
the probability distribution of each class label. DRBM comprises two layers of visible units to
represent the input vector and a softmax label unit to represent the predicted class. During RBM
training, the stochastic gradient descent algorithm was applied to maximize the log-likelihood of
the training data. Hence, the updating rules for the weights can be defined as follows:

Δwi,j = ε

(〈
1

σ2
i

vihj

〉
data

−
〈
1

σ2
i

vihj

〉
model

)
, (4)

Δbi = ε

(〈
1

σ2
i

vi

〉
data

−
〈
1

σ2
i

vi

〉
model

)
, (5)

Δci = ε
(〈
hj
〉
data −

〈
hj
〉
model

)
, (6)

where ε refers to the learning rate, 〈·〉data and 〈·〉model denote the positive stage and the negative
stage, respectively. Finally, bi and ci and represent biases for visible and hidden units, respectively.
Calculating the

〈
vihj

〉
model in Eq. (4) is difficult. Thus, the CD algorithm [42] was used to update

the parameters of a given RBM by applying k steps Gibbs sampling from the probability dis-
tribution to compute the second term in Eq. (4). The single-step of the CD algorithm can be
implemented as follows:

1. Initially, the training data are given to the visible units (vi) to compute the probabilities
of the hidden units. A hidden activation (hj) vector is then sampled from the same
probability distribution.

2. In the positive phase, the outer product of (vi) and (hj) is computed.
3. A reconstruction of the visible units (v′i) is sampled from (hj) with p

(
hj = 1|v), from which

(v′i) resamples the activations of the hidden units’ (h′
i). (1 Gibbs sampling step).
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4. In the negative phase, the outer product of (v′i) and (h′
i) is computed.

5. Finally, the weights matrix and biases are updated with Eqs. (4)–(6).

(a) (b) (c)

Figure 4: Proposed image enhancement procedure outputs: (a) Raw CX-R image, (b) applying the
CLAHE method, and (c) applying the Butterworth Bandpass filter

(a)

(b)

Figure 5: Main architecture of the proposed deep learning models: (a) DBN model, and
(b) CDBN model

Herein, the k parameter of the CD learning algorithm was set to 1, and all the weights
were randomly set with small values computed from a normal distribution of zero mean and
SD of 0.02. CDBN is a hierarchical generative representation developed by Lee et al. [43] and
is composed of several convolutional RBMs (CRBMs) stacked on each other as building blocks.
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CRBM is an expansion of the traditional RBM. Different from RBM, the weights between the
visible and hidden units in the CRBM are locally shared among all positions in the input image.
This scheme of sharing parameters (weights) introduces a form of translational invariance that
uses the same-trained filter to detect specific useful features at different locations in an image.
The proposed CDBN consists of three stacked CRBMs associated with probabilistic max pooling.
CRBM uses Gaussian-valued visible units and binary-valued hidden units. The first and second
CRBMs consist of 32 and 64 trainable filters (K1 = 32, and K2 = 64) of (5×5) pixels, respectively,
and the last CRBM consists of 128 trainable filters (K3 = 128) of (6× 6) pixels. The max-pooling
ratio is fixed to two for each pooling layer. The output of the last CRBM is fed into one fully
connected layer composed of 256 units, followed by the application of a SoftMax function to
produce the probability distribution of each class label. CDBM models are highly overcomplete
because each CRBM (hidden layer) has K trainable filters (e.g., groups of units) with sizes roughly
equal to that of the input image. In general, the overcomplete model runs the risk of learning
trivial feature representations (e.g., single-pixel detectors). As a solution, a sparsity penalty term
was added to the objective function to obtain a small part of the fired output. In practice, the
following simple update process (applied before weight updates) can be employed:

Δpsparsityk ∝ p− 1

N2
H

∑
i,j

P
(
hkij = 1 | v

)
, (7)

where p is referred to as the target sparsity. In this work, the target sparsity was set as 0.005 for
all the CRBMs. The proposed training methodology for DBN and CDBN models is composed
of three phases: unsupervised pre-training, supervised, and fine-tuning.

