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Featured Application: The specific application of this work can be used for vehicle frontal lon-
gitudinal members for crash energy absorption during an accident. 

Abstract: Vehicle crashworthiness is an important aspect to consider when designing a vehicle to 
ensure the safety of the occupants. Besides this, vehicles are also designed to reduce weight for 
better fuel economics. One possible approach to reducing weight without compromising vehicle 
safety is by looking at new designs and usage of composite materials, along with the usage of com-
putational models to reduce time and cost. Hence, this paper displays the experimental results of a 
carbon fiber reinforced closed top-hat section subjected to both quasi-static and dynamic crushing 
loading. The results were used to validate the computational model developed in the study. The 
specimens were made of carbon composite prepregs MTM-44 sheets stacked at the alternative ori-
entation of ±45° and 0°/90°, where 0° direction coincides with the axis of the member. The samples 
were prepared by using a mold and carbon prepregs under vacuum bagging followed by curing in 
an autoclave. Trigger initiation was applied to ensure the specimens demonstrated a stable crushing 
mode of failure during the test. Experimental investigations were carried out under the ambient 
conditions with different loading conditions, and different kinetic energy ranges (2, 3 and 6 kJ). 
Experimental data was used to validate the finite element analysis (FEA). The maximum errors ob-
tained between experimental and FEA for mean load, mean energy absorption, and crushing dis-
placement were 13%, 13% and 7%, respectively. The numerically obtained results were in strong 
agreement with the experimental data and showed that they were able to predict the failure of the 
specimens. The work also showed the novelty of using such structures for energy absorption appli-
cations. 
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1. Introduction 
Crashworthiness is a research field that is never obsolete since occupant safety is a 

very important aspect to be considered when designing vehicles. Everyday new vehicle 
designs are developed with different applications and requirements. For example, the 
crashworthiness requirements for electrical vehicles is different from traditional vehicles 
[1] because additional safety features are required to protect the battery cells. In terms of 
designing for crashworthiness, a lot of work has been conducted looking into various ma-
terial, shapes, sizes, and loading conditions [2–16]. Several composite sandwich designs 
such as inserts and foam-core hybrid composites were tested and it was found that these 
configurations have good energy absorption capabilities [2,6,15,16]. In another study, co-
conut-inspired designs were used to enhance crashworthiness performance [3]. Compo-
site corrugated tubes were also found to have excellent crushing behavior which corre-
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sponded to good energy absorption capabilities [5,11,12]. Some researchers [7,8,10] stud-
ied metal corrugated tubes produced by traditional manufacturing techniques and by ad-
ditive manufacturing. Similar to corrugated composite material tubes, metallic corrugated 
tubes are good for absorbing energy due to axial and oblique loadings. In other studies, 
different types of design configurations such as bi-tubular arrangements, and different 
cross-sectional geometries were explored [9,13]. These studies have shown that proper 
design, along with material selection, is vital for designing an effective tube for crashwor-
thiness application. Besides usage of aluminum, steel and composite, Faris et al. [14] ex-
plored the usage of magnesium alloy for crashworthiness application. The study suggests 
that magnesium alloy has good potential because of its high specific energy absorption 
capabilities. 

Composite materials have been shown to have better crashworthiness performance 
compared to their metal counterparts in terms of specific energy absorption [17–21]. One 
of the contributing factors for why composite materials display higher specific energy ab-
sorption is largely due to the failure mechanism of this material under compression load. 
Different types of failure modes exist concurrently such as buckling, fiber matrix debond-
ing, interlaminar failure, matrix cracking, friction, and fiber breakage. Each of these con-
tribute towards the energy absorption capabilities, giving them higher specific energy ab-
sorption than metallic structures [22–24]. Due to cost reasons, a lot of work has investi-
gated the usage of glass fiber composites, also known as glass fiber reinforced plastics 
(GFRP), in the area of energy absorption due to compression. GFRP has been extensively 
used in many car parts instead of metal with a weight saving ranging from 40% to 60%, 
while maintaining or improving the performance compared to metallic components [25–
29]. N.A. Warrior et al. showed that glass/epoxy composites absorbed greater energy than 
glass/vinyl ester and vinyl ester absorbed 33% more energy than polyester composites. 
Additionally, the study demonstrated that specific energy absorption of glass/epoxy com-
posites is up to twice that of steel [30]. R. Muralikannan et al. studied glass fiber reinforced 
circular tubes subjected to axial compression in quasi-static and dynamic loading. The 
study observed that energy absorbed due to dynamic loading is less than in static loading 
and that both static and dynamic loading exhibit the same failure of modes. The study 
also concluded that the impact speed does not have a major influence in energy absorption 
for the same tube’s D/t ratio [31]. 

