Synthesis and characterization of some metal ions derived from ciprofloxacin and evaluation of their biological activity

Cite as: AIP Conference Proceedings **2213**, 020325 (2020); https://doi.org/10.1063/5.0000467 Published Online: 25 March 2020

Mouhaned Y. Al-Darwesh, and Kaiss R. Ibraheem

ARTICLES YOU MAY BE INTERESTED IN

Synthesis and acetyl cholinesterase inhibitory activity of new oxazole, 1, 2, 4 - triazole derivatives bearing carbamazepine as nucleus AIP Conference Proceedings **2213**, 020301 (2020); https://doi.org/10.1063/5.0000455

Development of geopolymer mortar utilizing locally produced fly ash in Malaysia AIP Conference Proceedings **2213**, 020248 (2020); https://doi.org/10.1063/5.0000273

Preparation, characterization and H₂ storage capacity of newly Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) mixed ligand complexes of paracetamol and saccharine AIP Conference Proceedings **2213**, 020306 (2020); https://doi.org/10.1063/5.0000077

AIP Conference Proceedings 2213, 020325 (2020); https://doi.org/10.1063/5.0000467 © 2020 Author(s). 2213, 020325

Synthesis and Characterization of Some Metal Ions Derived from Ciprofloxacin and Evaluation of their Biological Activity

Mouhaned Y. Al-darwesh^{a)} and Kaiss R. Ibraheem^{b)}

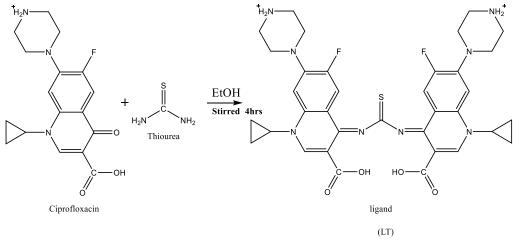
Department of Chemistry, College of Science University of Anbar, Anbar, Iraq

^aCorresponding author: myturky@uoanbar.edu.iq ^bSc.kaiss1966@uoanbar.edu.iq

Abstract. This study aims to prepare and characterize a new ligand (LT). This ligand which is derived from ciprofloxacin is able for coordination with the following metal ions: Cu (II), Co (II), Fe (III), Zn (II), Cr (III), Ni (II), and Mn (II); where: LT = 4- (3-carboxy-4 - ((3-carboxy-1-cyclopropyl-6-fluoro-7 (piperazine-1yil) quinoline-4 (1h) -ylidene) -6-fluoro-4-1-hydroquinone -7-yl) piperazine-1- were investigated. Analysis of elements, electrical conductivity, magnetic characteristics, melting point, UV-Vis, infrared (IR), ¹H nuclear magnetic resonance spectrum, mass spectroscopy, and thermal analysis were employed to describe the synthesized complexes. The TGA has been checked to know the chemical composition of compounds. The measured molar conductivity values refereed to that the non-electrolytic complexes were evaluated to investigate the biological efficacy of the ligand and the synthesized complexes toward the obtained bacteria.

INTRODUCTION

The Ciprofloxacin is an antibiotic belonging to the quinolones family. It is considered to be highly successful, especially in the cases of contamination by sensitive bacteria in the respiratory and urinary tracts [1]. Quinolone, on the other hand, is one of antibiotics groups that have been widely employed in the treatment of many bacterial infections [2]. Drug complexes are highly biologically active and widely used today because of their significant role in the synergistic process of certain drugs and their useful biological activity. [3] The association of metallic and non-metallic ions has been found to increase the viability of drugs and enhance their efficacy [4], making them more active than in the same ligand [5]. The complexes of ciprofloxacin are highly effective against bacteria, fungi, viruses and cancer cells [6]. Therefore, antibacterial agents are receiving a great deal of attention at the present time and are witnessing a great and rapid development due to the resistance of bacteria to the old traditional medicines, where they become more resistant to them [7]. Antibiotics ciprofloxacin and Norfloxacin are among the broad range of Quinolones which are effective toward gram positive and gram negative bacteria [8]. The resistance of antagonists has evolved by modifying the antigen target. One of the most important factors that have led to the emergence of multiple antibiotic resistances is the DNA genes, which transform supercoiled bacterium [9] due to pump influx. Thus, the flow of antibiotics reduces the concentration of antibiotics at the target sites on which the antibiotic works [10].


