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Abstract 

This study involves the preparation of colloidal silver (Ag) nanoparticle solution using Turkevich 

method. Specifically, the solution is mixed with the zinc nitrate hexahydrate and 

hexamethylenetetramine solution with various volume ratios (e.g. 50, 70 and 90 AgNPs %V) to 

deposit zinc oxide (ZnO)–Ag thin films on glass substrates at 350 °C using chemical spray pyrolysis 

technique. Then, these thin films are used to measure the sensitivity of ammonia (NH3) at room 

temperature (30 °C–32 °C). The thin films formed by this technique have been characterised by the 

following measurements: FE-SEM, XDR, AFM and EDXA; whereas, AFM, UV-Visible 

spectrophotometer and FT-IR spectrophotometer have been used to characterise the prepared Ag 

nanoparticles. The average size of ZnO–Ag nanoparticles formed on glass substrates is within the 

range of 68.93–86.64 nm, whereas the average size of Ag nanoparticles formed through Turkevich 

method is 48.9 nm. The XRD measurements show the wurtzite hexagonal and face centred cubic 

crystal structure of ZnO and Ag, respectively. The thin film that contains 50 %V of Ag has the 

highest gas sensitivity (69%). The high sensitivity of the ZnO–Ag sensor at room temperature is an 

indicator of the high efficiency of NH3 gas sensing. 

 

Keywords:Gas sensor, NH3, AgNPs, Turkevich, ZnO 

 

1. Introduction 

Numerous gases, such as ammonia (NH3), carbon monoxide (CO), sulphur dioxide (SO2), nitrogen 

oxide (NOx) and hydrogen sulphide (H2S), are considered toxic and polluting to the environment. These 

gases are a major concern for researchers [1-3]. NH3 is a colourless, explosive, hazardous and 

flammable gas accompanied by pungent odour. NH3 gas has a harmful effect on the throat, eyes and 

respiratory and pulse rates. It can also cause oedema of the lungs, permanent blindness and death upon 

prolonged exposure. This gas is produced in our environment from countless industrial sources, such as 

fertilizers, textiles, refrigeration, different chemicals, food processing industries, fire power plants and 

pesticides [4-8]. Therefore, NH3 production has become important in the development of sensors for 

explosive and toxic gases that are considered sources of leaks and spills; it is also well-known for its use 
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in environmental monitoring and food quality control [9,10], industries, medical diagnosis, and 

agriculture [11]. 

Zinc oxide (ZnO) nanoparticles are used in different applications, such as UV sensors [12], transparent 

electrodes [13], optoelectronic devices [14], gas sensors [15,16], transducers [17] and solar cells [18]. In 

terms of gas sensing application, ZnO nanomaterials have been used for detecting and reducing 

oxidative gases with good performance, such as NH3 [19], NO2 [20], LPG [21], H2 [22] and acetylene 

[23]. ZnO-based sensors are more preferred than other metal oxide-based conductive sensors to gas 

species because of their low cost, high sensitivity, ease of fabrication [24], long-term stability, short 

response–recovery time, fast response and excellent electrical performance [25-27]. 

Doping with noble metals, such as Ag [28–30], Ni, Pd, Pt [31–33] and Au [29], improves the electronic 

properties and increases the surface area of the ZnO nanoparticles, which are considered extremely 

important for enhanced gas sensor applications [34]. Ag nanoparticles can improve their gas-sensing 

performance greatly because it can accelerate the chemisorption process of metal oxides [35]. 

Various methods, such as spray pyrolysis [36,37], pulsed laser deposition [38] and sol–gel [39], can be 

used to synthesise ZnO films. Spray pyrolysis is a simple method that can be used to prepare thin films 

by spraying a solution on a preheated surface, wherein a chemical compound is formed through the 

reaction of the constituents. Spray pyrolysis is firstly used in 1966 to prepare a CdS-made thin film [40-

42]. This method has many advantages [36], including its simplicity in doping the prepared films by 

adding any element in any proportion to the spray solution [43], does not require vacuum (evacuation) 

at any stage (vacuum conditions are not required) [44], does not require high-quality chemicals or 

substrates [45] and the thickness of the prepared films can be easily controlled by changing the 

parameters of spray process [46]. Accordingly, this research aims to prepare ZnO–Ag thin films using 

NH3 gas sensors. 

