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Abstract  
      This paper studies the existence of  positive solutions for the following boundary value 
problem :- 
 

0 y(b) 

0(a)y β - y(a) α

     bta             f(y) g(t) λy







 

 
The solution procedure follows using the Fixed point theorem and obtains that this problem 
has at least one positive solution .Also,it determines (  ) Eigenvalue which would be needed 
to find the positive solution . 
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Introduction 

In this paper we shall consider the second - order boundary value problem (BVP) 
 

 

The following conditions will be assumed throughout :- 

A-  f : [0 , )  [0 , )  is continuous , 

B-  g : [0 , 1]  [0 , ) is continuous and does not vanish identically on any                         
    subinterval , 

C-   
x

f(x)
Limf

0x
0 



  and   
x

f(x)
Limf
x 

  exist , 

D-   ,  such that  and  are not both zero and  Z =     >  0 , and 
E-   a ≥ 0 , b ≤1 . 
The boundary value problem (1.1)  arises in the applied  mathematical sciences such as 
nonlinear diffusion generated by nonlinear sources , thermal ignition of gases and chemical 

concentrations in biological problems ;  for example see  [1] , [2] , [3] .  When =1 and  f  is 

either superlinear that is  (f 0 = 0 and f  = ) or f is sublinear that is (f 0 =  and f  = 0 ) ,  

1.1).........(     

0 y(b) 

0(a)y β - y(a) α

      bta             f(y) g(t) λy
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Erbe and Wang [5] obtained solutions that are positive with respect to a cone which lies in an 

annular type region .The methods of [5] were then extended to higher order BVP in [4] . 

For the case  =1, = 0, =1,  = 0, Johnny Henderson and Haiyan Wang [7] obtained 

solutions that are positive for an open interval of eigenvalues  . Not required in this work that  

f would be either superlinear or sublinear , yet, as in [4] , [5] but as in [7] , the arguments 
presented here for obtaining solutions of(1.1)for certain involve concavity properties of 
solutions, which are employed in defining a cone on which a positive integral operator is 
defined . A Krasnosel’skii fixed point theorem [8] is applied to yield positive solutions of 

(1.1) , for    belongs to an open interval. 

Section 2 , presents some properties of Green’s functions that are used in defining a positive 
operator , also states the Krasnosel’skii fixed point theorem . 
 Section 3 ,  gives an appropriate Banach space and constructs a cone to which we apply the 
fixed point theorem yielding solutions of 1 .1 , for an open interval of eigenvalues . 
 
2- Some Preliminaries 
In this section , we state the above mentioned Krasnosel’skii fixed point theorem. We  will 
apply this fixed point theorem to completely continuous integral operator , whose kernal ,     
G (t , s ) , is the Green’s function for 

- y  = 0 

 y(a) -  y (a) = 0 

0 y(b)   

Is 

………..(2.1)















btsa        )t -1 (  ) βαs (
Z

1

bsta        ) s-1 (  ) βαt (
Z

1

s)G(t,  

from which 

G(t , s) > 0    on ( 0 , 1 )  ( 0 , 1 ) ,     ……….(2.2) 

G(t , s)  G(s , s) =         ) s -1 (  ) βs α (
Z

1
 ,   a  t  b , a  s  b ,    ……(2.3)                    

and  it is shown in [5] that :- 

G(t , s)  M G(s , s) =  M         ) s -1 (  ) βs α (
Z

1
  , 

4

12b
t

4

12a 



, a  s  b , …(2.4) 

Where  













β)4(α

4βα
,

4

1
minM  

We shall apply the following fixed point theorem to obtain solutions of (1.1) , for certain  � 

Theorem 1 [8]. Let B a Banach space , and let  P be a cone in B . Assume N , K are be     

KNN0  , and let  PN)\K(P:T   open subsets of  B with 

a completely continuous operator such that , either 

1-  Tu    u  , u  P  N , and   Tu    u  , u  P  K , or 

2-  Tu    u  , u  P  N , and   Tu    u  , u  P  K 
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. N)\K(P Then  T  has a fixed point in 