MATERIALS AND METHODS

The used chemicals in this research were purchased from the commercial markets, including CrCl₂.6H₂O, COCl₂, 6H₂O, MnCl₂. 4H₂O.FeCl₃.6H₂O CuCl₂.2H₂ ZnCl₂, and Ethanol absolute from BDH. Other chemicals including NaOH, Ciprofloxacin hydrochloride, DMF and DMSO were obtained from Sigma Aldrich. Elemental analyses of the following elements C, N, and H have been achieved by using a C.H.N Euro Vector (model EA3000, (single) V. 3.0 elemental analyzer). The metal ions contents were calculated as oxides of metals. Measurements of molar

2nd International Conference on Materials Engineering & Science (IConMEAS 2019) AIP Conf. Proc. 2213, 020325-1–020325-10; https://doi.org/10.1063/5.0000467 Published by AIP Publishing. 978-0-7354-1964-3/\$30.00 conductivity of the ligand and its complex in the solvent DMSO at 10^{-3} M have been achieved by Seven HANNAEC214. The magnetic measurements have been achieved on the Sherwood Scientific magnetic balance bt using method of Gouy. The spectrum of electron impact (70 EV) mass was reported using the model of Finnegan MAT (Mass spectra LC-MSQP50A: Shimadzu (E170Ev) spectrophotometer. The UV–visible spectrum was obtained in the solution of DMSO (10^{-3} M) for the ligand and the prepared complex from it by the spectrophotometer (Shimadzu -160A) using quartz cells (1 cm), at wavelengths from 200 to 1000 nm. Infrared (IR) spectrum was measured by FTIR spectrophotometer (Shimadzu 8400 S) at wavelength region 400-4000 cm⁻¹ as disks of KBr. The spectrum of ¹HNMR was measured by a varian400 MHz in the solvent of DMSOd6; while the chemical shift was measured near peaks of solvent. The thermal analysis (TG) has been achieved in a dynamic nitrogen atmosphere (20 ml per min) at a rate of heating 10 ° C per minute by the thermal analyzer (Perkin Elmer TG 4000).

Synthesis of the ligand(LT) =4-(3-carboxy-4-(((3-carboxy-1-cyclopropyl-6-fluoro-7-(piperazin-1-yl) quinolin-4(1H)- ylidene)carbamothioyl)imino)-1-cyclopropyl-6-fluoro-1,4dihydroquinolin-7-yl)piperazin-1-ium

In the round-bottom flask (100 ml) put 7.71 g (0.02mol) of ciprofloxacin dissolved in 30ml of absolute ethanol. Stir the solution using a magnetic stirrer until dissolution completed. Then, add 0.76 g (0.01mol) of thiourea dissolved in 10 ml of the absolute ethanol. At constant stirring, drop it into the solution then add 5 drops of glacial acetic acid to the mixture and heat up (Reflux) for 4 h, let the mixture to cool and form a white tanned precipitate. Then, nominate the precipitate, dry and recrystallize it in absolute ethanol to obtain ligand in its pure form. The preparation ratio was 2: 1.

FIGURE 1. Synthesis approach of the ligand (LT)

Synthesis of metallic complexes

In a one hundred millilitres round-bottom flask, put 0.702 g (0.001mol) of LT dissolved in 20 ml of absolute ethanol and add 0.04 g of NaOH. Preheat the mixture in a water bath until dissolution. Add the mixture to a solution of dissolving (0.001mol) 0.230 g of the metal salt $CrCl_3.6H_2O$ in a small volume of absolute ethanol 10 ml. Preheat the final mixture in a water bath until dissolve the salt, mix the two solutions and heated (Reflux) in a water bath for three hours. Isolate the precipitated colour (brown) and recrystallize it from absolute ethanol. In the same way, complexes was prepared and the ratio of preparation was (M: L) (1:1).

