

Transmission Control Protocol Analysis Using NS3

Ahmed B. Abdulkareem

University of Anbar, Continuous learning Centre, Ramadi 31001, Iraq

Corresponding Author Email: Ahmedalnakep3@uoanbar.edu.iq

https://doi.org/10.18280/isi.xxxxxx

ABSTRACT

Received:

Accepted:

 The NS-3 Test Framework provides a focus on multidisciplinary development and high-

level design, and is now being used by various experts around the world. Surprisingly, its

Data Collection Protocol (DCP) implementation is late and is not planned to be used as a

reference point for Transmission Control Protocol (TCP), focused research, where the

Herald has provided NS-3 to accept NS-2 submissions. The latest-best configuration

consists of a number of PCs connected to each other by two sweets and switches. As a result

of the overlapping character, being a significant number of PCs, channels can create a

complex problem. If a case of sensitivity is sent to the TCP bundles, each word flow should

be taken with the appropriate treatment when there is a deadline. Drop-tail is a common

scheme for using the power of measurement, and with this provision, the feeling cannot be

limited to the illumination of long lines, which increases the delay in these methods. As a

result, the flow efficiency decreases. The Board Active Queue Management (AQM) is

largely oblivious to the fact that conspiracy and sensitivity are not the basic mechanisms

that must be considered in solving this major problem. Another area to look for is

depression, and the range of serious problems. In this work, a framework was developed

based on drop- tail and different active queue management schemes such as DLP, Drop-

Tail delivers, Packet First in First Out (PFIFO), Random Early Detection (RED) and Code

Exploration Introduction. The evaluation is performed using an open-framework

framework (NS-3) assessment framework. In the end, the results of the review suggest that

Code and RED, a unique line of management figures, have shown much needed

performance.

Keywords:
TCP, active queue management, network

simulator, NS-3, NS-2, end to end delays

1. INTRODUCTION

The size and detailed design of the components of the

current system are increasing rapidly. Most importantly, that

the latest manufacturing industries with a gadget engine needs

more clarity and better performance [1]. To meet these needs,

a flexible study of compromise and communication between

different domains has been prepared. Courses on Ethernet or

Persistent Ethernet (RTE) have been improved [2]. RTE

meetings include Ether CAD, Xerox, Power Link, Project IRT

and Mudbugs. The RTE conference is a standard adopted by

the Modicums Association [3]. Mudbugs interface is often

used for communication between lover’s devices, for example,

downloadable systems (PLC) and micro-sized objects (MCUs),

PC-type computer gadgets (CNC), and remote data controls.

Acquisition Properties (SCADA). The SCADA framework is

used to consider complex systems that may affect risk or

malfunction. Along these lines, Mudbugs / TCP meet the

requirements to ensure maximum reliability [4]. The most

frustrating number of points hosted in Mudbugs / TCP

programs is the number of IP addresses sent within the allowed

range as a result, we do not know about the worst

organizational points if the merger is not good [5]. This paper

presents configuration data in Mudbugs / DCP and Framework

Testing Framework 3 (NS-3) and shows how to create a

Mudbugs / DCP interface with NS-3 [6]. In a given case, we

simulate the Mudbugs / TCP scenario and measure the

function of documents, for example, the number of focal

points, topography, differences and response times based on

the tic. To demonstrate the introduction, we use a literature

search program called Diacritic [7]. With these deliberate

frameworks, it is possible to determine which program is

compatible with Mudbugs / TCP and when the building

collapses in communications [8]. The Figure 1 shows the

architecture and layer of TCP/IP and OSI Model IOT model

[9].

Figure 1. Layes of OSI model and TCP/IP model IOT model

[10]

The significance of this research for versions makes the

practical evaluation a challenge as well as the interpretation of

results, because the NS-3 and TCP implementation

Ingénierie des Systèmes d’Information
Vol., No., Month, Year, pp. **-**

Journal homepage: http://iieta.org/journals/isi

significantly evolved in the meantime. In addition, the goal of

this research is to allow researchers develop and evaluate new

features of TCP by using our simulator in a much faster way

than they would with a NS3 implementation.

2. BACKGROUND AND RELATED WORK

In this section, we begin by summarizing the domain of the

TCP compilation control documentation and the TCP

extensions for measuring windows and timelines. After that,

we present an assessment of related activities.

