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 e earthworm is the most bene�cial organism for assessing metallic contamination due to the fact that critical high-quality
correlations have been determined between earthworm steel concentrations and soil cadmium, copper, lead, zinc, and mercury
concentrations.  e mercury compounds are very poisonous for most organisms. Here, we investigated the ability of earthworms
(Lumbricus terrestris) to HgCl2 (below laboratory conditions). A study of the e�ect of �ve di�erent salt concentrations of mercury
chloride (HgCl2) 1 ppm, 5 ppm, 10 ppm, 50 ppm, and 100 ppm was studied on worm survival and calculation of the concentration
required to destroy half the number of worms (LC50).  e results showed that there is an inverse relationship between these salt
concentrations and the time required to perish 100% of worms. It was found that the concentration of 100 ppm is the lethal
concentration of half the number (LC50) of the earthworm (Lumbricus terrestris).  e e�ects of the salt concentrations used
con�rmed their e�ect on the experimental worm weights as well, so the concentration of 50 ppm was the most in�uential on
earthworm weights of the type of Lumbricus terrestris, as it caused a reduction 12% of worm weights with a signi�cant di�erence,
while the concentrations 1 ppm and 100 ppm were the least e�ective, as they caused the worms to decrease by only (5%), while the
remaining two concentrations 5 ppm and 10 ppm caused their e�ect to decrease by 7% only.  us, it can be concluded that lower
worm weights have nothing to do with the lethal concentrations of the heavy metal salt (HgCl2).  e histological study also
showed that low concentrations of mercury chloride salt have less e�ect on earthworms’ skin tissue compared to
higher concentrations.

1. Introduction

Potentially toxic factors in soil include metals and minerals,
including cadmium (Cd), mercury (Hg), lead (Pb), or
micronutrients, including chromium (Cr), selenium (Se),
copper (Cu), and zinc (Zn), which can also appear toxic
when concentrations exceed tolerances [1, 2]. Since now all
factors are no longer poisonous, the term “poisonous ele-
ments” have gained greater scienti�c acceptance in the lit-
erature as a more comprehensive and relevant term than

poisonous metals or metalloids [3]. Toxic elements spread
naturally on the Earth and in acceptable concentrations [4].
However, degrees of probably poisonous factors in soils have
multiplied dramatically global because of the commercial
revolution because of big human activities [1, 5]. Fertil-
ization with pesticides (agricultural) is a potential human
source of potentially toxic elements in the soil [6]. So,
mercury (Hg) is a natural metal and is found in the envi-
ronment by many natural and anthropogenic processes
[7, 8]. Mercury is especially solid withinside the ecosystem
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andmight unfold over the complete globe earlier than returning
to the Earth’s surface. In the soil, mercury is largely static,
accumulating within the apex layer, specifically via means of
binding to natural matter, specifically to thiol groups [9].

More than 90% of the soil invertebrate biomass is made
up of earthworms, which usually play important roles in
many soil formation processes [10].

It also serves as a great food source for many higher
organisms, such as birds, and is used to feed fish of com-
mercial importance because it contains a high concentration
of proteins rich in essential amino acids, which are used as
bait for fishing [7]. It is also used as a biomarker in envi-
ronments as it is five-pointed for assessing toxicity in aquatic
and land environments, as it is considered as a fertilizer for
aquatic plants through their excrement and decomposition
after death [11].