1. In the unsupervised pre-training phase, the first four hidden layers (e.g., RBMs and
CRBMs) are trained using an unsupervised greedily training algorithm based on the CD
algorithm to train each added hidden layer as either an RBM for DBM model or a CRBM
for CRBM model. The activations produced from the first trained hidden layer acted as
discriminative features extracted from the input images. These features are then assigned to
the (vi) as an input to train the next hidden layer. This phase is completed when the (N−1)
RBM (hidden layer) is successfully trained. After training, these (N− 1) hidden layers of
the model can be viewed as a feature extractor that automatically extracts the most useful
and discriminative features from the raw images. The main benefit of this unsupervised
greedy training algorithm is the capability to train the DBN and CDBN models by using
a huge amount of unlabeled training data.

2. In the supervised phase, the last DRBM in the DBM model and the SoftMax classifier
in the CDBM model are trained in a supervised manner as non-linear classifiers by
using the labeled data in the training and validation sets to monitor their performance
during learning.

3. Finally, the back-propagation algorithm is implemented to fine-tune the parameters of the
whole DBN model in a top-down manner to achieve satisfactory predictions.

Similar to other deep learning networks, DBN and CDBN need a massive amount of training
data to prevent overfitting during the training process, reduce the generalization error of the
last obtained model, and achieve satisfactory predictions. Thus, simple data augmentation was
implemented to artificially increase the number of training samples in the COVID19-vs.-Normal
dataset (see Subsection 3.1).
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3.4 Evaluation Criteria
In the prediction phase, the average values of seven quantitative performance measures,

namely, detection accuracy rate (DAR), sensitivity, specificity, precision, F1-score, mean squared
error (MSE), and root Mean Squared Error (RMSE) were computed to measure the accuracy
and the efficiency of the proposed COVID-DeepNet model by using the testing set. These seven
quantitative performance measures are calculated as follows:

DAR= (TP+TN)

(TP+TN+FP+FN)
, (8)

Sensitivity(Recall)= (TP)

(TP+FN)
, ‘ (9)

Specificity = (TN)

(TN+FP)
, (10)

Precision = (TP)

(TP+FP)
, (11)

F1Score=∗ (Precision ∗Recall)
(Precision+ Recall)

, (12)

where TP, TN, FP, and FN stand for true positives, true negatives, false positives, and false
negatives, respectively.

MSE= 1
n

n∑
i=1

(
Yi − Ŷi

)2
, (13)

RMSE=
√√√√1

n

n∑
i=1

(
Yi − Ŷi

)2
, (14)

where n refers to the total number of data samples, Y is the vector of observed values of the
variable being predicted, and Ŷ is the vector of n predicted values.

4 Experimental Results

Several extensive experiments on COVID19-vs.-Normal dataset were conducted to reveal the
effectiveness of the proposed deep learning methods (e.g., DBN and CDBN) and their combi-
nation (e.g., using the proposed COVID-DeepNet system) and compare their performances with
the current state-of-the-art approaches. The code of the proposed COVID-DeepNet system was
written to run in MATLAB R2018a and later versions and trained using Windows 10 operating
system, a Core i7-4510U CPU, 69 K GPU graphics card, and 24 GB of RAM. Following the
proposed training methodology, all experiments were conducted using 75% randomly selected CX-
R images as a training set to train the proposed deep learning approaches. The remaining reset
25% images were used as a testing set to assess their generalization ability in predicting new
unseen data. During learning, 10% of the training set was randomly selected and employed as
a validation set to assess their performance and store the weight configurations that produce the
highest accuracy rate.



