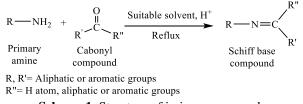
# Preparation of some metallic complexes from selected organic ligands and characterization it spectrophotometry as a model of a ligand scavenger to metals in health applications

#### Rana Saadallah Mahmood<sup>1</sup>, Mohammed Ahmed Awad<sup>2</sup>, and Rasim Farraj Muslim<sup>3\*</sup>

<sup>1,2</sup>Department of Chemistry, College of Education for Pure Sciences, University Of Anbar, Anbar, Iraq <sup>3</sup>Department of Ecology, College of Applied Sciences-Hit, University Of Anbar, Anbar, Iraq

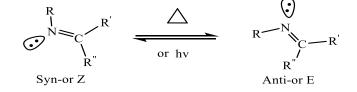
\*Corresponding author's e-mail:dr.rasim92hmts@uoanbar.edu.iq (Muslim)

#### **ABSTRACT:**


The research included prepare imines from the primary aromatic amine 4.4-dithioaniline with aromatic aldehydes. The imine compounds ( $R_1$ - $R_6$ ) were characterized spectroscopically by UV / Vis, FT-IR, <sup>1</sup>H-NMR and the melting point was taken for these compounds, when the reaction of the imine compounds with the metal ions Pd(II) leads to the formation of palladium complexes ( $R_7$ - $R_{12}$ ). The complexes were characterized spectroscopically by UV / Vis, FT-IR, mass spectrometry, C.H.N.S. and molar conductivity, which proved that non-electrolyte palladium complexes. Magnetic measurements have been taken that have an important role in knowing the geometry shape of the complexes, Palladium complexes are square planar.

## KEYWORDS: 1H-NMR, imines, palladium (II) complexes

How to cite this article: Mahmood RS, Awad MA, Muslim RF (2020: Preparation of some metallic complexes from selected organic ligands and characterization it spectrophometry as a model of a ligand scavenger to metals in health applications, Ann Trop Med & Public Health; 23(S13B): SP231374. DOI: <u>http://doi.org/10.36295/ASRO.2020.231374</u>


#### **INTRODUCTION:**

Imines compounds are containing the group (C=N) and they are preparing by the reaction between primary aromatic amines with aromatic aldehydes [1]. See scheme 1.



Scheme 1. Structure of imines compounds

Other classes of imine compounds depend on the nature and type of the groups associated with the carbon and nitrogen atoms on the ends of the sphincter (C=N) specified for their properties. Aryl is called ketimines when it is derived from ketones and primary amines. R, R', R", alkyl or aryl groups are called anils, when they are derived from aniline and aliphatic aldehydes or ketones called benzaniles [2]. When it is derived from aniline and benzaldehyde The two geometrical shape of imine compound are based on the spatial distribution of the groups associated with the nitrogen and carbon atoms around the double bond (C=N). The two geometrical called Anti- or E if the high molecular weight of groups are on the opposite side and it called Syn-or Z if they are on the same side, the stability of the two type is dependent on the nature of the compensated groups [3]. See scheme 2.



Scheme 2. Syn- (Z) and Anti- (E) of the two geometrical shape of imine compound

Organic complexes are important compounds in synthesis science. Example of one organic complexes is the prepared complex by imine compound and palladium (II) chloride to prepare two square-planar palladium (II) complexes with P,O-bidentate hybrid ligands [4].

## MATERIALS AND METHODS:

### General procedure for prepare of imine compounds [5-8]:

Imine compounds are preparation by mixing 0.01moleof amine and 0.02 mole of aldehydepresence trace of glacial acetic acid in 25 mL abs. ethanol, the reaction completed for 4hours, the purity of the Imine compounds were monitored with Thin Lear Chromatography. Table1 showed the physical properties of the prepared imines ( $R_1$ - $R_6$ ) are recorded in.

#### General procedure for prepare of palladium complexes [9]:

A mixture of preparedimine compound 0.001 mole with 0.002 mole of Pd(II)chloridedissolved in 25 mL of absolute ethanol, the mixture was refluxed for 3 hours. Table 2 showed the physical properties of the prepared compounds ( $R_7$ - $R_{12}$ ).