2.1 Background for TCP

In RFC 793 the 16 bit is specified as the header field for the

TCP clock. Thus, the largest representation window is

therefore 65535 bytes: This restriction may be problematic for

high latency, delay information channels as it restricts the

capacity for these communication [10]. To avoid this problem,

RFC 1323 introduced a window-like extension. This extends

the TCP Windows definition to 32 bits, using the 32-map

enlargement feature of the Windows 16 service field. This

calibration item is used in the new TCP window selection

process, set only in SYN stages: therefore, the window scaling

feature is adjusted for each location when the link is opened.

Other extensions brought by the Timestamp option [11]. It

describes a method that allows each component (including

transactions) to be performed at the lowest computational cost.

In this way, time cycle calculation (RTT) and time transfer

(RTO) calculation can be very accurate, which is often a

necessary component of TCP efficiency. Timers also have

other uses, such as protecting serial numbers from folding

[12]–[14]. In addition to the options, the researchers also

developed a way to control the initial TCP encounter. The

communication is applicabe when use the high-speed

communication (Ex. satellites).

2.2 High speed TCP

TCP Highspeed is built by wide interconnect windows for

high voltage channels or, more generally, TCP connections. In

addition, cWnd highspeed accelerates test measures in relation

to the normal TCP and accelerates cWnd recovery in loss.

This behaviour only happens when the window reaches a

certain level, meaning that TCP High-speed is nice to the

normal TCP in a heavily populated setting, without causing

new congestion risks [15].

2.3 TCP Bick

Variation of TCP bike Reducing RTT damage (e.g.,

disadvantages between streams, with different RTTs, striving

for a single blocking link) can be classified as high speed TCP.

In particular, the congestion control problem with TCP bid is

considered a search problem [16]. The binary search approach

will be used to update the cWnd value (returned as cWndmin)

of the current Windows value as the start and the last Windows

cWndmax value (e.g. the cWnd value before the crash event)

as the target point. When the gap is too wide from the current

period, using the same growth strategy between these.

Therefore, when the time of loss, stroke and windows

association approaches cWndmaxuntil, the difference between

cWndmaxand cWnd is below the predetermined limit. Once

such a value is reached (or high windows are unknown, e.g.

binary search does not enable at all) the algorithm changes to

look for the new top window with the "high startup" scheme.

If these two steps are damaged, the current window (before

damage) is considered to be the new upper and then the

reduced (double) window size will then be regarded as the new

minimum.

2.4 TCP Cubic

TCP Cubic is an agreement that maintains the BIC's market

potential and its strength. The main feature is that the window

expansion function is punished in real time to be independent

of RTT. Further, Cubic convex window is calculated by the

function C (t-K) 3 + cWndmax, where C is a factor, Period

(Time) elapsed since the last window is decreased,

cWndmaxis window size is the final decrease of win3

cWndmaxβdow, and K=C, sufficient substance for permanent

deterioration. Its goal is to overcome the problems of standard

saturation control algorithms and optimize output over

multiple BDP channels. Noordwijk replaces the standard

"window-based" transmission with "basic" transmission [17].

The packet explosion distribution is divided into two

categories: the size of the explosion, the number of

components to be shipped during the shoot, and the duration

of the explosion transmission, which is the time between the

two deliveries. Both of these variables are updated based on

ACK-based measurements, e.g. ACK amplitude and RTT

variability. It also has some drawbacks: it operates under the

hood of a controlled environment with known features, and

does not guarantee the right behavior with competitive

streams, and active resource sharing in the case of short

transfers. Also, the use of its line (with outgoing delays) is very

large [18]. On the other hand, the TCP services on a per

connection basis such as in-order delivery. Ordering is indeed

unnecessary when downloading an archive, because head-of-

line blocking may slow down the connection.

2.5 TCP Tahoe

TCP Tahoe is the first version of TCP, an integration control

system developed by von Jacobson with three advanced

algorithms: slow start, focus block and fast distribution. With

a TCP (sender) source, the idea is to routinely track the route

through the ink, without knowing the state of the network [19].