Recently, antihelminthic treatment has attracted sig-
nificant scientific interest as an expanded technology for the
biological treatment of potentially toxic elements in con-
taminated soils [12–16]. Nonetheless, earthworm abundance
and network shape are dependable signs to evaluate soil
infection and also can repair infected soil through bio-
accumulation [17–20]. For example, greater probably poi-
sonous factor elimination in earthworm-assisted treatment
of municipal wastewater, manure, and different probably
poisonous factors-wealthy natural wastes had been reported
[21–24]. However, the systematic evaluation of earthworms’
ability to potentially toxify elements and treat infected soils
is limited, and only some opinions have been published on
the use of earthworms to treat infected soils [25, 26]. Even so,
earthworms offer a very good ability to treat toxic agents in
infested soils but are rarely evaluated [19]. Earthworms are
crucial biomarkers of soil contamination. ,e bioavailability
of mercury relies upon the species, which in flip determines
the toxicity, transport, and time for the metal withinside the
environment [7]. Many researchers have indicated the
ability of earthworms to take in heavy elements and accu-
mulate them in their tissues, such as mercury, lead, cad-
mium, gold, and selenium [8]. It was found that these
pollutants have the ability to affect earthworm communities
in terms of killing them or reducing their numbers and
presence [9].

Heavy metals did not affect worms only, but there is an
effect on many aquatic organisms such as fish, soft shellfish,
and crustaceans [10].

In view of the pollution of soil in Anbar Governorate as a
result of military operations and war remnants whose
remnants have leaked into water and soil because they
contain heavy elements, their toxic concentrations, and their
danger to the environment, and due to the ability of oli-
gochaetes to accumulate in their tissues, the idea of the
current study resulted in which the high-capacity worm
accumulates elemental mercury in the tissue to study the
histological changes in cells.

2. Materials and Methods

Experimental earthworms were collected from a home
garden in which no chemicals or pesticides were used.

,ey were isolated from the mud by placing the mixture in
a sieve, washed well with water, and brought to the
laboratory.

Active adult worms were isolated and classified, and the
type Lumbricus terrestris was selected for the experimental
study, taking into account equal lengths and sizes as much as
possible. ,ese worms were placed in plastic basins con-
taining an appropriate amount of sandy soil mixed with clay
with a pH of 7.6 and left under laboratory conditions (20°C
temperature and 60–70% humidity) for a period of fourteen
(14) days in order to acclimatize, observe their movement
and activity, and isolate the dead worms, as well as the
inactive, taking into account the continuous moistening of
the soil to ensure that the worms do not dry out and die, and
then a process of isolating the adult worms was conducted
from both types in separate ponds.

In each experiment, 36 adult and active worms were
used, taking into account equal lengths and sizes as much as
possible. ,e worms were divided into six (6) groups, each
group includes six (6) worms, with five replicates for each
concentration, including the control group. ,ey were
placed in small plastic ponds containing an equal amount of
moist soil, and then each group was offered 1, 5, 10, 50, and
100 ppm of mercury chloride salt.

,e groups were examined after 24, 48, and 72 hours to
calculate the dead worms and determine the lethal con-
centration of half the number (LC50). ,e experimental
groups were left for 21 days with a daily examination, and by
light pricking using forceps and under an anatomical mi-
croscope, it was confirmed that the worms were dead or still
alive.

,e phenotypic and histological changes that occurred in
the worms as a result of exposure to different salt con-
centrations of mercury chloride were also studied.

2.1. Histological Technique

(1) Samples from the skin of worms were collected for
the purpose of the histological study: Fixation: Each
tissue sample is usually cut into small pieces of
2–3 cm in length prior to fixation to facilitate pen-
etration of the fixative and tissue preservation. ,e
best fixative for routine light microscopy is an iso-
tonic solution of 10% Bowen’s solution for 24 h.

(2) Embedding: ,e process of paraffin embedding, or
tissue impregnation, is ordinarily preceded by two
main steps:

(A) Dehydration: Water is firstly extracted from the
shrapnel to be immersed with the aid of bathing
successively in a graded combination of ethanol
and water (generally 70% to 100% ethanol) for
1 h for each concentration, while in a day to
obtain absolute ethanol

(B) Clearing: ,e ethanol is then changed with a
miscible solvent with the embedding medium;
the solvent used is generally xylene for one hour.
,e tissue is positioned in melting paraffin in the
oven, normally at 58–60°
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(C) ,e solid masses containing the tissue were then
transferred to a microtome and sliced to 5 μm
thickness. Sections float on water and are
transferred to glass slides to be stained.