2. Materials and Methods 

2.1Chemicals 

Zinc nitrate hexahydrate Zn(NO3)2.6H2O, Ethanol C2H5OH, hexamethylenetetramine C6H12N4 and 

silver (Ag) nitrate AgNO3 were commercially purchased from Sigma–Aldrich. Trisodium citrate 

Na3C6H5O7 was purchased commercially from AppliChem GmbH in Germany. All these chemicals 

were used as received from the abovementioned manufacturers without using any additional 

purification. 

2.2 Preparation of spray solutions 

1. Solution A: AgNO3 (0.1275 g) was dissolved in 250 ml of deionised water under continuous 

stirring and heated at 85 °C (±3) using a hotplate stirrer. Then, 25 ml of trisodium citrate (2%) was 

added slowly (Fig. 1). 
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Fig. 1: Scheme of silver nanoparticles preparation 

The golden-yellow colour was observed (i.e. an indication of Ag nanoparticles) after the 

addition of trisodium citrate solution (typically 6–7 min after addition). The hot plate stirrer 

was turned off, and the coloured solution was removed to cool it at room temperature for later 

use. Several drops of this solution were dispersed on clean glass substrate and dried in oven at 

60 °C to gain the AFM and XRD data of the prepared Ag nanoparticles. Ag nanoparticles were 

formed according to Eq. 1 [47,48]. 

 

2.Solution B: 1 g of Zn(NO3)2.6H2O and 10 g of C6H12N4 were dissolved in 200 ml of 

deionised water and heated under continuous stirring using a hotplate stirrer to 50 °C for 1 

hour to be more homogenous and ready for the spraying process. This solution formed the 

ZnO nanoparticles during spraying process (Eqs. 2–5) [49]. 

 

 

 

 

 

 

 

2.3Synthesis of thin films 

Firstly, the glass substrates are cleaned successively using detergent to remove grease and oils over 

the surface. Secondly, they are ultrasonically cleaned by ethanol for 20 min, followed by washing 

with deionised water. The glass substrates are then dried using a hot oven to prepare it for use. The 

homemade spray pyrolysis system was used to deposit ZnO–Ag thin films on the preheated glass 

substrates by using an aqueous solution as a precursor. This aqueous solution is composed of (A) 

and (B) solutions with various solution volume ratios listed in Table 1. The scheme diagram of the 

homemade spray pyrolysis unit in our study is shown in Fig. 2. Compressed air is used as a carrier 

gas to carry the precursor to the spray nozzle to spray it into the preheated substrate. Crystalline 

growth was observed on ZnO–Ag thin films because of nucleation, and thermal decomposition 

C6H12N4 +6H2O6HCHO + 4NH3   ( 2) 

NH3 + H2ONH4
+ + OH

-
(3)

 

Zn
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Zn(OH)2ZnO + H2O(5) heat (on preheated substrates) 
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reaction occurred when the spray solution dropped and reached the hot substrates. After depositing 

the thin films successfully, the prepared thin films are annealed inside the furnace in air atmosphere 

for 3 hours at 500 °C. Various parameters associated with the thin-film deposition process are listed 

in Table 2. 

 

 

 

 

 

 

 

 

Fig.2:The scheme of the homemade spray pyrolysis system experimental setup used in our 

study 

Table. 1: Various solution volumes ratios used in our study 

 

Table 2:The parameters associated with the thin film deposition process 

Optimum item/value Spray parameters 

350±15 °C Substrate temperature 

Compressed air Carrier gas 

Stainless steel Nozzle 

Deionized water Solvent 

30 cm Substrate - nozzle distance 

13 ml/min Solution spray rate 

Glass substrate 

9 Sec. Spray time 

9 Sec. 
Time interval between 

sequent sprays 
 

Total 

volume 

Volume 

ofsolution 

(A) 