Figure 2. TCP class diagram

2.6 Related work

Practical TCP integration control methods can be

distinguished from risk-based control methods and delay-

based control methods. Lost loss control coordinates (such as

BIC-TCP or TCP-New Reno) use packet loss as a connection

signal [20]. Delay-based compression controls (such as Vegas-

DCP) use network delays to indicate congestion. Hardik

investigated the impact of the original PBR and fixed-flow

policies on the various risk factors used by the risk factors

CCA and Cubic. Continuing with RTD, compared to or

compared to Cubic, shows that PPR can achieve better

performance than most CCAs proposed on the network. In this

study, we compare the performance of BIC and BBR and

analyze the four IB regions in the experiment [21]. Goal-based

loss control or delay-based delay favors less RTD travel, but

PPR offers more resistance compared to less-effective RTD.

In-depth analysis reveals the cause of the PPR dependence of

the slow flow of RTD.

The PBR wavelength energy is supported by the model and

shows a closed melatonin form for the PBR RTD integrity of

the PBR. In opposition to the authors above, we explain the

reason for the logical problem of PBR and other TCP policies

that arise from the merger control policy. While AQM modes

share the common goal of reducing TCP congestion, the most

effective user control is when AQM and TCP work together.

This experiment is analyzing the performance of different

pairs of TCP and AQM algorithms [22]. The experiment

extended towards the confirming that Codel provided better

performance of the equations with higher ordering violence.

The authors used two PBR streams that compete on the same

trajectory with different RED parameters and enable short RD

routing to return short bandwidth role. To the best of our

knowledge, we are the first to evaluate BBR in accordance

with various AQM methods. We found that the PBR and Codel

pair could achieve better performance [23].

Much research work has been done on developing methods

and methods for statistical control over similarities, which is a

summary of such research under Table 1.

Table 1. Summary of related works

Authors Main objectives Scenario Constraints

[24]

Focused on compound TCP as it is the

default protocol in the Windows

operating system and started by

conducting a local stability analysis for

the underlying fluid models.

Analyzed a model for transport

control protocol (TCP).

Evaluates the performance

using TCP.

[25]
To improve performance of TCP over

protocol networks.

Analyzed a model for user

defined protocol (UDP).

Found that MX-TCP is

more appropriate for lossy-

links such as driving on

highway or low bandwidth

and accessing public

hotspots or Internet.

[25]
To Provide the omultipath TCP

implementation using NS-3 model.

Used the Network Traffic

Congestion Control scheme,

called SB-CC, which leverages

ECN (Explicit Congestion

Notification) mechanism to

detect shared bottlenecks among

subflows.

The multipath network

implementation and

estimate the congestion

degree of each subflow.

[26]
The performance improvement

mechanism for TCP in NS-3.

Cutting payload (CP) and

congestion control.

TCP protocol is not use the

actual channel bandwidth

and congestion occurrence

during the data

transmission.

[27]

To enhance networks running multiple

TCP variants, parameters of any of the

TCP variants can influence local

stability.

Simulator (NS3) exhibit limit

cycles in the queue size.

We analyze local stability,

and performance of

TCP/NC coexistence.

3. PROPSED METHODELOGY

The NS 3 (Network Simulator 3) it’s an event network

simulator that uses simulation architectures and models in C

++ and also Python. This is a free program, designed primarily

for research and educational use, that runss in a Linux

environment [28]. Ns-3 software company was built with base

units. Main unit contains some basic code. E.g smart

directions, organizers and more. This unit communicates with

the network unit, which includes (code, packet, address types

(IPv3and Mac) and network device types).

3.1 TCP socket communication with the interface via the

system layer

The following is an analysis of TCP socket's general

appearance, and how it can be used to communicate with the

socket. Analysis of socket foot chassis is also carried out. For

clarification, please notice that we will use the words (sender

and receiver) to specifically define the socket feature.

However, these two functions should be used concurrently in

DCP (i.e. socket sender and recipient concurrently): our

discrepancies are limitless, as the same definition refers to all

sites because the entire is complete [29].