#### **RESULTS AND DISCUSSION:**

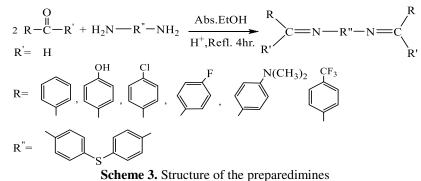
The best yield of the prepared imineswas for compound  $R_686\%$ , the best yield of the preparedPalladium complexeswas for  $R_962\%$ . The higher m.p. forimines was for compound  $R_4$  (221-223°C), the m.p.of all the preparedPalladium complexes wereover (300 °C). See table 1 and table 2 for some physical properties of prepared imines and Palladium complexes.

| Compound<br>Code | Structure                                                                                                                                            | Yield<br>% | Melting point<br>°C | Color  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|--------|
| R <sub>1</sub>   |                                                                                                                                                      | 54         | 162-165             | White  |
| R <sub>2</sub>   | HC CH                                                                                                                                                | 57         | 213-215             | Yellow |
| R <sub>3</sub>   | HC CI CI CH                                                                                                                                          | 66         | 120-123             | Yellow |
| R4               | $HC \qquad CH \\ HC \qquad S \qquad N(CH_3)_2  (H_3C)_2N \\ HC \qquad CH \\ H \\ N \\ HC \qquad N \\ HC \\ H \\ $ | 78         | 221-223             | Orange |
| R <sub>5</sub>   | HC F F CH                                                                                                                                            | 75         | 180-182             | White  |
| R <sub>6</sub>   | HC                                                                                                                                                   | 86         | 198-200             | White  |

Table 1.Structure, melting points, colors and percentages of yield of prepared imines [R<sub>1</sub>-R<sub>6</sub>]

| Compound<br>code      | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yield<br>% | Melting<br>point<br>°C | Color  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|--------|
| <b>R</b> <sub>7</sub> | HC $HC$ $HC$ $HC$ $HC$ $HC$ $HC$ $HC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51%        | >300                   | Yellow |
| R <sub>8</sub>        | HC $HC$ $HC$ $HC$ $HC$ $HC$ $HC$ $HC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45%        | >300                   | Yellow |
| R9                    | $H_{2O} \xrightarrow{Cl} H_{12O} \xrightarrow{Cl} H$                                                                                                                                     | 62%        | >300                   | Orange |
| R <sub>10</sub>       | $H_{2}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48%        | >300                   | Yellow |
| R <sub>11</sub>       | $H_{2O} \xrightarrow{Cl} H_{12O} \xrightarrow{Pd} Cl \xrightarrow{R_{12O}} H_{12O} \xrightarrow{Cl} H_{2O} \xrightarrow{Cl} \xrightarrow{Cl} H_{2O} \xrightarrow{Cl} H_{2O} \xrightarrow{Cl} \xrightarrow{Cl} H_{2O} \xrightarrow{Cl} H$ | 55%        | >300                   | Yellow |
| R <sub>12</sub>       | $\begin{array}{c} CI \\ HC \\ H_2O \\ CI \\ H_2O \\ CI \\ CI \\ H_2O \\ C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56%        | >300                   | Yellow |

**Table 2.**Structure, melting points, colors and percentages of yield of Palladium complexes( $R_7$ - $R_{12}$ )


## **Preparedimine compounds:**

Uv-Visible showed peaks indicative of aromatic C=C at (218-270nm), peaks at (312- 425nm) indicative of imine group C=N [10], see table 3 of all prepared imines.

| Compound<br>Code      | Max/nmλ   | (cm <sup>-1</sup> )ú          | Transition              |
|-----------------------|-----------|-------------------------------|-------------------------|
| R <sub>1</sub>        | 270nm     | 37037cm <sup>-1</sup>         | $\pi \rightarrow \pi^*$ |
| -                     | 335nm     | 29850cm <sup>-1</sup>         | n→π <sup>*</sup>        |
| R <sub>2</sub>        | 238-246nm | 42016-40650cm <sup>-1</sup>   | $\pi \rightarrow \pi^*$ |
|                       | 326-380nm | 30674-26315cm <sup>-1</sup>   | $n \rightarrow \pi^*$   |
| R <sub>3</sub>        | 218nm     | 45871cm <sup>-1</sup>         | $\pi \rightarrow \pi^*$ |
|                       | 390nm     | 25641cm <sup>-1</sup>         | $n \rightarrow \pi^*$   |
| R <sub>4</sub>        | 258-270nm | 38759-37037cm <sup>-1</sup>   | $\pi \rightarrow \pi^*$ |
|                       | 312-425nm | 32051-23529cm <sup>-1</sup>   | $n \rightarrow \pi^*$   |
| <b>R</b> <sub>5</sub> | 220-250nm | $45454-40000 \text{ cm}^{-1}$ | $\pi \rightarrow \pi^*$ |
|                       | 315-385nm | 31746-25974cm <sup>-1</sup>   | $n \rightarrow \pi^*$   |
| R <sub>6</sub>        | 227-290nm | 44052-34482cm <sup>-1</sup>   | $\pi \rightarrow \pi^*$ |
|                       | 315-366nm | 31746-27322cm <sup>-1</sup>   | $n \rightarrow \pi^*$   |