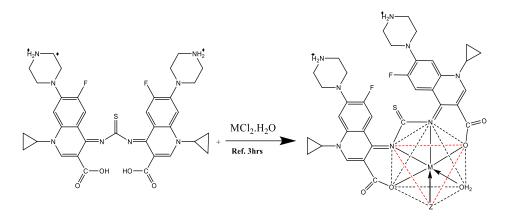


FIGURE 2. Scheme of production of the metallic complex

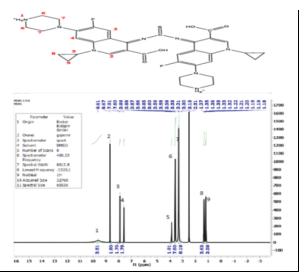


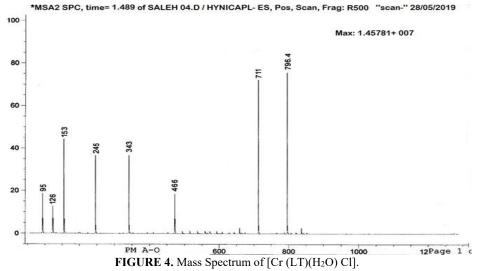
FIGURE 3. ¹H-NMR spectra of LT

TABLE1. Analytical data and physical characteristics of ligand and its metallic complexes

The Compounds	Molecular Wt.	Yield (%)	Melting P. (°C)	Colour -	Found (calcd.) (%)				
The Compounds					С	Н	Ν	М	Cl
C ₃₅ H ₃₆ F ₂ N8O ₄ S (LT)	702.78	83	308	White	(59.65) (59.47)	(5.43) (5.17)	(15.90) (15.66)	-	-
C ₃₅ H ₃₆ ClCrF ₂ N ₈ O ₅ S [Cr (LT)(H ₂ O) Cl]	806.23	71	299	Dark Brown	(52.14) (51.96)	(4.50) (4.11)	(13.90) (13.45)	(6.45) (6.11)	(4.40) (4.19)
$C_{35}H_{36}ClCoF_2N_8O_5S$ [Co(LT)(H ₂ O) ₂]	813.16	70	319	Dark Blue	(51.70) (51.23)	(4.46) (4.10)	(13.78) (13.26)	(7.25) (7.02)	(4.36) (4.14)
C ₃₅ H ₃₆ F ₂ MnN ₈ O ₅ S [Mn (LT)(H ₂ O) ₂]	773.19	68	318	Light Yellow	(51.33) (51.14)	(4.69) (4.23)	(14.48) (13.94)	(7.10) (6.86)	-
C ₃₅ H ₃₆ ClF ₂ FeN ₈ O ₅ S [Fe(LT)(H ₂ O) Cl]	810.08	77	331	Dark Orange	(51.89) (51.26)	(4.48) (4.03)	(13.83) (13.19)	(6.89) (6.31)	-
$C_{35}H_{36}CuF_2N_8O_5S$ [Cu(LT)(H ₂ O) ₂]	782.33	69	303	ellowish green	(53.74) (53.14)	(4.64) (4.23)	(14.32) (13.89)	(8.12) (7.79)	-
$\begin{array}{c} C_{35}H_{36}F_2N_8O_5SZn \\ [Zn\ (LT)(H_2O)_2] \end{array}$	784.16	66	325	White	(53.61) (53.20)	(4.63) (4,14)	(14.29) (13.76)	(4.85) (4.27)	-
$\frac{C_{35}H_{36}F_2N_8NiO_5S}{[Ni(LT)(H_2O)_2]}$	777.19	68	314	Green	(54.07) (53.69)	(4.67) (4.13)	(14.41) (13.75)	(7.55) (6.84)	-

RESULTS AND DISCUSSION

Tetradentate complexes have been obtained from the reaction between Schiff base and metal ions at the molar ratio (1:1) The prepared Schiff base ligand and their complexes were very stable in the solid-state at the room temperature. Most complexes and ligand are dissolved in solvents of DMSO and DMF.