Besides GFRP, carbon fiber reinforced polymer/plastic (CFRP) has become an attrac-
tive material in the aerospace and automobile industries due to its light weight, high 
strength to weight and stiffness to weight ratios, high energy absorption, and easy manu-
facturing [13–16]. Stanislaw Ochelski and Pawel Gotowicki studied composite material 
reinforced cone shapes under axial compression. They found that the specific energy ab-
sorption of carbon fiber reinforced composites is 20% higher than glass fiber composites 
[32]. Ochelski and Gotowicki studied the energy absorption behavior of carbon/epoxy and 
glass/epoxy composites conical tubes subjected to axial compression. The results showed 
that increasing fiber angle could lead to an increase in the energy absorption of the tubes 
due to the fibers oriented in the circumference direction [32]. Many studies demonstrated 
that fiber orientation influences the absorbed energy by the structure. Hull has investi-
gated the effect of fiber orientation. He found that the specific energy absorption increases 
as fiber angle increases. This behavior is valid until ±65° and from there on the specific 
energy starts to decrease [33]. Volume fraction, fiber orientation, and mechanical proper-
ties of the composite are most parameters that affect the higher energy absorption and 
hence the performance of the structure [34–36]. 

Based on the published works, it is safe to say that there is still room for practical 
design solutions that are lightweight, easy to fabricate and have vast structural applica-
tions. One of these is composite closed top-hat sections that have not received much at-
tention from researchers. The aim and objective of this study will be to investigate the 
energy absorption capabilities of composite closed top-hat sections for axial crush loads. 
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This will be used to validate a finite element model that will be used for future studies to 
optimize the design for crashworthiness application. 

2. Materials and Experiment Setups 
The material used in this study to form the composite top-hat and closure plate was 

carbon fiber prepregs and epoxy MTM44/CF5804A-40%RW-DC. MTM44 is a high perfor-
mance, 180 °C (356 °F) curing, and toughened epoxy resin manufactured to produce pri-
mary and secondary aircraft structures. MTM44 is designed for autoclave molding or low-
pressure vacuum bag Out-of-autoclave (OoA). The advantages of MTM44 include low 
density and a high level of damage. The fabric weight is 285 g/m2 and the prepreg’s weight 
is 475 g/m2. The volume fraction of the fiber is 60%. The stack sequences used to form the 
experimental parts (top-hat section) were [±45/0–90/90–0/±45]. 

To fabricate the top-hat section, a tool is required to serve as a mold (see Figure 1). In 
this study, the width and the height of the tool were 250 and 60 mm, respectively. The face 
side was 65 mm long. The tool was made from aluminium series 5754 with a thickness of 
2.5 mm. The length of the tool was 800mm with nine ribs, placed 100 mm apart, welded 
beneath the tool to prevent any bending or movement during stacking material and man-
ufacturing. Besides welding the ribs to the tool, two metal rods were placed along the 
length of the tool and attached to the ribs to ensure the stability of the tool during pro-
cessing. The ribs were made from aluminium series AA5754 with a thickness of 2.5 mm. 
Aluminium was used to enhance heat transfer when curing and cooling down. 

 

 

(a) (b) 

Figure 1. (a) Overview of fabrication tool and specimen (b) tool design. 