**Table 3.**The Uv-Visible spectrum of prepared imines(R<sub>1</sub>-R<sub>6</sub>)

The absorption of -C=N- at (1558-1627)cm<sup>-1</sup> indicative of the formation of the imine compounds, the absorption C-S at (555-764) cm<sup>-1</sup> see other bands of the groups in all prepared imines[11], see scheme3, table 4, figure 1 and figure 2.



1 1

| Comp. | υC=N | vC=C  | <b>υ=C-H</b> | <b>υ=C-H</b> | υC-S | Other     |
|-------|------|-------|--------------|--------------|------|-----------|
| Code  |      | Arom. | Arom.        | Alk.         |      | Groups    |
| $R_1$ | 1627 | 1572  | 3061         | 2878         | 689  | -         |
| $R_2$ | 1609 | 1581  | 3052         | 2987         | 683  | C-O: 1250 |
|       |      |       |              |              |      | О-Н: 3332 |
| $R_3$ | 1558 | 1484  | 3080         | 2991         | 687  | C-Cl: 825 |
| $R_4$ | 1600 | 1574  | 3030         | 2879         | 555  | C-N: 1228 |
|       |      |       |              |              |      | C-H: 2799 |
| $R_5$ | 1620 | 1599  | 3068         | 2876         | 720  | C-F:1241  |
| $R_6$ | 1623 | 1570  | 3040         | 2876         | 764  | C-F:1323  |

**Table 4.**TheFT-IR spectra of preparedimines

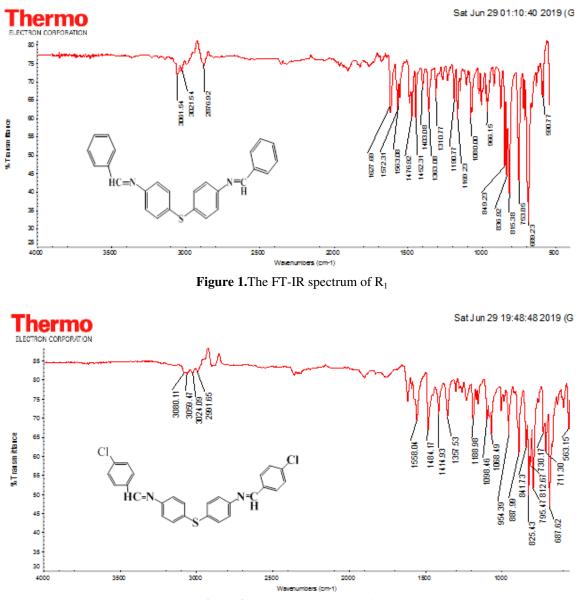
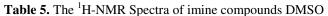
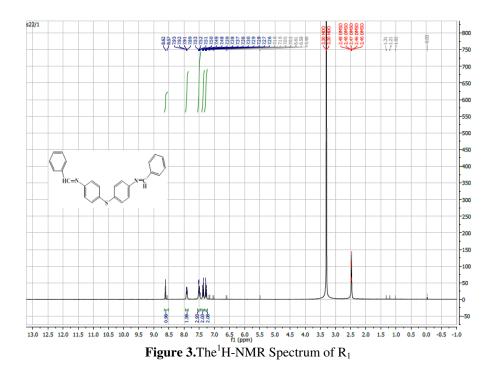
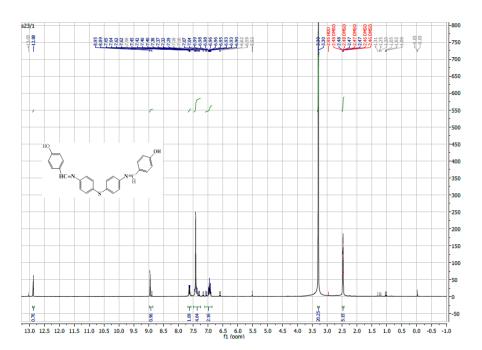



