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Abstract. The increase in the number of vehicles due to increase in population leads to an 

increase in the number of accidents. To find a design that keeps occupants as safe as possible 

by enhancing the energy absorption capabilities and hence decreasing the number of fatalities 

is taking place. Non-linear finite element is used in this study to predict new design 

performance and to compare with other conventional S-shaped designs. It was shown that the 

proposed design increased the specific energy absorption (SEA) by 265% in comparison with 

the conventional S-Shaped frame design with octagonal geometries and increased in SEA 16% 

of the S-Shaped with foam filled-square cross-sectional. In this study, the specific energy 

absorption will take in consideration the energy absorber used is made of mild steel. 

1.  Introduction 

Collisions cause thousands of people either killed or injured around the world every year [1], [2]. In 

Malaysia, the road network had been developed by 650% and the length of the road reached to 71,814 

km from 1971 to 2005 due to the population growth and the number of vehicles [3]. According to 

(Royal Malaysian Police 2011), the number of fatalities due to accidents has increased by 1.8% (2009: 

6745 to 6872 in 2010) [4]. the (World Health Organization 2009) has predicted that more than 1.2 

million people die due to road accident each year and the number of injuries about 20 to 50 million. To 

enhance the crashworthiness of the structure, the proposed design must support an offset 40% 

collisions as well as the direct one. Australian New Car Assessment Program ANCAP (2006)[5] 

demonstrated that about 35% of all vehicle collisions were oblique impacts as shown in figure 1 

below. Therefore, around 70% of all accidents happen in the front car whether in the direct or oblique 

collisions. So, it is important to concentrate on how to design frontal car structures that able to absorb 

the most impact energy during collisions in different directions. 
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Figure 1. Percentages of vehicle impact direction [4]. 

 

Researchers and manufacturers paid their attention to occupants' safety, which became the 

most critical design objective in ground vehicles [6]. To save and protect vehicle’s occupants, the 

design of structures must be able to absorb as much as possible energy caused by collision due to 

plastic deformation and keep car compartment away from severe deformation and decrease the 

intrusion of the vehicle. To carry out these conditions, the design should take into consideration that 

both longitudinal must work together during a collision, this enables the structure to absorb enough 

energy and keeps occupants safer. The decreasing of absorbed energy comes when one or both 

longitudinal is not loaded axially and hence the bending will happen. The proposed design tries to 

achieve two roles, the first one is getting higher absorbed energy and the second one is in oblique or 

40 percent offset collision, the energy absorbed by the longitudinal should be almost as same as in a 

direct collision. Witteman (1993) stated that it is important to design a stiff longitudinal structure to be 

able to dissipate enough energy when loaded partially in overlap collision.  

 

The structure should be strengthened to prevent or decrease the bending during collisions 

which will decrease in the amount of absorbed energy. The structure should be flexible when loaded 

axially to reduce excessive-high deceleration [3]. Many studies [3], [7], [8] have been implemented 

using different cross-section tubes subjected to direct and 40 per cent offset dynamic loading. These 

studies have found that the hexagonal tube was the best choice depending on multi-criteria decision 

making (MCDM) process. The parameters selected were included energy absorption (EA) and crash 

force efficiency (CFE). Samer [3] has studied the using of the hexagonal tube as a longitudinal 

absorber subjected to dynamic load with different directions. The study was compared with the 

conventional S-shaped used in the car. The study has concluded that using thin-walled hexagonal tube 

has superior performance than conventional one since it has higher energy absorption capability and 

lower acceleration within acceptable limits. 

2.  Finite element modeling 

ABAQUS (non-linear finite element) has been employed to study the thin-walled hexagonal structure. 

The finite element was used to predict the behavior of the structure under dynamic loading. The 

hexagonal tube was modelled by using 4-node shell continuum (S4R) element along the thickness 

direction of the tube. When the aluminum foam is incorporated, the foam was modelled using 8-noded 

continuum elements with reduced integration techniques with incorporated hourglass control. The size 

of the mesh used was 5mm. The contact interaction between all parts was general contact algorithm. 

Coefficient of friction was incorporated between the foam and tube wall and it was set at 0.2 [9]–[11]. 
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Plates were modelled as a rigid body. Moving plate (striker) was permitted to move axially along the 

structure while other translational and rotations degree of freedom were fixed. The impact velocity of 

the striker on the structure was set as 56km/h with a mass of 275kg (figure 3). The velocity was used 

according to the New Car Assessment Program (NCAP) by the National Highway Traffic Safety 

Administration (NHTSA). The study has taken a mass with 25 % of the compact car (1100) kg. Each 

longitudinal was assumed to absorb an equivalent kinetic of 275kg mass since the maximum absorbed 

energy by the two longitudinal is less than 50% [12]. 

3.  Materials 

3.1.  Steel 

A36 steel material was used in this study to simulate the structure. The A36 steel is a very common 

material, cheaper, most available and high energy absorption capability used in design as energy 

absorption. A36 was modelled as per Johnson-Cook constitutive isotropic model. It's more accurate to 

take in consideration the strain rate varies since this material is strain rate dependent [13], [14]. 