In the layup process, layers of the material were carefully stuck in the mold according 
to the orientation of each. After sticking each ply, a small roller was used with a smooth 
motion to remove any fold or wrinkling during the process (also to remove any air gaps). 
The best way to remove folds is to start moving the roller from one edge and working 
along the plies, with the focus on corners or any concave areas. A Polytetrafluoroethylene 
(PTFE) release film layer was placed between the tool and the composite to prevent stick-
ing the part with the tool. The PTFE film provides excellent resistance to chemical splashes 
and is easy to clean (wipe down). It is also very capable of resisting contamination by 
aqueous and oily fluids. The prepregs were placed on the PTFE film and covered with the 
release film, then the breathing layer was be placed on top of the release film. The main 
use of the breathing layer is to absorb resin from the laminate and to ensure complete 
evacuation of air from the vacuum bag during the process. Bagging film covered the mold 
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and was fixed by the tacky tape to the mold. The vacuum ports were attached over the 
bagging film. The extra thickness of breathing layers were placed underneath the vacuum 
port to ensure that the air was still drawn through the port even when a vacuum had 
compressed the breathing layer and to ensure no resin could be passed through the vac-
uum port. Figure 2 illustrates the vacuum bagging process used for this study. The com-
posite part was then placed in an oven for curing. The curing temperature was set at 130 
°C for two hours, then the temperature was increased to 180 °C for another two hours. 
This was followed by the part cooling down at a rate of 2–3 °C /min, with the vacuum port 
still attached to the vacuum during this process. The number of prepreg layers was 2 per 
layer, resulting in 16 plies for 8 layers. 

 

 

(a) (b) 

Figure 2. (a) Detailed description of the vacuum bagging process (image source: “Vacuum bagging” by CORE-Materials 
is licensed with CC BY-NC-SA 2.0), (b) execution of bagging process in this study. 

After curing, the contact area for both top-hat and closure plate were roughened us-
ing an abrasive material. The purpose of this is to remove any oily area that affects the 
adhesive material. SikaPower-490 C was used as an adhesive material. SikaPower-490 C 
is a two-component adhesive which was designed for steel, aluminium and CFRP bond-
ing. The adhesive is suitable for structural and crash resistant application. The adhesive 
was applied to the roughened area. After applying the adhesive material on both parts, 
the closure was attached to the top-hat part and clamps were used to ensure uniform 
thickness in all contact areas and to get rid of any bubbles from the adhesive. The assem-
bled part was placed at room temperature for four hours after joining and then placed in 
an oven for 30 min at 85 °C. Composite part will be trimmed to get a uniform edge and 
desired dimensions by using a band saw (Addison) while the initiator was prepared by 
using MACC special 400 CSO saw. The sample was later cut into two specimens with 
length 300 mm.This process was repeated top achieve the desired number of samples for 
this study. 

To support the development of the finite element model, some material properties 
were required. To facilitate this, square composite flat plates consisting of 6 plies with a 
dimension of 550 × 550 mm (average thickness of 2 mm) were manufactured using the 
vacuum bagging technique as described above. The material used in this study was car-
bon fiber prepregs MTM44/CF5804A. After curing, the plate was cut to a rectangular 
cross-section to produce an orientation of both [0/90°] and [±45°] according to the ASTM 
D30309/D3039M test method [37]. The samples were placed into two grips of a mechanical 
Instron 5800R 100 kN testing machine. The specimens were loaded axially towards the 
moving grip. Two transducers were placed at the center of the specimen to record both 
longitudinal and transverse strains. Force-displacement and stress–strain curves were 
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specified and recorded automatically in the equipment software so that other mechanical 
properties such as modulus of elasticity, Poisson’s ratio and tensile strength could be cal-
culated (Figure 3). The ultimate strength of each sample of the material was determined 
from the maximum force carried before failure. Mechanical properties obtained from cou-
pon testing and used in the numerical simulation are listed in Table 1. Figure 4 shows the 
coupon samples with two different orientations subjected to the quasi-static load. 

 

 

(a) (b) 

Figure 3. (a) stress strain diagram for plies with [0/90°] orientation, where 5 samples were used for repeatability purpose, 
(b) stress–strain diagram for plies with [±45°] orientation, where 4 samples were used for repeatability purpose. 

 
(a) (b) 

Figure 4. Composite samples under quasi-static loading, (a) 0/90 and (b) ±45 orientation. 

Table 1. Mechanical properties of MTM44-1/CF5804A obtained from tensile test. 