(3) Hematoxylin and Eosin stain Procedure: the tissue is
dewaxed by xylene. ,e slides were washed in three
changes of absolute alcohol, then 95% alcohol,
and70% alcohol, 5 minutes before each step. ,e
slides were washed in water for 5 minutes and then
stained with hematoxylin for 5 minutes. ,e slides
had been washed in water for three minutes. ,e
slides had been then located in eosin for 10–15
seconds. ,e slides were washed in water for 2–3
minutes. ,e sections were then dehydrated in 70%,
80%, and 95% alcohol for a few seconds to each step,
followed by two changes of absolute alcohol for 5
minutes each. ,e final step was to put the slides in
xylene for 5 miminutes.

(4) Mounting: the sections were mounted by DPX, then
they were covered with cover slides and left at room
temperature to dry.

2.2. Statistical Analysis. Statistical analysis with differences
between the two groups was performed by one-way analysis
of variance (ANOVA), and Dunkin’ test by Costas software
(Monterey, CA, USA). ,e experimental data were pre-
sented as (mean± SE) with a significant (P≤ 0.05).

3. Results and Discussion

,e results of the effect of the different salt concentrations of
mercury chloride (HgCl2) on the survival of the worms
showed that there is an inverse relationship between the salt
concentrations of mercury chloride and the time required
for the perdition of 100% of the individuals.

Regarding the earthworms Lumbricus terrestris, it be-
came located that the concentrations 1 ppm, 5 ppm, and
10 ppm did not kill this species during the treatment period,
which is 21 days. When the concentration of 50 ppm is the
cause of killing one worm after 14 days of treatment, the
reason for the survival of earthworms during the treatment
period, especially at low concentrations, may be due to the
contact state or the great convergence between the worms
and the sources of pollution for a relatively long period of
time.,e development of its ability to endure was confirmed
by Aziz et al. [27]. Earthworms are crucial biomarkers of soil.
,e bioavailability of mercury depends on speciation, which
in turn determines the toxicity, transport, and time
remaining for the metal in the environment [28].

Numerous research studies have recognized the dermal
uptake of infected soil via means of earthworms [29, 30]. Li
et al. [31] found that an increase of cadmium in the soil
solution raises the cadmium content of Eisenia fetida. Most
likely, Saxe et al. [32] reported that cadmium, copper, and
lead in earthworms fully aggregate through dermal exposure
and that more than 70% of zinc in earthworms is converted
into dermal uptake. Furthermore, more than 96% of the

mercury in earthworms was converted to percutaneous
intake [33]. In a recent study, it was observed that the pattern
of uptake and removal kinetics (i.e., rapid accumulation
upon exposure, stability at steady state concentration, and
rapid excretion at removal phases) became similar between
Cr and Cu in Eisenia andrei [34]. In addition, the zinc
concentration of Eisenia andrei stabilized at ∼240–420 μg
after very rapid absorption of 1–3 days and rapidly decreased
to the original level in the exclusion phase [35].

Earthworms are affected by soil contaminants at the
various levels of biological organization from sub-
organismal, individual to population levels. Pollutants pass
through contact through the skin or are ingested and in-
troduced into the viscera [36].

,e number of muscle tissue in cutaneous animals ex-
posed to mercury is less than what is controlled, and the
epidermis and dermis are thinner andmore fragile than what
is in control, while the adipose tissue of themercury-exposed
group was thicker than the control group, and also the
dermal animals exposed to mercury had a smaller number of
dermal fibroblasts than the control group in each area [37].

,e ability of some worms to survive and live may be due
to their adaptive capacity and restore activity, and this is
done through their excretion of some substances that have a
role in eliminating pollutants, reducing their effects, or their
high ability to metabolize these compounds [12, 38].