2420 CMC, 2021, vol.67, no.2

4.1 COVID-DeepNet Architecture and Training Details
The main architecture of the COVID-DeepNet system is based on the combined output

scores produced from two discriminative deep learning methods (e.g., DBN and CDBN). The
main challenging task of using deep learning models is the huge number of structures and hyper-
parameters to be assessed (e.g., number of hidden layers, filter size, number of epochs, and
learning rate). Herein, several experiments were performed to find the best model’s architecture for
DBN and CDBN. The influence of different values of the hyper-parameters on the performance
of the proposed approaches was also analyzed. Two different training set configurations from
the COVID19-vs.-Normal dataset were created and evaluated to reveal the important contribution
of the proposed image enhancement procedure in guiding the learning of proposed approaches
and improving their performance compared with the use of raw images as input data. The two
training set configurations were as follows: (i) TrainingSet_1 consists of raw images and those
produced using the proposed data augmentation procedure, and (ii) TraningSet_2 consists of the
pre-processed and those produced using the proposed data augmentation procedure.

In DBNs and CDBMs, the values of their hyper-parameters mainly depend on each other.
Furthermore, the hyper-parameters values used in a specific RBM may be affected by the hyper-
parameter values used in other RBMs. Thus, the hyper-parameter fine-tuning task in these two
approaches requires a large cost. Therefore, a coarse search procedure was implemented to find
the best hyper-parameter values. As shown in Tab. 1, the proposed DBN model composed of
stacking five RBMs (hidden layers) was trained in a bottom-up way using the proposed training
methodology presented in (Subsection 3.3). The number of the hidden units in the first two layers
was fixed to 4096 units, and the different numbers of hidden units were evaluated in the last three
layers to find the best network configuration. When the unsupervised training of the first RBM
(the first hidden layer) was completed, the weight matrix of the hidden layer was frozen and was
used as an input data for the training of the second RBM (the second hidden layer) in the stack.
With the CD learning algorithm (e.g., one step of Gibbs sampling), the first four RBMs were
trained separately in an unsupervised greedily manner. Each RBM (hidden layer) was trained for
100 epochs with a mini-batch size of 100, a weight decay value of 0.0002, a learning rate of
10−2, and a momentum value of 0.9. The weights were randomly initialized with small values
computed from a normal distribution of zero mean and SD of 0.02. The last layer was trained
as a non-linear DRBM classifier with SoftMax units to produce the final probability scores. The
last DRBM was trained using the same hyper-parameters values of the first four RBMs. Finally,
the back-propagation algorithm equipped with the dropout method was applied for the parameter
fine-tuning of the whole DBN model in a top-down manner to avoid overfitting and achieve
satisfactory predictions. The dropout ratio was 0.5. Initially, the whole DBN was trained in a
top-down manner for 100 epochs; however, the model can be further improved by increasing
the number of epochs. Therefore, the number of epochs was set to approximately 500 epochs
using the early stopping procedure. As revealed in Tab. 1, five DBN models were trained using
two different training sets (e.g., TrainingSet_1 and TrainingSet_2), and the highest accuracy was
obtained using the fourth DBN (4096-4096-3000-2048-1024) model. The training time of all the
five trained models was substantially decreased by training them on the top of the TrainingSet_2
containing only the processed images data. This finding confirms our argument that training the
proposed DNNs on the top of the pre-processed images can remarkably improve their ability
to rapidly learn useful feature representations with less time required to obtain the last trained
model. Therefore, TrainingSet_2 was used for all subsequent experiments. Additional information
on the DBN and its hyper-parameters are given in Tab. 2. For an initial CDBN architecture, only
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two CRBMs were greedily trained using the same proposed trained methodology described in
(Subsection 3.3). This initial CDBN architecture was referred to as a CDBN-A in the subsequent
experiments. The number of filters was initially set to 32 filters at each CRBM layer, and the
size of the filter was set to (5 × 5) pixels. The CD learning algorithm (e.g., one step of Gibbs
sampling) was used to train all the CRBMs in an unsupervised greedily manner. Each CRBM was
trained separately for 100 epochs with a mini-batch size of 100, target sparsity of 0.005, learning
rate of 10−2, a weight decay value of 0.0005, and a momentum value of 0.95. The weights were
randomly initialized with small values computed from a normal distribution of zero mean and
SD of 0.02.