Material Property Units Value 
Young’s modulus, tension in direction ܧଵଵ(GPa) 70 

Young’s modulus, compression in direction ܧଶଶ (GPa) 70 
Shear modulus in plane 1–2/ ܩଵଶ (GPa) 4 
Poisson’s ratio in plane 1–2 μଵଶ 0.05 

Tensile strength in direction 1/(MPa) XT Xt (MPa) 760 
Compressive strength in direction 1 Xc (MPa) 610 

Shear strength in plane 1–2 ܵ௫௬ (MPa) 100 

The axial static crushing test was conducted by using Zwick ±250 kN Fatigue Instron 
equipment while the axial dynamic crushing tests were conducted on the Instron Spring 
Assisted, Instrumented Drop Tower as shown in Figure 5. The instrument is designed to 
provide 10 kJ of impact energy delivered from two springs with the impactor then moving 
in free fall (depending on fixture & specimen heights). The impact mass is 67.4 kg and 
additional weights can be bolted onto the impactor to increase its mass up to a total of 156 
kg (without fixtures). Hence, the maximum impact energy of around 11 kJ can be 
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achieved, corresponding to a maximum velocity of 12 m/s. The benefits of using this in-
strument are that it enables the ability to test small and large structures under laboratory 
conditions, provides high impact velocities, has low operational costs, a high-speed cam-
era can be conducted and has automated pick-up of impact mass. 

The test specimens fabricated were placed at the center of the equipment between the 
moving plate and the fixed plate, one of the structure’s ends was chamfered (initiated) 
and modelled and was placed upwards at the top of the profile towards the moving plate 
to ensure the progressive and stable collapse of the profile during the test. The specimens 
for plies with [±45/0–90/90–0/±45] orientation were crushed under three different kinetic 
energies 2.1, 3.2 and 6.6 kJ with the impact mass of 78 kg at room temperature. For sim-
plification, these energy levels are abbreviated as 2 kJ, 3 kJ and 6 kJ through the paper. 
Dynamic crushing tests were carried out to evaluate energy absorption characteristics. A 
high-speed camera (FASTCAM SA-X2) with rate of 5000 frames/s was placed to capture 
the crushing of the specimen and record the deformation during the test. 

 
Figure 5. Zwick ±250 kN Fatigue (left) and Instron Drop Tower (right). 

3. Finite Element Model 
The well-known non-linear finite element code ABAQUS was chosen in this study to 

predict the behavior of carbon fiber reinforced composite. The composite layup property 
editor provides a table that enables users to define each ply in the laminate separately 
including ply name, material, thickness, and orientation (for plies with [0/90°] orienta-
tion). The stratification of composite material is defined by using the composite layup fea-
ture of ABAQUS. The composite layup tool only allows surface discretized with shell el-
ements to model stacking sequences instead of as many surfaces as the number of layers 
that constitutes the real stack. In the composite layup modulus, for each set of elements 
corresponding to specific zones of the specimen, it is possible to define: (1) the number of 
plies; (2) the material that constitutes the ply; (3) the orientation of the fibers; (4) individual 
ply thicknesses. 

The profile geometry was modelled by using linear shell element S4R node doubly 
curved, reduced integration, hourglass control, and finite membrane strains. Both fixed 
and moving plates were modelled as linear discrete rigid element R3D4 bilinear quadri-
lateral. The element mesh size was 5 mm after conducting sensitivity analysis (maximize 
accuracy without increased computational time). The composite specimen was placed be-
tween two plates which had been modelled as rigid shell plates. The bottom plate was 
fixed in all directions and the motion in any direction was a constraint in all degree of 
freedom (U1=U2=U3=UR1=UR2=UR3=0) while the crushing speed assigned to the top 
plate (striker) with a mass of 78 kg had been uniformly applied. The top plate was mod-
elled to move axially towards the specimen and restricted from moving in other direc-
tions. A trigger (chamfer) was applied at the top of the profile to ensure the stable progress 
collapse during the test (similar to experimental tests). Figure 6 depicts the FE model used. 
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The contact interaction for the entire model was set as general contact and was used 
to avoid any interpenetration of the profile wall. The contact of the whole model was de-
fined using a finite sliding penalty-based contact algorithm with contact pairs and “hard” 
contact. The friction coefficient value of all contact surfaces was set at 0.2 [38–39]. An ad-
hesive layer was used to attach the closure plate to the top-hat profile. Sixteen plies were 
used to simulate the profile [±45/0–90/90–0/±45] orientation as well as the closure plate 
with three integration points with overall thickness of 2.6 mm for the profile and the clo-
sure plate. Each shell represented one ply. Mechanical properties of the composite mate-
rial used in the simulation procedure are listed in Table 1. To model the progressive failure 
of the composite structure, Hashin’s theory was utilized [40]. The Hashin criterion takes 
account of four independent modes of damage: fiber tension, fiber compression, matrix 
tension and matrix compression. When one of the damage initiation criterion is met, the 
elements are programmed to be deleted at the ply where the damage was detected 
(Hashin failure criteria). The element deletion is a very effective strategy in modelling 
progressive composite failure [40]. This failure criterion was adopted for its ease of imple-
mentation in the finite element software. 