Figure 3. TCP Step Machine [29]

3.2 Modbus implementation on NS-3

In this section, we will focus more on defining flow and

source relationships instead of source definition because all

resources are written in the popular C ++ programming

language. We create and modify bus-level, star-level,

Modbus-Assist, Modbus-PT, ‘Modbus-Client’, ‘Modbus-

Server’, ‘Modbus-MGR’ and ‘MPAP’. The organizational

framework of these groups is. For lower layer model, here is

the entire phase of the whole sub-plane and the upper(highest)

layer. All functions in the Modbus / TCP protocol are designed

for the sample phase. This means that Modus runs on the C ++

language available in this class, including data model

resources, implementation code, data and data-parsing

functions. Modbus client and server program that sends a

request or response message to this class. Modbus introduces

a client and server application for environments created in the

context class. It is also worthwhile to use the model phase

functions [30]. In fact, object models and helpers have a

certain amount of IP address, work code, start address, and

number of locations. They were used to create the Modbus /

TCP data structure if it had some value. The Position class is

the phise which converts a particular value from the operator

of the helper class. Display source code for the ‘Modbus /

TCP’ protocol management. we use NS-3 simple modules like

‘core’, ‘network’, ‘internet’, ‘contractor’ and

‘implementation’. With these modules, you can create network

topology, data rate, and assign an IP address, location and

usage. After setting a specific topology, date rate, number of

nodes, and IP addresses in the status class, Mbbus uses

Modbus-Assist and Model models to send queries and

response messages to specific locations [30].

3.3 Setup and configuration

The setups of the NS-3 model towards the implementation

of TCP model are inherited from common header class. The

inherited class is stored in the src/network directory. The code

from this directory is swap out with the minimal

implementation of the script. Two important abstract classes

are supported form the setup and implementation like class

TcpSocket and class TcpSocketFactory [19]. The TcpSocket

class is configured with the feature src / internet / model / tcp-

socket. {cc, h}. The existing class hosted the attributed of the

implemented class. InitialCwnd object parameter is used for

the implementation of this class. The TCP socket

implementation using the four layer protocol is done using the

TcpSocketFactory class. The TCP model in NS-3 is

implemented using native implementation and simulation

based model. For the implementation of TCP the virtual

machine is combining diverse ways. The NS-3 provides the

port of TCP towards the setup and implementation. The TCP

is implemented with the help of GTNets. The full model of

TCP is the bidirectional and attempt for connection setup and

logic. The setup of this model framework is done using the

following files of code.

The various TCP congestion control are supported for

implementation of subclass for the TcpSocketBase. Tahoe,

Reno, and NewReno. NewReno is used by default manner as

a subclass for the setup.

The various cases the set up application layer in ns-3

application are used the socket function like

src/applications/helper and src/network/helper [31].

For the configuration of this framework below snippet is

used. This source configures the traffic source of TCP. For the

configuration of the TCP number of parameter are used which

are exported using Attribute class for the socket. The internet

objects are created related to socket stack. These created

objects are put on the top statement for the simulation

program.

The pointer of the actual socket is utilized by setting the

socket option. The method Bind is used for the actual socket

setup. The Socket CreateSocket method is used for the socket

configuration [28].

In particularly, the describe our motivation and the technical

aspects of our implementation, present a few tools that

developed to ease testing and analysis of related TCP traces.

The evaluation and challenge, hence tried to choose tools that

would allow for seamless testing and analysis between the

kernel and NS-3 stacks to lighten the burden analysis.

3.4 Topology layout

The simulation scenario of ns3 for successful

implementation there needs a layout of network topology. This

layout topology comprises of collection of link and nodes [34].

The code snippet for the development of the topology layout

using the nodes is shown below.

4. RESULT AND DISCUSSION

Throughput: The aggregate throughput is regarded as the

total amount of throughput that was achieved during the

simulation of network. Thus, the through put of each flow is

aggregated so as to evaluate them.

Figure 4. The throughput of the scenario

When the four schemes were compared, it was found that

the highest throughput was achieved by CoDel, while that of

the RED is still approximately the same as the previous one.

The worst aggregate is demonstrated by the pfifo and Droptail.

Even though, the through of DropTail is good, it is not

considered as good enough.

End to end delay: which is also referred to as latency, is

reflective of aggregate of delay over transmissions from

source to destination. The end-to-end delay demonstrated by

the CoDel is very minimal, and as such considered as one of

the advantages of CoDel. The same end-to-end delay is

demonstrated by the RED

Figure 5. End to end delays

On the other hand, the latency exhibited by both Fifi and

Drop Tail is high, and therefore not suitable for emergency and

high-speed network. Fifi’s latency may be attributed to the

management of priority of the packets (the processing delay).

That of Drop tail can be attributed to high congestion over the

channel.