Figure 2. The FT-IR spectrum of R<sub>3</sub>


The mechanism of imine compound formation given by scheme 4, double-electronic of the nitrogen atom in  $NH_2$  group on the carbon atom of the C=O group to form a hemiaminal N-substituted[12, 13], see scheme 4.





Scheme 4. Mechanism of imine compoundformation

The proton nuclear magnetic resonance <sup>1</sup>H-NMR of  $R_1$  in DMSO (figure 3) showed the chemical shifts,  $\delta$ (ppm), Singlet in 8.7 indicative of 2H for two groups of N=CH, multiplet in 7.5-8 indicative of 18H for aromatic protons. Spectrum of compound  $R_2$  (figure 4)showed singlet in 8.9 indicative of 2H for two groups of N=CH, singlet in 12.8 indicative of 2H for two groups of -OH, multiplet in 7-7.8 indicative of 16H for aryl protons [11]. Chemical shifts of  $R_3$ - $R_6$ ,  $\delta$ (ppm) are presented in table 5.

| Compound<br>Code      | Chemical Shift δ ppm                                                                                                                                               |  |  |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <b>R</b> <sub>1</sub> | Singlet in 8.7 indicative of 2H for 2N=CH, multiplet in 7.5-8 indicative of 18H for aryl protons.                                                                  |  |  |  |  |  |  |
| <b>R</b> <sub>2</sub> | Singlet in 8.9 indicative of 2H of 2N=CH, singlet in 12.8 indicative of 2H for two groups of -OH, , multiplet in 7-7.8 indicative of 16H for aryl protons.         |  |  |  |  |  |  |
| <b>R</b> <sub>3</sub> | Singlet in 8.8 indicative of 2H for 2N=CH, , multiplet in 7.3-7.8 indicative of 16H for aryl protons.                                                              |  |  |  |  |  |  |
| R <sub>4</sub>        | Singlet in 8.3 indicative of 2H 2N=CH, , singlet in 2.9 indicative of 12H for two groups of $N(CH_3)_2$ , multiplet in 6.8-7.8 indicative of 16H for aryl protons. |  |  |  |  |  |  |
| <b>R</b> <sub>5</sub> | singlet in 8.7 indicative of 2H for 2N=CH, , multiplet in 7.3-8 indicative of 16H for aryl protons.                                                                |  |  |  |  |  |  |
| R <sub>6</sub>        | singlet in 8.8 indicative of 2H 2 N=CH, multiplet in 7.3-8.3 indicative of 16H for aryl protons.                                                                   |  |  |  |  |  |  |







**Figure 4.**The<sup>1</sup>H-NMR Spectrum of R<sub>2</sub>

## **PreparedPalladium complexes:**

Uv-Visible showed peaks indicative of aromatic C=C at (204-289 nm), peaks at (307-368 nm) indicative of C=N [10], see table 3 of all synthesized Palladium complexes.