,e results also showed that the concentration of
100 ppm caused the death of 100% of this species within 72
hours, as proven in Table 1, and it is proved that this
concentration is the deadly concentration of 1/2 of the
number (Lc50) within 48 hours.

,e results of the current study showed that all the salt
concentrations of mercury chloride (HgCl2) (1, 5, 10, 50,
100) ppm caused a slight decrease in the weights of the
worms (Table 2), but in varying proportions, the above
concentrations caused a decrease in the weights of the
worms by (1.06, 1.03, 0.94, 0.93, 1.11), respectively, as it
appeared that the most effective concentrations were 50
ppm.,e reason the worms remain in this concentration for
the longest possible period throughout the treatment time is
21 days. From this, it is evident that the effect of the salt
concentrations of mercury chloride on earthworms is not
related to the toxic effect. ,is is confirmed by Rieder et al.
[39] that the loss in live weight of earthworms is independent
of the toxic effect of the compound.

,e decrease in the weights of the worms may be due to
excessive skin secretion when exposed to mercury salts, and
this is observed on the worms’ bodies when exposed to
concentrations throughout the treatment period or as a
result of fluid loss due to the imbalance in the hormone
responsible for regulating the balance of water and ions, and
mercury compounds have the ability to affect the physio-
logical processes of the epidermal cells of living organisms
which can increase the secretion of mucus by their glandular
cells, and their cells becomemore clear and transparent [40].

,e results of the current study showed that there is an
effect of mercury chloride on earthworms, when exposing
the worms to the lethal concentration of 100 ppm caused
rapid movement and contractions of the worm that included
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all areas of the body in addition to the twisting of the worm’s
body, its blue color, and the appearance of a sticky mucous
substance on its body, especially at the clitellum area to
become inactive in movement after stiffness and then death.
,ere are many indications that indicate the extent of the
effect of heavy metals on living organisms through the
occurrence of morphological and functional changes and is
then called the response indicator [41].

,e results of microscopic examination and study of
earthworm skin sections from the area near the clitellum
included that the degree of skin tissue cells’ susceptibility to
different salt concentrations varies according to the con-
centrations used in the treatment.,e histological study also
showed that low concentrations of mercury chloride salt had
less effect on earthworms’ skin tissue compared to higher
concentrations.

,e impact of mercury salt on the cerebral cells with-
inside the dermis seems withinside the microscopic exam at
a concentration of 10 ppm and that they go through a sizable
look change because the outer borders of a number of them

turn out to be abnormal, a number of those cells appear like
dissolved, the nucleus seems surrounded with the aid of
using a small quantity of cytoplasm, and the length and
width of the cells are great. Also, the dimensions of the nuclei
change, so some of them become irregular in the outer
boundaries as well as take a lateral position, and there are
some cells that appear to be separate or not based on the
basement membrane as well as the lack of pigmentation of
the cytoplasm are shown in Figure 1, compared to the
control (Figure 2). Also, the concentration of 50 ppm
showed that the cells were more affected, as most cells suffer
from a clear change in their shape, so they appear irregular in
the outer boundaries, and their cytoplasm has a little affinity
for pigmentation; this decrease is accompanied by the length
of cells, width, length, and width of the nuclei, as in Figures 3
and 4.

,e nervous system has a role in the process of ex-
changing water across the earthworms’ body walls [42].

Table 1: Number of worm deaths exposed to different concentrations of mercury chloride (HgCl2).

Concentrations ,e number of
worms

Deaths after 24
hours

Deaths after 48
hours

Deaths after 72
hours

Count the worms surviving after 21
days

1 ppm 36 0 0 0 36
5 ppm 36 0 0 0 36
10 ppm 36 0 0 0 36
50 ppm 36 0 0 0 35∗
100 ppm 36 6 18 30 0
∗One of the worms was killed after 14 days.

Table 2: ,e average weights of worms in grams, which are exposed to different concentrations of heavy metal salt.