Finally, we present in the following a few simulation to

compare the linux kernel implementation to our NS-3

implementation. In order to minimize the differences due to

the environment and for ease of reproducibility, we chose to

compare the through put and the end-to-end delay for the linux

NS-3 implementations within the TCP framework. This means

that nodes, roters and links are created by NS-3. That, every

node can be configured with a specific network stack. We

always linux stacks in the routers.

5. CONCLUSIONS

The effect of node velocity and packet size on the TCP

network is shown in this study. Test algorithms are evaluated

for intermediate performance (TP) and end-delay (E2E) as a

measure of performance using an NS3 simulator. In this

simulation project there is a simulation model with various

applications. Sequence projects and their production files are

done. The use of these files is important for monitoring

network performance in terms of delays, performance, and

TCP. Simulation of Drop Tail, RED, Codel, and PFIFO

designs were carried out with the help of a unique sim-NS3

event. The performance Results of ‘RED’ and ‘CodeL’

indicate that their performance is good and low in comparison

with drop tail and PFIFO.

REFERENCES

[1] R. Gupta, S. Tanwar, S. Tyagi, and N. Kumar, “Tactile

internet and its applications in 5G era: A

comprehensive review,” Int. J. Commun. Syst., vol.

32, no. 14, p. e3981, 2019.

[2] S. Babaeinejadsarookolaee et al., “The power grid

library for benchmarking ac optimal power flow

algorithms,” arXiv Prepr. arXiv1908.02788, 2019.

[3] S. Vitturi, C. Zunino, and T. Sauter, “Industrial

communication systems and their future challenges:

Next-generation Ethernet, IIoT, and 5G,” Proc. IEEE,

vol. 107, no. 6, pp. 944–961, 2019.

[4] M. Felser, M. Rentschler, and O. Kleineberg,

“Coexistence standardization of operation technology

and information technology,” Proc. IEEE, vol. 107,

no. 6, pp. 962–976, 2019.

[5] A. D. Chanu and B. Sharma, “Detection of Routing

Infrastructure Attack in TCP Connection,” in

International Conference on Computational

Intelligence, Security and Internet of Things, 2019, pp.

123–131.

[6] J. Luo, X. Yang, and C. Zhang, “CCMA: A Dynamical

Concurrent-Connection Management Agent to

Mitigate TCP Incast in Datacenters,” IEEE Access,

vol. 7, pp. 63303–63320, 2019.

[7] S. Maji and S. Arora, “Decision tree algorithms for

prediction of heart disease,” in Information and

communication technology for competitive strategies,

Springer, 2019, pp. 447–454.

[8] B. Dab, N. Aitsaadi, and R. Langar, “Joint

optimization of offloading and resource allocation

scheme for mobile edge computing,” in 2019 IEEE

Wireless Communications and Networking

Conference (WCNC), 2019, pp. 1–7.

[9] G. Howser, “The OSI Seven Layer Model,” in

Computer Networks and the Internet, Springer, 2020,

pp. 7–32.

[10] Y.-R. Chen, I.-H. Liu, K.-H. Chang, C.-G. Liu, and J.-

S. Li, “Selection Strategy for VM Migration

Method.,” J. Robot. Netw. Artif. Life, vol. 6, no. 1, pp.

66–70, 2019.

[11] A. So and L. Al-Sharif, “Calculation of the elevator

round-trip time under destination group control using

offline batch allocations and real-time allocations,” J.

Build. Eng., vol. 22, pp. 549–561, 2019.

[12] D. H. Hagos, P. E. Engelstad, A. Yazid, and C.

Griwodz, “A deep learning approach to dynamic

passive RTT prediction model for TCP,” in 2019 IEEE

38th International Performance Computing and

Communications Conference (IPCCC), 2019, pp. 1–

10.

[13] H. Jiang and C. Dovrolis, “Passive estimation of TCP

round-trip times,” ACM SIGCOMM Comput.

Commun. Rev., vol. 32, no. 3, pp. 75–88, 2002.

[14] M. García, R. Agüero, and L. Muñoz, “On the

unsuitability of TCP RTO estimation over bursty error

channels,” in IFIP International Conference on

Personal Wireless Communications, 2004, pp. 343–

348.