3. Solutions in The Cone 

In this section , apply Theorem 1 to the eigenvalue problem (1.1 ) . Note that y(t) is a solution 
of (1.1) if , and only if , 

y(t)   =    ds f(y(s)) g(s) s) ,(t G
b

a

    ,       a  t  b 

For our construction  , let B = C[a , b] , with norm , x(t)Supx
bt  a 

  

Define a cone  P  by   : 



















xMx(t)min,  b][a,on  0 x(t): BxP

4

12b
t

4

12a
 














β)4(α

4βα
,

4

1
minM Where 

Also , let the number  h[a,b] be defined by � 

...(3.1)..........          ds g(s) s)G(t,maxds g(s) s)G(h,
4

12b

4

12a

4

12b

4

12a










  

Theorem 2. Assume that conditions (A),(B),(C) and (D) are satisfied .Then , for each  
satisfying 

... (3.2)……         .










b

a

0

4
1)(2b

4
1)(2a

ds)f g(s) s)G(s,(

1
    λ    

ds)f g(s) s)G(h,(M

4
 

there exists at least one solution of (1.1) in P . 

Proof. Let  be given as in (3.2) . Now , let  > 0 be chosen such that 

.(3.3)..........                

ε)ds)(f g(s) s)G(s,(

1
    λ    

ε)ds)(f g(s) s)G(h,(M

4
b

a

0

4
1)(2b

4
1)(2a














 

Define an integral operator T : P  B  by 

Ty(t) =   ds f(y(s)) g(s) s) ,(t G
b

a

   ,    y   P       ………(3.4) 

We seek a fixed point of  T in the cone P. 

From (2.2), we note  that , for y   P, Ty(t)  0 on [a,b] . Also , for  y   P, we have from 
(2.3) that 

Ty(t)   =  ds f(y(s)) g(s) s) ,(t G
b

a
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Ty    ds f(y(s)) g(s) s) , (sG
b

a

       ………(3.5) 

Now , if  y   P , we have by (2.4) and (3.5) , 

TyM                 

ds f(y(s)) g(s) s) , (sGλ M                  

ds f(y(s)) g(s) s) ,(t GλminTy(t)min

b

a

b

a4

12b
t

4

12a

4

12b
t

4

12a

















 

 p . In addition , standard arguments show that T is   As a consequence , T : p 

completely continuous. 

Now, turning to f0 , there exist an K 1 > 0 such that f(x)  (f0 + ) x   , for  0 < x  K1. 

y  P such that   y  = K1 , we have from (2.3) and (3.3) So , by choosing 

y         

 y y(s) ε)(f ds g(s) s)G(s,λ         

ds y(s) ε)(f g(s) s)G(s,λ         

ds f(y(s)) g(s) s)G(s,λTy(t)

b

a

0

b

a

0

b

a















 

Consequently ,  yTy  . So , if we set  1 = {x  B x < K1} 

then 

Ty   y   , for  y P �1 .        ……….(3.6) 

Next , considering f  , there exist an K2 > 0 such that f (x)  (f - ) x ,for all x > K2 . 

Let K3 = max {2K1 , }M
K 2   and let  2 = { x  B  x < K3} 

If  y  P with  y  = K3 , then  23

4

12b
t

4

12a
KMKyMy(t)min 





, and we have from  (3.1) 

and (3.3)  that 

 

 

 

 

 

 

y        

y ε)(f ds g(s) s)G(h,
M

λ
        

 ds y(s) ε)(f g(s) s)G(h,λ        

ds f(y(s)) g(s) s)G(h,λ        

ds f(y(s)) g(s) s)G(h,λTy(h)

4
1)(2b

4
1)(2a

4
1)(2b

4
1)(2a

4
1)(2b

4
1)(2a

b

a
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Thus , yTy   . Hence , 

Ty   y   ,        for y �P �2           ……….(3.7) 

Applying (1) of theorem 1 to (3.6) and (3.7) yields that T has a fixed point                 y(t) 

 )\(P 12    . As such , y(t) is a desired solution of 1.1 for the given  . Further , since G 
(t , s) > 0 , it follows that y (t) > 0 for a < t <b . This  completes the  proof  of the theorem . 