Concentrations Average weights of worms before treatment (grams) Average weights of worms after treatment (grams)
Control∗ 1.22± 0.17 b 1.96± 0.12 a
1 ppm 1.11± 0.12 bcd 1.06± 0.18 bcd
5 ppm 1.08± 0.16 bcd 1.03± 0.19 bcd
10 ppm 1.04± 0.12 bcd 0.94± 015 cd
50 ppm∗ 1.14± 0.10 bc 0.93± 0.12 d
100 ppm 1.12± 0.12 bcd 1.11± 0.15 bcd
∗P≤ 0.05.

Figure 1: A longitudinal section in the body wall of the control
model shows the different tissue layers, and from the top is the
cuticle of the connecting tissue. Pigment (H and E) magnification
400.

Figure 2: A longitudinal section in the body wall of worms exposed
to a concentration of 10 ppm in which the cell boundaries are
shrunken and indistinctly defined by the epidermal epithelial tissue
(H and E) stain magnification 650.
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Chemical compounds and physical factors have the ability to
cause phenotypic and structural changes to secretory neu-
rons and their activity.

And this, in turn, is responsible for the physiological
processes and the water and ion balance of the worm’s body
through the cells of the body wall [43]. ,is may be the
reason for the shrinkage of the sizes of epidermal tissue cells
due to the loss of cellular fluids.

Earthwormsmay be dependable signs of soil quality, where
the abundance of earthworms and the structure of the com-
munity directly reflect the state of pollution in the fields [44].
On the only hand, infected soil influences earthworm feeding
and burrowing [45]. ,is is newly discovered that increasing
soil concentrations significantly inhibits earthworm digging
activities, with a significantly prolonged avoidance response
(from ∼10% to >80%) [46].Wang et al. [47] indicate a decrease
in the density of earthworms in soil from 70 to less than 20
worms m2, while Cd content material elevated from 0.81 to
over 17.8 mg/kg, and touchy worm species (e.g.,
A. homochaetus andA. hupeiensis) steadily fadedwithinside the
infected soils. It is possible that raising the soil lead content
from 480 to 5060 mg/kg would significantly reduce the worm
density from 135 to 5 m2 of worms [48].

Accordingly, Asensio et al. [49] evolved an integrative
soil evaluation approach via means of comparing the

reaction of earthworm’s biomarkers (consisting of (Acyl-
CoA) oxidase activity, catalase activity, lipofuscin optical
density, and the implied epithelial thickness) in the direction
of infected soil compared with indigenous worm species;
unusual earthworms are normally much less touchy and
could exert extra effects on soil properties [50].

Richardson et al. [51] mentioned that earthworms
peregrine successfully adapted to soil contaminated with
cadmium, mercury, and lead and ultimately affected the
cycle of polluted soil. For this reason, the introduction of
exotic earthworms is a possible solution to restore soil health
[52].

4. Conclusion

,e environmental toxicity of soil contaminated with
mercury (Lumbricus terrestris) was investigated under lab-
oratory conditions for contaminated soils. We concluded
that lower worm weights have nothing to do with the lethal
concentrations of heavy metal salt (HgCl2). ,e histological
study also showed that low concentrations of mercury
chloride salt have less effect on earthworms’ skin tissue
compared to higher concentrations (it was observed that the
contamination of mercury caused a decrease in body mass
and earthworms’ tissues).

Figure 3: A longitudinal section of the body wall of worms exposed to 50 ppm concentration showing cuticle rupture and cell shrinkage
(H and E) magnification 400.

Figure 4: A longitudinal section of the body wall of the group of worms exposed to a concentration of 50 ppm shows cuticle and cuticle
rupture, as well as cell shrinkage, laceration, and disappearance of their features. Pigment (H and E) magnification 400.
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,erefore, the real danger to living organisms lies in the
food chain and the accumulation of residues in the tissues of
invertebrates, and this will provide a good indicator of the
bioavailability of the contaminant and its ecotoxicity.

Data Availability

No data were used to support this study.
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