 
Figure 6. Top-hat geometry, boundary conditions and layup. 

4. Results and Discussion 
The specimens were subjected to three different kinetic energy levels (2 kJ, 3 kJ and 

6 kJ). Total impact mass used was 78 kg to keep the inertia effect constant during the study. 
The force-displacement and energy-displacement curves for the different kinetic energy 
levels are shown in Figure 7. Once the upper platen contacted the top of the specimen 
(initiator), the specimen started to compress, internal ply delamination started, and the 
specimen suffered from splaying away from the center. The load increased until there was 
12 mm of the crushing displacement. Beyond 12 mm, there was no more increase in the 
load, the load flattened out as the specimen was crushed and started to decrease gradu-
ally. The initial increase in the load appeared to be linear followed by a flattening of the 
load as the specimen was crushed ; this can be attributed to the initiator. The impact speed 
did not have a significant effect on the force or even the initial force. From the energy-
displacement curves, the energy increased as crushing speed increased and the responses 
for different speeds were consistent. The energy increased until the maximum level then 
started to rebound due to the non-deformed closure plate which absorbed the energy and 
then released it. This finding confirmed what has been reported by Farley [41], as well as 
Berry and Hull [42], who studied many tubes subjected to different crushing speeds. They 
mentioned that the energy absorption increased linearly as crushing speed increased. Ma-
malis [40,24] also studied CFRP square tubes under dynamic crushing loads. He found 
that energy absorption increased with the crushing speed. 
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Figure 7. Example of dynamic force-displacement curves for different impact energy levels. 

The predicted force-displacement results from the finite element analysis are shown 
in Figures 8–10. For each speed value, three experiment tests were conducted for repeata-
bility purpose. The initial results were almost the same as the experimental values until 
14 mm (2 and 3 kJ) and 18mm (6 kJ) of the crushing stroke when the load increased rap-
idly. After exceeding these displacements, the load was slightly lower than experimental 
values and it can be clearly observed in Figure 10. After that, the load tended to behave 
almost the same as experimental behavior. The peak loads in predicted results increased 
slightly with increasing kinetic energy (speed). Load-displacement curves produced an 
oscillating result, so the filter has been applied to compare with the experimental curves. 
An example of progressive crushing from the finite element model is depicted in Figure 
11. There is good correlation between the finite element model and the experimental tests 
when the energy absorption is compared with the displacement as shown in Figures 8–
10. Table 2 shows the comparison between experimental and numerical simulations of 
key crashworthiness parameters. The maximum difference was found to be at 13% be-
tween the experimental and FEA results. This is within the acceptable range for computa-
tional / finite element analysis [43,44]. To add to this, the comparison was made between 
the average values of the experimental results and the FEA results. Besides this, for com-
plex and non-linear problems such as the crushing of composite structures, errors below 
20% are acceptable because the composite material failure models used in modelling are 
not exact models. Active research is still ongoing in this aspect [45,46]. 

 

 

(a) (b) 

Figure 8. Hat-shaped crush at kinetic energy of 2 kJ: (a) Dynamic experimental and F.E load vs. displacement curves, (b) 
Dynamic experimental and F.E energy vs. displacement curves. 
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(a) (b) 

Figure 9. Hat-shaped crush at kinetic energy of 3 kJ: (a) Dynamic experimental and F.E load vs. displacement curves, (b) 
Dynamic experimental and F.E energy vs. displacement curves. 

 

 

(a) (b) 

Figure 10. Hat-shaped crush at kinetic energy of 6 kJ: (a) Dynamic experimental and F.E load vs. displacement curves, (b) 
Dynamic experimental and F.E energy vs. displacement curves. 