|                        | Table 6. Uv-Visible spectrum of Palladium complexes $(R_7-R_{12})$ |                              |                                         |                        |  |  |  |  |  |
|------------------------|--------------------------------------------------------------------|------------------------------|-----------------------------------------|------------------------|--|--|--|--|--|
| Compound<br>Code       | Max/nmλ                                                            | ΰ( <b>cm</b> <sup>-1</sup> ) | Transition                              | Suggested<br>Structure |  |  |  |  |  |
| <b>R</b> <sub>7</sub>  | 239                                                                | 41841                        | $\pi \rightarrow \pi^*$                 |                        |  |  |  |  |  |
|                        | 307                                                                |                              | n→π*                                    | Square                 |  |  |  |  |  |
|                        | 409                                                                | 24449                        | C.T                                     | planar                 |  |  |  |  |  |
|                        | 762                                                                | 13123                        | $^{1}A_{1}g \rightarrow ^{1}A_{2}g$     |                        |  |  |  |  |  |
| R <sub>8</sub>         | 216                                                                | 46296                        | $\pi \rightarrow \pi^*$                 |                        |  |  |  |  |  |
|                        | 311                                                                | 32154                        | $n \rightarrow \pi^*$                   | Square                 |  |  |  |  |  |
|                        | 431                                                                | 23201                        | C.T                                     | planar                 |  |  |  |  |  |
|                        | 765                                                                | 13071                        | $^{1}A_{1}g \rightarrow ^{1}A_{2}g$     |                        |  |  |  |  |  |
| R <sub>9</sub>         | 289                                                                | 34602                        | $\pi \rightarrow \pi^*$                 |                        |  |  |  |  |  |
|                        | 386                                                                | 25906                        | n→π*                                    | Square                 |  |  |  |  |  |
|                        | 457                                                                | 21881                        | C.T                                     | planar                 |  |  |  |  |  |
|                        | 758                                                                | 13192                        | $^{1}A_{1}g \rightarrow ^{1}A_{2}g$     |                        |  |  |  |  |  |
| R <sub>10</sub>        | 225                                                                | 44444                        | $\pi \rightarrow \pi^*$                 |                        |  |  |  |  |  |
|                        | 307                                                                | 32573                        | n→π*                                    | Square                 |  |  |  |  |  |
|                        | 424                                                                | 23584                        | C.T                                     | planar                 |  |  |  |  |  |
|                        | 729                                                                | 13717                        | $^{1}A_{1}g \rightarrow ^{1}A_{2}g$     |                        |  |  |  |  |  |
| <b>R</b> <sub>11</sub> | 209                                                                | 47846                        | $\pi \rightarrow \pi^*$                 |                        |  |  |  |  |  |
|                        | 352                                                                | 28409                        | $n \rightarrow \pi^*$                   | Square                 |  |  |  |  |  |
|                        | 422                                                                | 23696                        | C.T                                     | planar                 |  |  |  |  |  |
|                        | 761                                                                | 13140                        | $^{1}A_{1}g \rightarrow ^{1}A_{2}g$     |                        |  |  |  |  |  |
| <b>R</b> <sub>12</sub> | 204                                                                | 49019                        | $\pi \rightarrow \pi^*$                 |                        |  |  |  |  |  |
|                        | 323                                                                | 30959                        | $n \rightarrow \pi^*$                   | Square                 |  |  |  |  |  |
|                        | 425                                                                | 23529                        | C.T                                     | planar                 |  |  |  |  |  |
|                        | 762                                                                | 13123                        | $^{1}A_{1}g \rightarrow ^{1}A_{2}g$     |                        |  |  |  |  |  |
|                        | 368                                                                | 27173                        | C.T                                     |                        |  |  |  |  |  |
|                        | 709                                                                | 14104                        | ${}^{4}A_{2}g \rightarrow {}^{4}T_{1}g$ |                        |  |  |  |  |  |

**Table 6.** Uv-Visible spectrum of Palladium complexes( $R_7$ - $R_{12}$ )

Prepared Palladium complexesshowed the absorption at (1590-1643) cm<sup>-1</sup> of the lactam C=N, bands at (610-750) cm<sup>-1</sup> of -C-S-, bands at (1483-1584) cm<sup>-1</sup> of arylC=C, bands at (566-593) cm<sup>-1</sup> of M-N, see the bands of Palladium complexes[11], see the table 7, figure 3 and figure 4.

| Table 7.The FT-IR of Prepared Palladium complexe |
|--------------------------------------------------|
|--------------------------------------------------|

| Compound<br>Code      | vC=N | vC=C<br>Arom. | υ=C-H<br>Arom. | vC-S | υN=C-H | งM-N | υOH<br>Water | Other Group                       |
|-----------------------|------|---------------|----------------|------|--------|------|--------------|-----------------------------------|
| <b>R</b> <sub>7</sub> | 1593 | 1584          | 3193           | 750  | 3120   | 593  | 3283         |                                   |
| R <sub>8</sub>        | 1590 | 1484          | 3193           | 610  | 3110   | 566  | 3489         | O-H 3489<br>C-O 1218              |
| R <sub>9</sub>        | 1643 | 1579          | 3052           | 732  | 2956   | 583  | 3476         | C-Cl 665                          |
| R <sub>10</sub>       | 1590 | 1483          | 3190           | 630  | 3110   | 566  | 3476         | C-N1120<br>N-CH <sub>3</sub> 2600 |
| R <sub>11</sub>       | 1596 | 1486          | 3200           | 750  | 3116   | 567  | 3480         | C-F 1116                          |
| R <sub>12</sub>       | 1590 | 1486          | 3193           | 630  | 3113   | 569  | 3483         | C-F 1120                          |