The Spectrum of ¹H-NMR of the Ligand (LT)

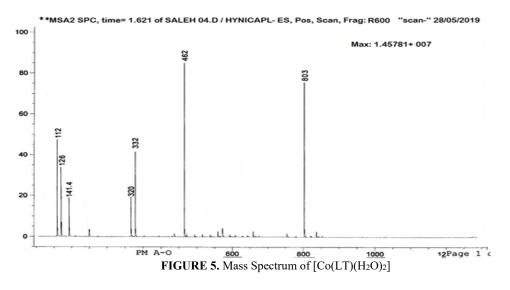

NMR spectrum was used to diagnose LT using DMSO-d6 as a solvent. The LT spectrum shown in Figure 3 showed two signals at δ (9.61) ppm and δ (8.67) ppm belonging to the carboxylic group COOH protons and while the multiplet signal within the range of ppm δ (7.60-7.91) belonging to the protons of aromatic rings, while the protocols of the aliphatic ring have multiple signals at δ (3.58,3.31) ppm. Signals at displacements δ (3.85,1.35,1.32) ppm are also due to cyclopropan ring protons Table 2 shows the ligand ¹H-NMR spectrum data (LT).

TABLE 2. NMR sp	TABLE 2. NMR spectrum (¹ H-NMR) in solvent (DMSO-d ⁶ ligand (LT)								
Ligand(LT) peaks	Assignments								
9.61	δΗ, СООН								
8.67	δH, NH, piperazine								
(7.91-7.60)	δH, -CH aromatic								
(3.58,3.31)	δH, -CH aliphatic								
(3.85,1.35,1.32)	δH, -CH cyclopropane								

The Mass Spectrum

The mass spectrum of some complexes (peaks at 796 m/z, and 803 m/z) represent the molecular weight of the complexes respectively. It is additional proof of the correctness of the proposed complexes as shown in Figures (4-5).

Studies of Infrared Spectra

Electronic techniques in the analysis and study of ligand and their complexes prepared within the range between 4000-400 cm-1 and then in the vibrational spectra [11]. In this research, infrared technology has been used to diagnose the prepared complexes in comparison with the spectrum of ligands and the spectrum of prepared complexes. However, Table (3) shows the most important oscillatory vibrations of the important bonds in the ligands and the prepared complexes. Vibration v of the group (C = N) is noted in the metal ions complexes with the prepared ligand; that displacements towards the higher or lower vibrations indicate the compatibility of the ligand with the metal ions. It ranged from 1609 cm-1 to 1624 cm-1[12]. M-N vibrations appear in all the prepared complexes between 467 cm-1 and 441cm-1 which appear as a weak or medium and sometimes strong [13,14].

	TABLE 3.	Characteristic	c of bands of	IR of ligan	ds and their	metal comple	$xes (cm^{-1})$		
Compounds	ν(O-H);	ν(C-H);	ν(C-H);	v(-NH)	ν(C=O);	vas(COO-)	v(C=N)	v(M-N)	v(M-O)
	COOH	aromatic	aliphatic		COOH				
$C_{35}H_{36}F_2N_8O_4S$	3390	3156	2927	3289	1732	-	1624	-	-
(LT)									
$C_{35}H_{36}ClCrF_2N_8O_5S$	3429	3179	2942	3255	-	787	1619	467	628
[Cr (LT)(H ₂ O) Cl]									
$C_{35}H_{36}ClCoF_2N_8O_5S$	3432	3183	2938	3267	-	782	1617	462	668
$[Co(LT)(H_2O)_2]$									
$C_{35}H_{36}F_2MnN_8O_5S$	3428	3140	2927	3274	-	785	1612	441	656
$[Mn (LT)(H_2O)_2]$									
C35H36ClF2FeN8O5S	3421	3187	2935	3188	-	785	1615	462	632
[Fe(LT)(H ₂ O) Cl]									
$C_{35}H_{36}CuF_2N_8O_5S$	3424	3182	2935	3262	-	786	1614	458	628
$[Cu(LT)(H_2O)_2]$									
$C_{35}H_{36}F_2N_8O_5SZn$	3392	3177	2923	3269	-	788	1609	449	622
$[Zn (LT)(H_2O)_2]$									
C35H36F2N8NiO5S	3417	3151	2935	3278	-	784	1611	466	623
$[Ni(LT)(H_2O)_2]$									