 
Figure 11. Example of dynamic crushing of structure for 2 kJ test (numerical simulation). This fig-
ure shows the progressive crushing of the composite structure. 

Table 2. Predicted and experimental results for composite material reinforced closed top-hat. 

Approximate 
Impact Energy Parameter Average 

Experimental Numerical Error % 

~2.1 kJ 
(sample ID: 2 kJ) 

Mean load (kN) 66.9 58.2 13 
Energy (J) 2047 1850 10 

Crushing length (mm) 34 33.8 1 

~3.2 kJ 
(sample ID: 3 kJ) 

Mean load (kN) 66.6 62.3 6 
Energy (J) 3179 2755 13 

Crushing length (mm) 50 48.8 2 
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~6.6 kJ 
(sample ID: 6 kJ) 

Mean load (kN) 63 65.5 4 
Energy (J) 6580 5756 13 

Crushing length (mm) 97 90 7 

The differences in energy absorption and peak load of the fiber reinforced closed top-
hat section subjected to both dynamic and quasi-static axial crushing tests are shown in 
Figure 12. The average peak loads of the dynamic test for 2, 3 and 6 kJ kinetic energy were 
107, 108 and 112 kN, respectively, with a reduction from 35% to 45% compared with the 
quasi-static test. In addition, the average energy absorption of the dynamic test for 2, 3 
and 6 kJ kinetic energy were 2050, 3180 and 6500 J, respectively, with a reduction from 
28% to 77% compared with the quasi-static test. The average energy absorption of dy-
namic impact was 6300 J with a reduction of 30% compared with static loading for the 
same deformation length. The reduction in energy absorption is attributed to the changing 
of the deformation mode due to crushing speed and to the reduction in friction for the 
dynamic cases compared to the quasi-static. A video of the dynamic crushing is available 
in the supplementary material. 

 

 

(a) (b) 

Figure 12. (a) Force-displacement curves of dynamic and quasi-static axial crush (b) Energy-displacement curve of dy-
namic and quasi-static axial crush. 

5. Conclusions 
This study showed an experimental investigation into and finite element predictions 

of axial crushing behavior and crashworthiness characteristics of carbon fiber reinforced 
hat-shaped tubes. Different velocities were conducted. The impact speed and force-dis-
placement curves were explored for closed top-hat profiles fabricated by the vacuum bag-
ging process. Explicit FE code ABAQUS were used to develop the crash energy absorption 
of composite materials. Experimental failure modes and load-displacement curves of the 
top-hat section were validated. Numerical and experimental results were compared to 
determine the predictive capability of the finite element modelling of the top-hat compo-
site sections. The maximum difference was found to be 13% between the experimental 
and FEA results. This is within the acceptable range for finite element analysis [44,45]. To 
add to this, the comparison was made between the average values of the experimental 
results against the FEA result. Besides this, for complex and non-linear problems such as 
the crushing of composite structures, errors below 20% are acceptable because the com-
posite material failure models used in modelling are not an exact model. Active research 
is still ongoing in this aspect [45, 46]. Below are some of the conclusions that can be derived 
from this study: 
• Increases in impact speed led to increases in energy absorption and the energy ab-

sorption increases linearly with the impact speed 
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• The predicted force-displacement and energy-displacement results for different 
speeds have shown good agreement with the experimental results. Therefore, it can 
be concluded that the numerical model was able to predict the failure and behavior 
of the closed top-hat. 

• The average peak loads of the dynamic test 2 kJ, 3 kJ and 6 kJ were 107, 108 and 112 
kN, respectively, with a reduction of 35% to 45% compared with the quasi-static test. 
In addition, the average energy absorption of the dynamic test with 2, 3 and 6 kJ were 
2050, 3180 and 6500 J, respectively, with a reduction from 28% to 77% compared with 
the quasi-static test. 
Now that the finite element model has been validated, the next step is to use this 

model in a full vehicle finite element model to evaluate the crash performance followed 
by optimizing the top-hat structure to enhance energy absorption. 

Supplementary Materials: The following are available online at www.mdpi.com/2076-
3417/11/11/4792/s1, Video S1: Dynamic crushing of hat structures. 
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