Material characterizations are combined as in Equation 1. [15]. 
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Where     is the dynamic flow stress. 

The     
 

 is the effective plastic strain 

     
    

 is the effective plastic strain rate. 

   
    

 is a reference strain rate, 

     is the melting temperature, and 

A, B, N, M and C are material parameters. 

whereas    is the transition temperature and it is usually taken as the room temperature of 293-297 ° 

Kelvin [16], [17]. The parameters of Johnson-Cook are given in Table 1[18].   

 

Table 1. Summary of parameters for A36 steel[19]. 

Parameter Value Description 

A 146.7 MPa Material parameter 

B 896.9 MPa Material parameter 

N 0.320 Strain power coefficient 

C 0.033 Material parameter 

M 0.323 Temperature power coefficient 

0  
1.0 sec-1 Reference strain rate 

r 7850 kg/m3 Density 

Tm 1773 °K Melting Temperature 

Cp 486 J/kg-°K Specific Heat 

3.2.  Aluminum foam 
The CRUSHABLE FOAM and the CRUSHABLE FOAM HARDENING options are assigned in the 

ABAQUS/Explicit software package to consider the plastic aluminium foam behaviour. This option based on the 

foam model by Deshpande and Fleck [20]. The foam properties used in this study are listed in Table 2. 
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Table 2. Summary of parameters for aluminum foam model[9]. 

rf (kg/m
3
) sp (MPa) a a2 (MPa) b g eD 

534 12.56 2.12 1544 3.680 1.00 1.6206 

4.  Results and Dissection 

4.1.  Full overlap collision 

In this type of collision, both absorber members are loaded axially. Figure 2 shows the structure of the 

longitudinal member. The SEA which is equal to the energy absorbed by the structure divided by both 

structure masses in addition to the foam mass. The structure is shown in Figure 3. The thickness used 

in this study was 2mm. The structure was fixed from one end and the free end subjected to the striker 

of 1100 kg which represents an average car with two occupants and luggage [20], with striker velocity 

of 54km/h. Foam-filled steel enhances the energy absorption and gives the folding more stability and 

hence more folded, which increases the energy absorption and the crash force efficiency (CFE).  

 

 
Figure 2. structure designs two and three dimensions. 

 

 
Figure 3. Finite element modeling and boundary condition for the proposed design. 

 

The specific energy absorption (SEA) diagram is shown in Figure 4 which represents the 

function of displacement. The figure has been demonstrated that the highest specific energy absorption 

was 4.4 (kJ/kg). In this case, both members are loaded axially. From the Figure (4), the curve starts 

with almost no energy absorbed until reach 10 mm which represents the impactor hitting the bumper 

without absorber, when the impactor reaches the absorbers, the absorbed energy starts to increase with 

the displacement and the energy is directly proportional with the displacement. The curve is almost 

linear and reaches the maximum displacement no rebound has occurred. 
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Figure 4. Specific Energy absorption (SEA) – displacement for foam aluminum filled steel. 

 

Figure 5 represents the force-displacement curve which begins to rise with low steep until it 

reaches (25 kN) which represents the impactor hitting the bumper before reaching the absorber. When 

the impactor reaches the absorbers, the curve starts to rise rapidly with a very short time until it 

reaches the maximum value at (160kN), representing the force needed to form the first fold of each 

absorber. The absorber after forming the first fold starts to be less stiff, so the force needed to form 

more folds will be less. The force begins to decelerate gradually with more time, which is preferable to 

avoid high rapid deceleration less serious injuries. 

 
Figure 5. Force - displacement curve for the proposed design. 

 

Figure 6 represents the deceleration-time curve. The deceleration behaves as a result of the 

force. The figure shows that the maximum deceleration is at high peak force when the first fold is 

formed. The maximum acceleration is 16 g, this magnitude is acceptable according to [21] and it's 

much lower than the permissible level. The basic levels of HIC for different occupant sizes are shown 

in Table 3 below:: 
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Figure 6. Acceleration-displacement curve for a proposed design. 

 

 

 

Table 3. HIC level for different Occupant Sizes[21]. 

Dummy Type 
Mid-Sized 

Male 

Small 

Female 

6 Year 

Old Child 

3 Year 

Old Child 

12 Month 

Old Infant 

Existing/Proposed 

HIC Limit 
1000 1000 1000 900 660 

 

According to the table, the acceptable acceleration level is 60 g. The acceleration below this 

limit means that the structure is safer and recommended and vehicle occupants will be at a lower risk 

level. Equation 2 shows the parameters affecting HIC. 

 
                       

(2) 

 

 

 

Where    and     refer to any two random times during the acceleration pulse [21] a is a 

resultant head acceleration [22]. 