UV-Visible Spectrum

The UV-visible spectrum has been measured in a dimethyl sulfoxide solvent (DMSO) at a concentration of 10⁻³ molar using a cell diameter 1cm at the room temperature. In this study, the displacement of the two absorption bands was shown where there was a clear change towards higher values and an increase in wavelength in the range from 15-35 nm, for the transition $(\pi \rightarrow \pi^*)$ and up to 20-40 nm for the transition $(n \rightarrow \pi^*)$ [15,16]. The increase in the intensity of the absorption beam due to the formation of the symmetric complex was explained. When interacting with metallic ions, the formation of symmetric complexes must be accompanied by often forming the coloured complexes with sharp and distinct absorption bands that differ from the ligand band either in a site, intensity or both.

Consideration was given to the type of the used ion for the salt, where chlorides were exclusively selected, as they are likely weighted [17]. On the other hand, the rest negative ions such as nitrates, sulphate, acetate or others, as well as the solutions are clear and free of sediments or the suspended particles which cause errors Table 4 shows UV – vis spectra of the free ligand and complexes in 10^{-3} M DMSO

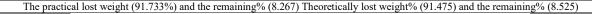

The Complex	λ(nm)	ύ(cm ⁻¹)	ABS	ε L.mol-1cm-1	Assignment	Suggested
The Complex	Mum)	o(cm)	ADS	e 13.000-1001-1	Assignment	Formula
(LT)	265	37735	1.150	1150	$\pi \rightarrow \pi *$	1 or muta
(L1)	315	31746	1.271	1271	$n \rightarrow \pi^*$	
	357	28011	0.980	980	$n \rightarrow \pi^*$	
	420	23809	0.460	490	$n \rightarrow \pi^*$	
[Cr (LT)(H ₂ O) Cl]	266	37593.9	1.352	1352	$\frac{n \rightarrow \pi *}{L.F}$	Octahedral
	314	31847.1	1.552	1585	L.F	Octaneurai
	346	28901.7	1.659	1659	L.F	
	415	24096.3	0.248	248	L.F	
	535	18691.5	0.248	64	${}^{4}A_{1g} \rightarrow {}^{4}T_{1g}(P)$	
					$^{4}A_{1g} \rightarrow ^{4}T_{1g}(F)$	
	645	15503.8	0.056	56		
	905	11049.7	0.008	8	$\frac{{}^{4}A_{1g} \rightarrow {}^{4}T_{2g}(F)}{L.F}$	0.1.1.1
$[Co(LT)(H_2O)_2]$	266	37593	1.327	1327		Octahedral
	312	32051.2	1.851	1851	L.F	
	357	28011.2	1.423	1423	L.F + C.T	
	485	20618.5	2.167	2167	${}^{4}T_{1g} \rightarrow {}^{4}T_{1g}(P)$	
	677	14771.0	0.306	306	${}^{4}T_{1g} \rightarrow {}^{4}A_{2g} (F)$	
					$\frac{{}^{4}T_{1g} \rightarrow {}^{4}T_{2g}(F)}{L.F}$	
$[Ni(LT)(H_2O)_2]$	266	37593.9	1.368	1368	L.F	Octahedral
	312	32051.2	1.866	1866	L.F	
	348	28735.6	1.788	1788	L.F	
	357	28011.2	1.411	1411	L.F + C.T	
	410	24390.2	0.186	186	$^{3}A_{1g} \rightarrow ^{3}T_{2g}(P)$	
	797	12547.0	0.102	102	$^{3}A_{1g} \rightarrow ^{3}T_{1g}$	
					$\frac{{}^{3}A_{1g} \rightarrow {}^{3}T_{2g}}{L.F}$	
$[Cu(LT)(H_2O)_2]$	269	37174.7	1.760	1760	L.F	Octahedral
	316	31645.5	1.587	1587	L.F	
	360	27777.7	1.508	1508	L.F	
	405	24691.3	2.016	2016	C.T	
	953	10493.1	0.528	528	$^{2}\text{Eg} \rightarrow ^{2}\text{T}_{2g}\text{D}$	
[Fe(LT)(H ₂ O) Cl]	269	37174.7	1.731	1731	L.F	Octahedral
	313	31948.8	2.031	2031	L.F	Octaneurai
	345	28985.5	1.909	1909	L.F	
	390	25461.0	0.608	608	L.F	
	515	19417.4	0.206	206		
[Mn (LT)(H ₂ O) ₂]	265	37735.8	1.266	1266	$\frac{{}^{5}T_{2g} \rightarrow {}^{5}EgD}{L.F}$	Octahedral
	313	31948.8	1.200	1781	L.F L.F	Octaneural
	345	28985.5	1.610	1610	L.F L.F + C.T	
	343 357	28985.5 28011.2	1.368	1368	L.F + C.1 L.F	
	557 696	14367.8	0.216	216	$^{6}A_{1g} \rightarrow ^{4}T1 \text{ gG}$	
[7., (IT)/II O)]	850	11764.7	0.068	68	${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}D$	0-4 1 1 1
[Zn (LT)(H ₂ O) ₂]	269	37174.7	1.031	1031	L.F	Octahedral
	316	31645.5	1.087	1087	L.F	
	405	24691.3	1.316	1316	C.T	