Table 1: Comparison of five different DBN architectures in terms of DAR and training time

DBN Models TrainingSet_1 TrainingSet_2

DAR Training Time DAR Training Time

4096-4096-1024-1024-1024 0.67 9 h, 40 min 0.81 6 h, 22 min
4096-4096-2048-1024-1024 0.77 10 h, 37 min 0.90 8 h, 11 min
4096-4096-2048-2048-1024 0.72 11 h, 28 min 0.94 8 h, 39 min
4096-4096-3000-2048-1024 0.88 12 h, 17 min 0.96 8 h, 41 min
4096-4096-3000-2048-2048 0.79 12 h, 47 min 0.92 9 h, 11 min

Table 2: Details of hyper-parameters for the proposed deep learning approaches (e.g., DBN
and CDBN)

Five-layer DBN model CDBN model

Hyper-Parameters Values Hyper-Parameters Values

CD learning
algorithm

1 Step of Gibbs CD learning
algorithm

1 Step of Gibbs
sampling sampling

Optimization
method

Adam Optimization
method

Adagrad

Target sparsity 0.05 Target sparsity 0.005
No. of layers 5 RBMs No. of layers 3 CRBMs
No. of epochs for
each RBMs

100 No. of epochs for
each CRBMs

100

Momentum 0.9 Momentum 0.95
Weight decay 0.0002 Weight-decay 0.0005
Dropout 0.5 Dropout 0.5
Batch size 100 Batch size 100
Learning rate 10−2 Learning rate 10−2

Total No. of
epochs (backward)

500 Total No. of
epochs (backward)

300

The dropout technique with the dropout ratio of 0.5 was applied only for the fully-connected
layer. In the fine-tuning phase, the weights of the whole CDBN-A model were optimized using the
back-propagation algorithm in a top-down manner to achieve satisfactory predictions. First, the
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CDBN-A was trained for 500 epochs with a mini-batch size of 100. However, the performance of
the CDBN-A model using the validation data declined when 500 epochs were evaluated because
the last trained model started overfitting the training set (see Fig. 6).

Figure 6: Finding the best number of epochs to train the CDBN-A model using the back-
propagation algorithm in a top-down manner

For the CDBN model, this hyper-parameter was determined empirically by varying its value
from 100 epochs to 500 epochs in steps of 10. The highest validation accuracy rate was obtained
from the validation set by training the CDBN-A model in a top-down manner for 300 epochs.
Moreover, a high accuracy rate can be achieved by adding a new CRBM with 128 trainable
filters of size (6 × 6) pixels and changing the number of filters in the second CRBM from 32
trainable filters to 64 trainable filters. This newly added CRBM was trained using the same hyper-
parameters of the other CRBM. This new architecture was denoted as a CDBN-B model and
used for all remaining experiments instead of the CDBN-A model. Additional information on the
CDBN-B and its hyper-parameters are presented in Tab. 2. The ROC curves of the CDBN-A and
CDBN-B models are shown in Fig. 7 to visualize their performances on the testing set of the
COVID19-vs.-Normal dataset. Fig. 8 shows the learned high-level feature representations from the
last hidden layers in CDBN-A and CDBN-B model after training.

4.2 Fusion Rule Evaluation
The proposed COVID-DeepNet system makes the final decision by integrating the results

produced from two different deep learning models (e.g., DBN and CDBN). Every time a CX-R
image is assigned to the proposed COVID-DeepNet system, two predicted probability scores are
computed, and the highest probability score is used to assign the input image to one of two classes
(e.g., either normal or COVID-19 class). In this section, the results obtained from the DBN and
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CDBN models were combined and evaluated using different fusion rules in the score-level fusion
(e.g., using sum, weighted sum, product, max, and min rule) and decision-level fusion (e.g., using
AND OR rule). Additional information on how these fusion rules are implemented in both levels
can be found in [44].