[15] S. O. Sulaiman, G. Al-Dulaimi, and H. Al Thamiry,

“Natural rivers longitudinal dispersion coefficient

simulation using hybrid soft computing model,” Proc.

- Int. Conf. Dev. eSystems Eng. DeSE, vol. 2018-

Septe, no. 1, pp. 280–283, 2019, doi:

10.1109/DeSE.2018.00056.

[16] S. Kumar, M. P. Andersen, H.-S. Kim, and D. E.

Culler, “Performant {TCP} for {Low-Power}

Wireless Networks,” in 17th USENIX Symposium on

Networked Systems Design and Implementation

(NSDI 20), 2020, pp. 911–932.

[17] A. M. Ali and S. Kadry, “Performance evaluation of

TCP congestion control algorithms using a network

simulator,” in Automatic Control, Mechatronics and

Industrial Engineering: Proceedings of the

International Conference on Automatic Control,

Mechatronics and Industrial Engineering (ACMIE

2018), October 29-31, 2018, Suzhou, China, 2019, p.

317.

[18] F. Abdulrazzak, E. Abdulaziz, and K. Al-Hussaini,

“Performance Analysis for TCP Protocols over mm

Wave in 5G Cellular Networks,” in 2019 First

International Conference of Intelligent Computing and

Engineering (ICOICE), 2019, pp. 1–6.

[19] Y. Lu and Y. Li, “Ts-tcp: Two-stage congestion

control algorithm for high concurrency tcps in data

center networks,” in 2019 28th International

Conference on Computer Communication and

Networks (ICCCN), 2019, pp. 1–9.

[20] M. Shurman, E. Taqieddin, O. Oudat, and R. Al-

Qurran, “Performance enhancement in 5G cellular

networks using priorities in network slicing,” in 2019

IEEE Jordan International Joint Conference on

Electrical Engineering and Information Technology

(JEEIT), 2019, pp. 822–826.

[21] A. A. Oliveira, D. Batista, and R. Hirata, “Exploring

the ns-3 mmWave module.” April, 2019.

[22] W. Wei, K. Xue, J. Han, D. S. L. Wei, and P. Hong,

“Shared bottleneck-based congestion control and

packet scheduling for multipath TCP,” IEEE/ACM

Trans. Netw., vol. 28, no. 2, pp. 653–666, 2020.

[23] G. Paliwal, K. P. Sharma, S. Taterh, and S. Varshney,

“A New Effective TCP-CC Algorithm Performance

Analysis (NS3),” in 2019 4th International Conference

on Information Systems and Computer Networks

(ISCON), 2019, pp. 630–635.

[24] P. Bosch, S. Latré, and C. Blondia, “An analytical

model for IEEE 802.11 with non-IEEE 802.11

interfering source,” Comput. Networks, vol. 172, p.

107154, 2020.

[25] L. Campanile, M. Gribaudo, M. Iacono, F. Marulli,

and M. Mastroianni, “Computer network simulation

with ns-3: A systematic literature review,”

Electronics, vol. 9, no. 2, p. 272, 2020.

[26] S. R. Pokhrel and S. Singh, “Compound TCP

performance for industry 4.0 WiFi: A cognitive

federated learning approach,” IEEE Trans. Ind.

Informatics, vol. 17, no. 3, pp. 2143–2151, 2020.

[27] E. Gamess, B. Smith, and G. Francia III, “Performance

evaluation of modbus TCP in normal operation and

under a distributed denial of service attack,” 2020.

[28] H. Tazaki, R. Nakamura, and Y. Sekiya, “Library

operating system with mainline Linux network stack,”

Proc. netdev, 2015.

[29] L. Supaporn and Z. Le Jun, “Applying relief algorithm

for feature selection in sentiment classification for

movie reviews,” J. Comput. Theor. Nanosci., vol. 14,

no. 11, pp. 5418–5423, 2017.

[30] M. M. Gharamaleki and S. Babaie, “A new distributed

fault detection method for wireless sensor networks,”

IEEE Syst. J., vol. 14, no. 4, pp. 4883–4890, 2020.

[31] J. S. Saini and B. S. Sohi, “Performance evaluation of

interference aware topology power and flow control

channel assignment algorithm,” Int. J. Electr. Comput.

Eng., vol. 10, no. 3, p. 2503, 2020.

	1. Introduction
	4. Result and discussion

