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Abstract 

 Despite the massive diversity in the modeling requirements for practical 

hydrological applications, there remains a need to develop more reliable and 

intelligent expert systems used for real-time prediction purposes. The challenge in 

meeting the standards of an expert system is primarily due to the influence and 

behavior of hy drological processes that is driven by natural fluctuations over the 

physical scale, and the resulting variance in the underlying model input datasets. 

River flow forecasting is an imperative task for water resources operation and 

management, water demand assessments, irrigation and agriculture, early flood 

warning and hydropower generations. This paper aims to investigate the viability 

of the enhanced version of extreme learning machine (EELM) model in river flow 

forecasting applied in a tropical environment. Herein, we apply the complete 

or thogonal decomposition (COD) learning tool to tune the output-hidden layer of 

the ELM model’s internal neu ronal system, instead of the conventional multi-

resolution tool (e.g., singular value decomposition). To 
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