TABLE 4. UV-vis spectra of the free ligand and complexes in 10^{-3} M DMSO

Thermal Studies

The Thermo Gravimetric Analysis of Complexes has been diagnosed by TGA Curve. This technique is used for measuring the mass change in terms of the temperature when the material is controlled by a heating program at a given time called the resulting curve. Some information can be obtained from the weight curve associated with thermal stability, reaction speed, the chemical composition of the model, thermal stability of products and determination of the type of reaction whether emitter or endothermic. Table 4 shows the results that correspond to the proposed general formula of the complexes. This table also shows information of each stage of pyrolysis [18] compounds metal complexes were examined by thermo gravimetric analysis in the temperature range of 30-600 °C obtained results from the TG curves for all these compounds are given in Table 5. The decomposition was complete at 596°C for all the complexes shows that the complexes are more thermally stable were are given in Table (3.6) and their thermographs are shown in Figures (6-7) respectively. The following results were obtained The first stage which took place at temperature range of (57-244)°C. includes departure of the Lattice water molecules and methanol . The following stage at temperature range of (161-374)°C includes departure of the coordinated water molecules and chloride ions at temperatures depending on bond energies resulted from coordination of ligand atoms The third stage (237-577) involved the departure of some other fragments of the ligands It loses weight 82.366% and 91.47% respectively, after which it stays stable until it decomposes Co and Cr are complex until the temperature reaches 596 ° C.

				TGA	۱.		Total
Complexes.	Step	Ti/°C	T₁/°C	Tdtg max	Weight mass loss% calc (found)	Reaction	mass loss%
$[Co(LT)(H_2O)_2]$	1	57.6	161.5	93.6	10.022(11.412)	-H ₂ O, CO ₂ Cl	82.336
	2	161.5	237.1	209.6	11.068(10.665)	C ₆ H ₄ N	(82.556)
	3	237.1	393.4	318.6	24.599(25.411)	$C_{13}H_8N_4S$	_ ` `
	4	393.4	596.5	467.5	36.647(35.068)	C15H22N3OF2	_
						CoO	_
The practical	l lost weig	ht% (82.550	6) and the rem	aining% (17.4	144) Theoretically lost weight% (8)	2.336) and the remaining%	6 (17.664
$[Cr (LT)(H_2O)]$	1	76.5	244.1	175.4	38.203(35.960)	-H ₂ O, C ₁₃ H ₈ N ₄ SF ₂	91.475
Cl]	2	244.1	374.6	300	15.566(16.887)	-C ₆ H ₄ NCl	(91.733)
	3	374.6	577.5	476.1	37.706(38.886)	$-C_{16}H_{22}N_3O_3$	_
						-CrO ⁺	_