Volume of 

(B)solution 

Volumes ratios Thin 

film 

symbol 

Solution ratio 

A)) 

Solution ratio 

B)) 

100 ml 90 ml 10 ml 90% 10% C1 

100 ml 70 ml 30 ml 70% 30% C2 

100 ml 50 ml 50 ml 05% 50% C3 
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2.4Sensor fabrication 

To fabricate the sensor device, a metal mask was fixed on the surface of the thin films 

deposited on the glass substrates. Then, the substrates were placed in the high vacuum 

physical vapour deposition system to deposit two aluminium electrodes on the thin-film 

surface (Fig. 3). The homemade gas sensing system (Fig. 4) was used to determine the gas 

sensitivity measurements of the ZnO–Ag thin films. The fabricated sensors were tested at 

different concentrations of NH3 gas (50, 100 and 150 ppm) at room temperature. The gas 

sensitivity (S%) of fabricated sensors was calculated through Eq. (6) [50]. 

S% = (Ra- Rg / Ra) ×100,   (6) 

where Ra is the electrical resistance of thin film in fresh air, and Rg is the electrical resistance 

of thin films after test gas exposure. 

The response and recovery times were calculated through sensitivity plot. These 

measurements were defined as the time required for the sensing element to achieve 90% and 

10% of the change in resistance from its original resistance [51,52]. 

 

 

 

 

Fig. 3 A schematic of the patterned aluminum electrodes 

 

 

 

 

 

 

 

Fig. 4: A schematic of homemade gas sensing system 

2.5Characterisations and measurements 

The existing elements, crystal planes and crystallinity of Ag and ZnO–Ag nanoparticles thin films 

were investigated by using X-ray diffractometer (XRD) (SHEMADZU-600-Japan) with Cu–Kα 

radiation (λ = 1.5405 A°) with a range of 10°–80°. The morphology and composition of ZnO–Ag 

thin films were investigated by using atomic force microscopy (AFM) (CSPM-USA) and field 

emission scanning electron microscopy (FE-SEM) (FEI NovaSEM 450-USA) coupled with EDS. 

The morphology of prepared Ag nanoparticles was examined by scanning electron microscopy 

(SEM) (Hitachi-S 4160-Japan) and atomic force microscopy (AFM) (CSPM-USA). The absorbance 

measurements of Ag nanoparticle solution and prepared thin films were obtained by using 

spectrophotometer (UV-Vis) (Jenway-USA) with a range of 300–600 nm and 300–700 nm, 

Sensing materials 
Al electrodes 

Glass substrate 
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respectively. The vibration modes of the functional group of Ag nanoparticles solution were 

recorded through Fourier transformation infrared (FT-IR) spectra (Bruker–Germany) using KBr 

pellets with a range of 400–4000 cm
−1

. The gas sensitivity of ZnO–Ag sensors was examined using 

a homemade test system. 

 

3. Results and discussion 

3.1 XRD 

The observed diffraction peaks at 002, 110, 102 and 100 planes in the XRD patterns (Figs. 5–7) 

belong to the wurtzite hexagonal phase of ZnO when compared with JCPDS data file no. 00-036-

1451 [53,54]. The observed diffraction peaks in the obtained XRD patterns (Figs. 5–8) at 111, 220, 

311 and 200 planes belong to face-centred cubic phase of Ag when compared with JCPDS data file 

no. 00-004-0783 [55]. 

 

 

 

 

 

 

 

 

 

 

Fig. 5: XRD of (C1) thin film 

 

 

 

 

 

 

 

 

 

 

Fig. 6: XRD of (C2) thin film 
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Fig. 7: XRD of (C3) thin film 

 

 

 

 

 

 

 

 

Fig. 8: XRD of AgNPs solution 

3.2 FESEM and EDXA analysis 

The surface morphology of the films is important given the key role it plays in gas sensing 

applications [56]. The high-resolution FESEM image of C2 thin film (Fig. 9) shows that ZnO 

has a nanoneedle structure, which agrees with Yas Al-Hadeethi et al.’s [28] research results. 