Figure 7: Performance comparison between CDBN-A and CDBN-B on the testing set of the
COVID19-vs.-Normal dataset

(a) (b)

Figure 8: Visualization of the learned high-level feature representations from the last hidden layers:
(a) CDBN-A model, and (b) CDBN-B model
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Parallel architecture, which provides radiologists a high degree of confidence to make their
final decision and to accurately distinguish between healthy and COVID-19 infected subjects, was
considered in the proposed COVID-DeepNet system. During the implementation of the weighted
sum rule (WSR) at the score-level, a slightly higher weight value was given to the CDBN-B model
than to the DBN model due to the better performance of the former. Moreover, normalization
is not required prior to applying the score fusion rules because both classifiers generate the
same probability scores and within the same numeric range [0,1]. Herein, the average values of
seven quantitative performance measures using various fusion rules at the score- and decision-level
fusion are presented in Tabs. 3 and 4, respectively.

Table 3: Performance comparison of the proposed hybrid COVID-DeepNet system using five
different rules in score-level fusion

Evaluation criteria DBN CDBN Score fusion rules

SR WSR PR Max Min

DAR 96 98.22 98.42 99.93 97.92 98.34 96.21
Sens. (recall) 95.10 97.54 97.66 99.90 97.84 98.81 96.12
Specificity 96.21 98.53 98.64 100 98.23 98.14 97.22
Precision 97 98.67 98.88 100 98.43 97.88 97.05
F1 Score 97.10 98.78 98.92 99.93 98.52 98.09 97.33
MSE 0.17 0.12 0.09 0.021 0.11 0.12 0.19
RMSE 0.21 0.15 0.11 0.016 0.14 0.17 0.24

Table 4: Performance comparison of the proposed hybrid COVID-DeepNet system using two
different rules in decision-level fusion

Evaluation criteria DBN CDBN Decision fusion
rules
AND OR

DAR 96 98.22 95.33 99.35
Sens. (recall) 95.10 97.54 95.66 99.33
Specificity 96.21 98.53 96.78 99.37
Precision 97 98.67 96.84 99.37
F1 Score 97.10 98.78 97.84 99.35
MSE 0.17 0.12 0.19 0.064
RMSE 0.21 0.15 0.25 0.036

The accuracy of the proposed hybrid COVID-DeepNet system was remarkably enhanced
compared with that of DBN or CDBN alone. The highest values of the adopted seven quanti-
tative measures were obtained using the WSR and the OR rule in the score- and decision-level
fusion, respectively. The proposed COVID-DeepNet system correctly and accurately diagnosed the
patients with COVID-19 in the score-level fusion with a DAR of 99.93%, sensitivity of 99.90%,
specificity of 100%, precision of 100%, F1-score of 99.93%, MSE of 0.021%, and RMSE of
0.016% using the WSR and in the decision-level fusion using the OR rule with a DAR of
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99.35%, sensitivity of 99.33%, specificity of 99.37%, precision of 99.37%, F1-score of 99.35%,
MSE of 0.064%, and RMSE of 0.036%. The high precision value of 100% achieved in the score-
level fusion using the WSR is essential in reducing the number of misclassified healthy cases
as COVID-19 cases. Finally, the two confusion matrices of COVID-19 infected and normal test
results using the WSR and OR rule are shown in Fig. 9. Under WSR rule, only one COVID-19
infected image was misidentified as a healthy image, and three healthy images were misclassified
as COVID-19. Under OR rule in the decision-level fusion, 19 COVID-19 infected images were
misclassified as healthy images, and 20 healthy images were misclassified as COVID-19. Thus,
WSR was used in the performance comparison of the proposed COVID-DeepNet system with
current state-of-the-art systems due to its effectiveness in exploiting the strength of each classifier.
These results further strengthened the possibility of employing the proposed COVID-DeepNet
system in real-world settings to seriously moderate the workload of radiologists and help them
accurately detect COVID-19 infection by using CX-R images.