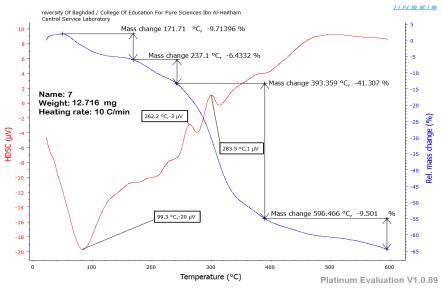
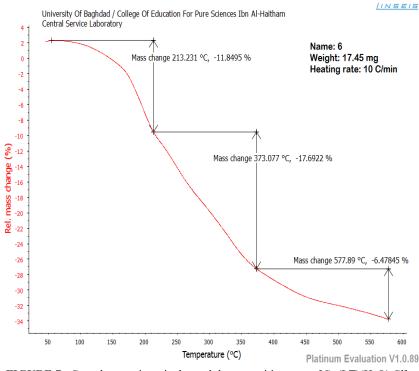
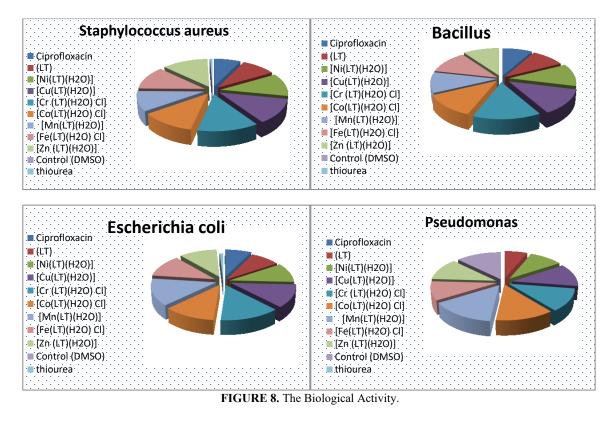


FIGURE 6. Complex gravimetric thermal decomposition curve [Co (LT) (H₂O) Cl]




FIGURE 7. Complex gravimetric thermal decomposition curve [Cr (LT)(H₂O) Cl]

The Biological Activity

A few special treatments for infectious diseases were discovered. All of which were from natural sources until 1915. Ehrlich Paul discovered many useful drugs which were added to the branch of medicine called chemotherapy, which includes the treatment of bacterial diseases by chemicals. The factor that destroys microorganisms without affecting receptor tissue [19, 20]. Two bacterial species have been applied in this study: Gram-positive and Gram-negative bacteria (Pseudomonas, Staphylococcus aureus, Bacillus and Escherichia coli). The influence of the ligand and most prepared complexes against two species of bacteria are medium that is used, and most complexes ranged from medium to high. The surrounding cell allows only fat-soluble substances which make fat solubility as the important factor that controls antibacterial activity. Therefore, the complex spreads faster through the cell membrane and in the lipid layers of the microorganism wall and then enters and destroys the bacterial cell [21]. On other hand, transitional metals also have an antimicrobial effect [22,23].

The compounds		Bacteria		
	Staphylococcus aureus	Pseudomona	asBacillusE	scherichia coli
Ciprofloxacin	24	19	29	24
(LT)	31	28	33	27
$[Ni(LT)(H_2O)_2]$	38	35	40	33
$[Cu(LT)(H_2O)_2]$	41	35	45	39
[Cr (LT)(H ₂ O) Cl]	43	38	51	44
$[Co(LT)(H_2O)_2]$	39	43	42	38
$[Mn (LT)(H_2O)_2]$	33	29	37	46
[Fe(LT)(H ₂ O) Cl]	39	34	41	38
$[Zn (LT)(H_2O)_2]$	41	38	35	34
Control (DMSO)	0	0	0	0
thiourea	2	0	0	3

TABLE 6. Zone of inhibition of the ligand and the synthesized complexes (mm or %)