Theorem 3 . Assume that condition (A),(B),(C) , (D) and (E) are satisfied . Then , for each  
satisfying 

 






b

a

4
1)(2b

4
1)(2a

0

ds)f g(s) s)G(s,(

1
    λ    

ds)f g(s) s)G(h,(M

4
         ……….(3.8) 

there exists at least one solution of 1.1 in P . 

Proof. Let  be given as in (3.8) . Now , let  > 0 be chosen such that 

3.9).........(        

ε)ds)(f s)g(s)G(s,(

1
    λ    

ε)ds)(f g(s) s)G(h,(M

1
b

a

4
1)(2b

4
1)(2a

0






 





 

Let T be the cone preserving , completely continuous operator that was defined by(3.4).  
Beginning with  f0 , there exists an K 4 > 0 such that f(x)  (f0 - ) x   , for  0 < x  K4. 

y  P such that  y  = K4 , we have from (3.1) and (3.9) so , for                              So 

y        

y ε)(f ds g(s) s),G(h λ M        

 ds y(s) ε)(f g(s) s),G(h λ        

ds f(y(s)) g(s) s),G(h λ        

ds f(y(s)) g(s) s)G(h,λTy(h)

4
1)(2b

4
1)(2a

0

4
1)(2b

4
1)(2a

0

4
1)(2b

4
1)(2a

b

a































 

Thus , yTy   . So , if we let 

3 = {x  B x < K4} 

then 

Ty     y   for  y  P3      ……. (3.10) 

It remains to consider f  , there exists an K5 > 0 such that f (x)  (f + ) x, for all x > K5 . 
There are the two cases , (a) f is bounded , and (b) f is unbounded . 

For case (a) , suppose K6 > 0 is such that f(x)  K6 , for all 0 < x <  . 
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Let K7 = max {2K4 , K6 
b

a

ds} f(y(s)) g(s) s)G(s,λ . Then , for y  P with y  = K7 we have 

from (2.3) and (3.2) 

 

 

 

so that yTy  . So if  4 = {x  B x < K7} 

then 

Ty   y   , for  y  P 4    ……….(3.11) 

For case (b) , let K8 > max {2K4 , K5 } be such that  f(x)   f(K8) , for  0 < x  K8 . 

By choosing  y  P  such that  y  = K8 and we have from (2.3),( 3.2 ) and (3.9 ) 

 

 

But 

  

b

a

b

a

8 yε)(f ds g(s) s)G(s, λε)K(f ds g(s) s)G(s, λ  

Therefore 

  

b

a

yε)(f ds g(s) s)G(s, λ Ty(t)  

and so yTy   . For this case , if we let 

4 = {x  B x < K8} 

then 

Ty   y    ,       for  y  P 4       ……….(3.12) 

Thus , in both cases , an applying of part (2) of theorem 1 to (3.10),(3.11) and (3.12) yields 

that T has a fixed  point  y(t)  )\(P 34   . As such , y(t) is a desired solution of 1.1 for 

the given   . Further , since G (t , s) > 0 , it follows that y (t) > 0 for a < t < b . This  completes 
the  proof  of the theorem . 



















b

a

8

b

a

8

b

a

b

a

ε)K(f ds g(s) s)G(s, λ          

ds )f(K g(s) s)G(s, λ         

ds f(y(s)) g(s) s)G(s, λ          

ds f(y(s)) g(s) s)G(t,λ   Ty(t)

y           

ds g(s) s)G(s,K λ          

ds} f(y(s)) g(s) s)G(t,λ   Ty(t)

b

a

6

b

a
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  الخلاصة

 -: الاتیةالحلول الموجبة للمسألة الحدودیة  وجوددرس هذا البحث     

0 y(b)

0(a)y β - y(a) α

    bta             f(y) g(t) λy







  

  )قـیم المعلمـة  تـم تحدیـدو  اموجبـ اواحد حلا الأقلأن هذه المسألة تمتلك على  ت إلىنظریة النقطة الثابتة وتوصل استخدمم

  . لمسألة الحدودیةل حلول موجبة وجدتعندها التي  (

 
 