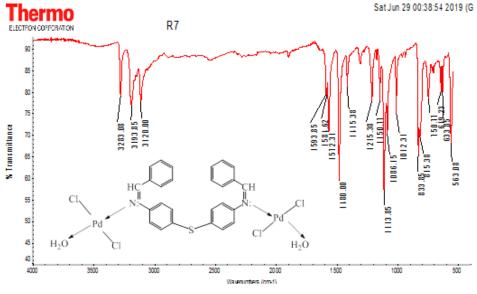
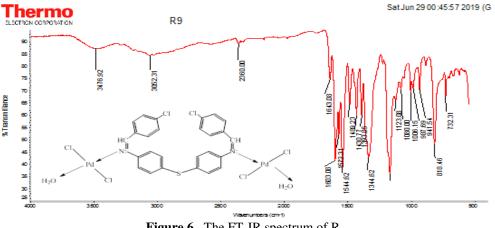
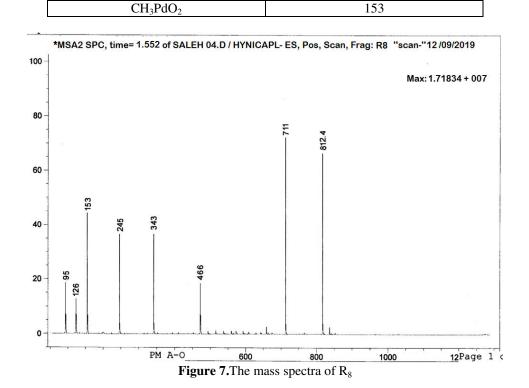



Figure 5. The FT-IR spectrum of R7





Figure 6. The FT-IR spectrum of  $R_9$ 

Tables 8-10 and figures 7-9 of Mass spectra showed the molecular weight of the all fragments for the Palladium complexes ( $R_8$ ,  $R_9$  and  $R_{11}$ ).

| Table 8.Mass spectra of R8              |                       |  |  |  |  |  |
|-----------------------------------------|-----------------------|--|--|--|--|--|
| Fragment                                | Mass/ Charge<br>(m/z) |  |  |  |  |  |
| $M + = [C_{26}H_{24}N_2O_4SCl_2Pd_2]^+$ | 812                   |  |  |  |  |  |
| $[C_{18}H_{19}N_2O_4SCl_2Pd_2]_+$       | 711                   |  |  |  |  |  |
| $[C_{11}H_{12}NO_4SPd_2]_+$             | 466                   |  |  |  |  |  |
| $[C_{13}H_{11}Cl_2Pd]^+$                | 343                   |  |  |  |  |  |
| $[C_7H_7Cl_4N]^+$                       | 245                   |  |  |  |  |  |
| $[CH_3PdO_2]^+$                         | 153                   |  |  |  |  |  |
| $[PdH_2OH_2]^+$                         | 126                   |  |  |  |  |  |
| $[C_5H_5NO]^+$                          | 95                    |  |  |  |  |  |

| Table 9.Mass spectra of R <sub>9</sub>     |                       |  |  |  |  |
|--------------------------------------------|-----------------------|--|--|--|--|
| Fragment                                   | Mass/ Charge<br>(m/z) |  |  |  |  |
| $M+ = [C_{26}H_{22}N_2O_2SCl_6Pd_2]^+$     | 848                   |  |  |  |  |
| $[C_{8}H_{12}N_{2}O_{4}SCl_{4}Pd_{2}]^{+}$ | 552                   |  |  |  |  |
| $[C_{11}H_{12}N_2SCl_2Pd_2]^+$             | 472                   |  |  |  |  |
| $[C_{11}H_9O_2Cl_2Pd_2]^+$                 | 349                   |  |  |  |  |
| $[C_{10}H_7O_2Cl_2]^+$                     | 229                   |  |  |  |  |
| [PdOH] <sup>+</sup>                        | 123                   |  |  |  |  |

| Fragment                                 | Mass/ Charge   |
|------------------------------------------|----------------|
| U                                        | ( <b>m/z</b> ) |
| $M = [C_{26}H_{22}N_2O_2SCl_2Pd_2F_2]^+$ | 816            |
| $[C_{26}H_{20}N_2O_2SCl_2Pd_2]^+$        | 706            |
| $[C_{11}H_{10}N_2O_2SPd_2F]^+$           | 465            |
| $[C_{12}H_7Cl_2PdF]^+$                   | 346            |
| $[C_7H_9NSPd]^+$                         | 245            |