4.2.  Forty per cent (40%) offset collision 

The purpose of using 40 per cent offset collision is to assess the proposed design when subjected to 

this type of loading. In this collision, one of the longitudinal members is loaded axially and the other 

one is unloaded. When the impactor starts to collide the structure, first it will reach the bumper. The 

bumper will absorb a small amount of energy comparing with the absorber. The impactor continues to 

move on towards the structure for 110 mm as in figure 7. When the impactor starts to contact the stiff 

absorber, the energy starts to increase rapidly with a short time, and it increases as displacement 

increased. The purpose of using 40 per cent offset collision is to assess the proposed design when 

subjected to this type of loading. In this collision, one of the longitudinal members is loaded axially 

and the other one is unloaded. When the impactor starts to collide the structure, first it will reach the 

bumper. The bumper will absorb a small amount of energy comparing with the absorber. The impactor 

continues to move on towards the structure for 110 mm as in figure 7. When the impactor starts to 

contact the stiff absorber, the energy starts to increase rapidly with a short time, and it increases as 

displacement increased. 
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Figure 7. Proposed design subjected to 40 percent offset loading. 

 

 
Figure 8. Specific Energy absorption (SEA) – displacement for foam aluminum filled steel in an 

offset collision (40%). 

 

In the case of 40 percent offset crash, the rigid body has impacted the vehicle with a velocity 

of 54 km/h. In the 40 percent offset overlap. From figure 8 it can be said that the SEA of the structures 

is up to 3 (KJ/Kg). In an overlap collision, the vehicle started to rotate due to non-symmetrical 

loading, and this leads to non-symmetrical deformation mode, reactions, displacements and velocities 

of the two energy absorbers. Figure 9 represents the force-time curve for both left and right frontal 

longitudinal. The maximum force level of loaded side is nearly 152 KN after 10 ms, after that time the 

curve fluctuates below that level due to buckling until it reaches 68.6KN at time of 40 ms, while the 

unloaded side shows increasing slowly with low force level until the end of simulation and the force at 

that time is about 24 KN. 
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Figure 9. Forces of left and right longitudinal of foam-filled steel with 40 percent offset crash. 

 

The deceleration curve of the 40 percent offset crash for both left and right absorber is 

plotted in Figure 10. The same difference can be seen in the force figure. The peak deceleration in the 

left absorber was 15.2 g at 10 ms, after that the deceleration fluctuates and decreases until it reaches 

7.1 g at 40 ms, due to the buckling. The right absorber starts to increase due to increasing the force 

until it reaches the peak value of 2.5 g at 40 ms. 

 
Figure 10. Deceleration of left and right longitudinal of foam-filled steel with 40 percent  

offset crash. 

 

5.  Structure design comparison 

Ahmed Elmarakbi et al. [23] used the conventional design (S-shaped) for both aluminum and steel. 

The study included the different cross-section and different inner stiffening as shown in Figure 11 

below. The maximum specific energy absorption that has got were in these types type 2, type 3, type 7 

(selected design), type 8 and type 10 (1.377, 1.342, 1.549, 1.411 and 1.656 (KJ/Kg) when using 

octagonal with different inner stiffening. From the other hand, another study done by Zhang and 

Saigal [24] they designed S-Shaped structure with different square cross-sectional shapes. 
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Figure 11. Two and three-dimension of the S-Shaped designs. 

 

 

Table 4. SEA of different profiles with proposed design. 

 

Profile 

 

Name SEA (KJ/Kg 

 

S-Shaped type 2 1.377 

 

S-Shaped type 3 1.342 

 

S-Shaped type 7 (selected 

design) 
1.549 

 

S-Shaped type 8 1.411 

 

S-Shaped type 10 1.656 

 

Square S-Shaped 3.8 

 

proposed design 4.4 

 

They stated that the highest SEA is 1.375 KJ/Kg and when the foam incorporated with their design, 

the highest SEA is 3.8 kJ/kg. they concluded that the foam-filled structure increases the SEA. Figures 

12 show the comparison of different S-shaped design and proposed design. 
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Figure 12. Specific energy absorption of different S-Shaped designs and proposed design. 

6.  Conclusion and Future Work 

This research fulfilled two goals, at first a new design subjected to full overlap car collisions was 

evaluated and the second was the behavior assessment of 40 percent offset overlap impact on the 

proposed energy absorber. The proposed design is compared with other conventional S-shaped designs 

with different cross-sectional geometries used in the car. Numerical simulations were done by using 

ABAQUS. Results presented in this study were showed that the SEA of the frontal longitudinal 

members can be enhanced by using the proposed design. The results showed that the SEA of the 

proposed design was higher than other designs and the peak force and hence the acceleration is much 

lower than critical recommended by HIC. It can be concluded that the proposed design enhances the 

energy absorption and it increases the SEA by 265% of the S-Shaped designs with different octagonal 

geometries and increases SEA by 16% of the S-Shaped design when incorporated the foam filled-

square cross-sectional. For 40 percent offset collision, the simulations showed good results the SEA is 

about 3(kJ/kg) which represented 68% of the full overlap and the deceleration is much lower than 

critical level. 
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