(a) (b)

Figure 9: Confusion matrices for the proposed COVID-DeepNet system using different fusion
rules: (a) WSR rule in the score-level fusion, and (b) OR rule in the decision-level fusion

4.3 Comparison Study and Discussion
The efficiency and reliability of the proposed COVID-DeepNet system were compared with

those of the most current state-of-the-art COVID-19 detection systems. The first three COVID-19
detection systems were evaluated on the COVIDx dataset containing only 76 CX-R images with
confirmed COVID-19. The first system was developed by Wang et al. [19] using a deep tailored
designed model based on a CNN termed as a COVID-Net. The second system was proposed
by Farooq et al. [27] by employing a pre-trained ResNet-50 model termed as a COVID-ResNet.
The third system was proposed by Luz et al. [45]. The performance of different architectures
of EfficientNet was assessed using an updated version of the COVIDx dataset containing 183
chest radiography images with confirmed COVID-19. The performances of these three systems
were evaluated by computing four quantitative measures (e.g., accuracy, sensitivity, precision,
and F1-score) for three different classes (e.g., normal, non-COVID19, and COVID-19). For an
impartial comparison, these four quantitative measures were averaged, and the values are shown
in Tab. 5. The proposed COVID-DeepNet system obtained better results compared with the
other systems. Although the EfficientNet B3 model described in [45] achieved the same precision
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of 100%, the proposed COVID-DeepNet system produced better results in the other two measures
(e.g., accuracy and sensitivity) by using a large dataset containing many CX-R images with
confirmed COVID-19. A comparison study among three different CNN models (e.g., InceptionV3,
ResNet50, and Inception-ResNetV2) was conducted by Narin et al. [23] to detect COVID-19
infected patients using CX-R images. The mean values of five different quantitative measures
(e.g., accuracy, recall, specificity, precision, and F1-score) were calculated using fivefold cross-
validation to assess their performance of these systems. The best performance was obtained using
the pre-trained ResNet50 model with an accuracy rate of 98%, recall of 96%, and a speci-
ficity value of 100%. Although the ResNet50 model achieved the same sensitivity and precision
with the proposed COVID-DeepNet system, its results for the other five measurements were
inferior (Tab. 6).

Table 5: Performance comparison between the proposed COVID-DeepNet system and three cur-
rent state-of-the-art COVID-19 detection systems evaluated on the COVIDx dataset

Quantitative
measures

Proposed COVID-
DeepNet system

COVID-net
model [19]

COVID-ResNet
model [27]

EfficientNet
B3 Model [45]

Accuracy 99.93 92.4 96.23 93.9
Sens. (recall) 99.90 88.6 96.92 96.8
Precision 100 91.3 96.86 100
F1 Score 99.93 – 96.88 –

Table 6: Performance comparison between the proposed COVID-DeepNet system and
ResNet50 [23]

Quantitative
measures

Proposed COVID-
DeepNet system

ResNet50
model [23]

Accuracy 99.93 98
Sens. (recall) 99.90 96
Specificity 100 100
Precision 100 100
F1-score 99.93 98

5 Conclusion and Future Work

An accurate and automated system for COVID-19 diagnosis is presented and named as
COVID-DeepNet system to distinguish between healthy and COVID-19 infected subjects by using
chest radiography images. In the COVID-DeepNet system, CLAHE and Butterworth bandpass
filter were applied to enhance the contrast of the CX-R image and eliminate the noise, respectively.
Two discriminate deep learning approaches (e.g., DBN and CDBN) were trained from scratch
on the top of the pre-processed chest radiography images to prevent overfitting and enhance the
generalization capabilities of the proposed deep learning approaches. A large-scale CX-R image
dataset was created and termed as the COVID19-vs.-Normal dataset to assess the performance of
the COVID-DeepNet system. The proposed system achieved comparable performance with expert
radiologists with a DAR of 99.93%, sensitivity of 99.90%, specificity of 100%, precision of 100%,
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F1-score of 99.93%, MSE of 0.021%, and RMSE of 0.016% using the weighted sum rule in the
score-level fusion. The main limitation of the proposed COVID-DeepNet system is that it was
trained to classify the input CX-R image into one of two classes (e.g., healthy and COVID-19
infected). The proposed COVID-DeepNet system is currently being trained to classify the CX-R
image to other types of diseases (e.g., bacterial pneumonia and viral pneumonia). Further exper-
imental investigations are required to prove the effectiveness of the proposed COVID-DeepNet
system using a large and challenging dataset containing many COVID-19 cases.
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