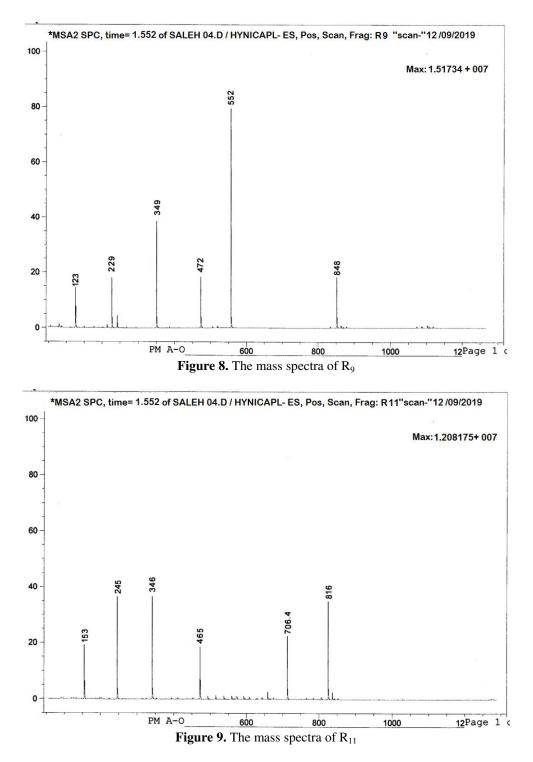



Table 11 of C.H.N.S. of some Palladium complexes ( $R_{8}$ , R9, R11) and Molar conductance of palladium complexes is non-electrolyte.

| Compound<br>Code | Molecularformula                 | M.Wt<br>g\mol |                                     | Element<br>Calc.) th |                |                |                  |                  |
|------------------|----------------------------------|---------------|-------------------------------------|----------------------|----------------|----------------|------------------|------------------|
|                  |                                  | 0             | C%         H%         N%         S% |                      |                |                | M%               | Cl%              |
| R <sub>8</sub>   | $C_{26}H_{24}Cl_4O_4\ N_2Pd_2S$  | 812           | 38.31<br>(39.73)                    | 2.96<br>(3.33)       | 4.34<br>(5.14) | 3.93<br>(4.41) | 26.11<br>(27.01) | 17.39<br>(16.08) |
| R <sub>9</sub>   | $C_{26}H_{22}Cl_6O_2 N_2Pd_2S$   | 848           | 36.65<br>(35.96)                    | 2.60<br>(3.60)       | 3.28<br>(4.96) | 3.76<br>(4.05) | 24.98<br>(25.01) | 24.96<br>(23.81) |
| R <sub>11</sub>  | $C_{26}H_{22}Cl_4O_2F_2N_2Pd_2S$ | 816           | 38.12<br>(39.01)                    | 2.70<br>(1.96)       | 3.41<br>(4.07) | 3.91<br>(4.15) | 25.98<br>(26.19) | 17.31<br>(18.18) |

Table 11. The Elemental analysis C.H.N.S

Table 12 Magnetic moment measurements of some palladium complexes[14].

| <b>Table12.</b> The Magnetic measurements of $(R_7, R_8, R_9 \text{ and } R_{11})$ |                      |                      |                                  |      |               |
|------------------------------------------------------------------------------------|----------------------|----------------------|----------------------------------|------|---------------|
| Complexes                                                                          | $X_g \times 10^{-6}$ | $X_M \times 10^{-6}$ | X <sub>A</sub> ×10 <sup>-6</sup> | µeff | Suggested     |
|                                                                                    | mass                 | Molar                | Atomic                           | B.M  | Structure     |
|                                                                                    | susceptibility       | susceptibility       | susceptibility                   | Exp. |               |
| <b>R</b> <sub>7</sub>                                                              | Zero                 | Zero                 | 391.2                            | 0.84 | Square planer |
| $R_8$                                                                              | Zero                 | Zero                 | 407.5                            | 0.84 | Square planer |
| R <sub>9</sub>                                                                     | Zero                 | Zero                 | 426.1                            | 0.84 | Square planer |
| R <sub>11</sub>                                                                    | Zero                 | Zero                 | 409.5                            | 0.84 | Square planer |