CONCLUSION

New Schiff base complexes of Zn (II), Cu (II), Co (II), Fe (III), Cr (III), Ni (II), and Mn (II) were prepared. Schiff base (LT) is derived from the interaction of ciprofloxacin with thiourea. It has been prepared by tetradentate ligand having N and O donor atoms. All complexes are partially dissolved in water but fully dissolved in solvents of DMF, DMSO, and non-electrolyte solvents. The geometry of the prepared complexes was proposed based on the measurement of UV-Vis spectrum, FT- IR, and molar conductivity, magnetic sensitivity. All octahedral complexes except complexes of Zn (II) and Cu (II) were found to be tetrahedral. Biological efficacy was conducted toward four species of bacteria including *Staphylococcus aureus* and *Pseudomonas*, *Bacillus*, *Escherichia coli*. The biological efficacy of the complexes was greater than ones of the ligand.

REFERENCES

- 1. P. Yadav, and Y.C. Joshi, Bull. Chem. Soc. Ethiop. 22, (2008).
- 2. J. Child, D. Mortiboy, J.M. Andrews, A.T. Chow, and R. Wise, Antimicrob. Agents Chemother. **39**, 2749-2751 (1995).
- 3. M. Imran, J. Iqbal, S. Iqbal, and N. Ijaz, Turkish Journal of Biology, **31**, 67-72 (2007).
- 4. A. Shaikh, R. Giridhar, F. Megraud, and M. Yadav, Acta Pharmaceutica, 59, 259-271 (2009).
- 5. S. Saha, D. Dhanasekaran, S. Chandraleka, N. Thajuddin, and A. Panneerselvam, Advances in Biological Research, 4, 224-229 (2010).
- 6. M. Ikram, S. Rehman, and A. Faiz, Bull. Chem. Soc. Ethiop. 24 (2010).
- 7. M.M. Hania, Journal of Chemistry, **6**, S508-S514 (2009).
- 8. B.G. Katzung, "Basic and clinical pharmacology" (McGraw-Hill Education, 2017).
- 9. A. Aubry, X.S. Pan, L.M. Fisher, V. Jarlier, and E. Cambau, Antimicrob. Agents Chemother. 48, 1281-1288 (2004).
- 10. K. Poole, J. Antimicrob. Chemother. 56, 20-51 (2005).
- 11. H.H. Willard, L.L. Merritt Jr, J.A. Dean, and F.A. Settle Jr, (1988).
- 12. N. Raman, S. Esthar, and C. Thangaraja, J. Chem. Sci. 116, 209-213 (2004).
- 13. K. Nakamoto, "Infrared and R aman Spectra of Inorganic and Coordination Compounds" (Handbook of Vibrational Spectroscopy, 2006).

- 14. B.G. Saha, R.P. Shatnagan and K. Banerji, J. Indian. Chem. Soc. 927, (1982).
- 15. B.T. Thaker, and P.K. Bhattacharya, J. Inorg. Nucl. Chem. 37, 615-618 (1975).
- 16. B.C. Kashyap, A.D. Taneja, and S.M. Banerji, J. Inorg Nucl.Chem. 37, 612,1542 (1975).
- 17. O.H. AL-OBAIDI, and A.A.R. ALHITI, Journal of university of Anbar for Pure science, 1, 15-20 (2007).
- 18. A.A.S. Al-Hamdani, and W. Al Zoubi, Spectrochim. Acta, Part A 137, 75-89 (2015).
- 19. L. Ravishankar, S.A. Patwe, N. Gosarani, and A. Roy, Synth. Commun. 40, 3177-3180 (2010).
- 20. U.A. More, S.D. Joshi, and V.H. Kulkarni, Int. J. Drug. Design. Disc, 4, 1163-1173 (2013).
- 21. A.H. Caswell, and B.C. Pressman, Biochemical and biophysical research communications, 49, 292-298 (1972).
- 22. N.H. Ham, F. Binon, and R. Roger, J. Chem. Soc (1953).
- 23. H. Jaya, N.Z. Noriman, O.S. Dahham, N. Muhammad, N.A. Latip, A.K. Aini, and K.M. Breesem, IOP Conf. Ser.: Mater. Sci. Eng. 454, 012192 (2018).