## CONCLUSION:

It was possible to prepare derivatives of Palladium complexes. Molar conductance which proved that non-electrolyte palladium complexes, Magnetic measurements have an important in the geometry shape of the complexes are square planar.

## **ACKNOWLEDGMENT:**

Special thanks to everyone who helped to complete this research in the best way.

## References

1- H.Tawfeeq, R. Muslim, O. Abid, M. Owaid, Synthesis and Characterization of Novel Tetrazole Derivatives and Evaluation of Their Anti-Candidal Activity, Acta Pharm. Sci., 57(3), 45-63, (**2019**).

2- E. Alsalihi, synthesis and characterization of new Schiff base ligand type  $[N_4O_4]$  from 3-(ethoxy methylene) pentane-2.4dione and its Ni II complex, The scientific journal of Koya University, 7(1), 40-46, (**2019**).

3- B. Nazirkar, M. Mandewale, R. Yamgar, Synthesis, characterization and antibacterial activity of Cu (II) and Zn (II) complexes of 5-aminobenzofuran-2-carboxylate Schiff base ligands, *Journal of Taibah University for Science*, 13(1), 440–449, (**2019**).

4- M. Elsegood, M. Smith and S. Dale, Two square-planar palladium(II) complexes with P,O-bidentate hybrid ligands, *Acta Cryst.*, **63**, 7-9, (**2007**).

5- S. Hossain, F. Camellia, N. Uddin, K. Zahan, L. Banu and M. Haque, Synthesis, Characterization and Antimicrobial Activity of Metal Complexes of N-(4- methoxybenzylidene) Isonicotinohydrazone Schiff Base, *Asian Journal of Chemical Sciences*, 6(1), 1-8, 65-73, (**2019**).

6- K. Al-Azawi, D. AL-Duhaidahawi, A. Al-Amiery, A. Kadhum, Synthesis of Schiff base Metal Complexes with Motivating Scavenging Potential Studies, *Free Radicals and Antioxidants*, 2019; 9(1):1-4

7- E. Canpolat, A. Ağlamiş, H. Şahal, M. Kaya, Some Transition Metal Complexes of NO Type Schiff Base: Preparation and Characterization, *Cumhuriyet University Faculty of Science Science Journal (CSJ)*, 37(1), (**2016**).

8- H. Tawfeeq, R. Muslim, O. Abid and M. Owaid, Synthesis and Characterization of Novel Five-Membered Heterocycles and Their Activity against Candida Yeasts, *Acta Chim. Slov.*, *66*, 552–559, (**2019**).

9- Paras Nath Yadav\*, Laxman Bhattrai and Pramod K. Mehta, Palladium(II) Complex of the 5-Hydroxypyridine-2-carbaldehyde N(4)-ethylthiosemicarbazone: Synthesis and Characterization, *J. Nepal Chem. Soc.*, 28, 34-41, (2011).

10-D. Williams and I. Fleming "Spectroscopic Methods Organic Chemistry", 4th Ed., P. 315, (1987).

11- R.Silverstein, F. Websterand D, Kiemle,"*Spectrometric identification of organic compounds*", John wiley and sons, Inc, 7<sup>th</sup> Edition, pp 72-126, **2005** 

12-T. Solomons and C. Fryhle, "Organic Chemistry", 7th ed., New York., p 738, (2000).

13- R. Muslim and S. Eaid, Synthesis, Characterization and Evaluation of Biological Activity of Novel Heterocyclic

Derivatives from Azomethine Compounds, Orient. J. Chem., 35(4), 1360-1367, (2019).

14- O. Senqupta, B. Gole, S. Mukheriee and P. Mukheriee, A series of transition metal –azido extended complexes with various anionic and neutral co-ligands : synthesis ,structure and their distinct magnetic behavior, *J.Dalton Trans.*,**39**(32), 7451-7465,(**2010**).