In addition to the sodium produced from the trisodium citrate (reducing agent) used to reduce 

Ag ions and the other impurities that appeared, Fig. 10 shows that the EDXA spectra of C2 

thin film, which contains ZnO and Ag, may have come from materials that are used for 

manufacturing glass substrates. 
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Fig. 9: FE-SEM (C2) thin film 

 

 

 

 

 

 

 

 

 

Fig. 10: EDXA spectra of (C2) thin film 

3.3 AFM 

The form of the prepared thin films was investigated using AFM. Surface roughness and 

particle size play important roles in the interaction of gases within the surface [57]. AFM 

images of C1, C2 and C3 thin films deposited on glass substrates are shown in Fig. 11. These 

images have a highly regular and homogeneous granular distribution. The C1, C2 and C3 

films obtained the following results: root mean square (RMS) of 7.65, 5.22 and 8.88 nm, 

respectively; average grain size of 81.17, 68.93 and 86.64 nm, respectively; and average 

roughness of 6.68, 4.52 and 7.66 nm, respectively. The AFM image of dried AgNPs on the 

glass substrate has an average grain size of 48.9 nm (Fig. 12). 
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Fig. 11: AFM images of C1, C2 and C3 thin films 

 

 

 

 

Fig. 12: AFM images of AgNPs 

3.4 UV-Vis measurements 

Figs. 13 and 14 show the recorded UV-Visible spectra of the deposited thin films and 

colloidal Ag nanoparticles, respectively. These recorded spectra have good agreement with 

Ismail and Shameli’s research results [58, 59]. The decreasing intensity of the peaks in UV-

Visible spectra (Fig. 13) from C1 to C3 thin films is due to the difference in the percentage of 

Ag nanoparticles in these films. 

 

 

 

 

C3 

C2 

C1 
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Fig. 13: UV-Vis spectra of C1, C2 and C3 thin films 

 

 

 

 

 

 

 

 

Fig. 14: UV-Vis spectra of AgNPs solution 

3.5 FT-IR spectra of AgNPs solution 

FT-IR spectroscopy can be applied to the gain information about functional groups of 

stabilisation and capping of the nanoparticles through peak positions in the spectrum. A drop 

of colloidal Ag nanoparticles was placed between two NaCl plates and in FT-IR 

spectrophotometer to scan within a range of 4000–400 cm
−1

. The FT-IR spectra of the 

prepared Ag nanoparticles are shown in Fig. 15. The peaks around 1400 cm
−1

 and 1600 cm
−1

 

correspond to the anti-symmetric and symmetric stretching of COO
-
 vibrations of COO

-
 

groups in citrate capped AgNPs, respectively. The broad bands in the 3600–2800 cm
−1

 region 

correspond to the O−H stretching vibrations of the −OH groups in citrate capped AgNPs [60]. 

The observed peaks at 1380 cm
−1

–1390 cm
−1

 belong to the vibrations of the nitro compound 

(NO2), which are produced by AgNO3 salt [61]. Ag–Ag vibrates at a wave value below 

400cm
−1

 [62]. Thus, it will not be presented in Fig. 15. 
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Fig. 15: FT-IR spectra of AgNPs 

3.6Gas test 

The value resistance of the prepared thin films was converted into sensitivity S (%) using Eq. 

6 (Fig. 16). A sharp increase in sensitivity was observed as the NH3 concentration rose from 

50 ppm–150 ppm. This rapid response may be due to the large surface to volume ratio of the 

nanoneedle and the small grains of the nanostructured film. The sensitivity, response (τres) and 

recovery times (τrec) of C1, C2 and C3 sensor devises are listed in Table 3. The decrease in 

sensitivity from C3 to C1 was due to the increment in the amount of sodium (provided by the 

trisodium citrate) in the thin films, which increased the resistance of thin films [63] from C3 

to C1. 

 

 

 

 

 

 

 

 

 

 

 

Fig.16: sensitivity of C1, C2 and C3 thin films towards (50, 100 and 150) ppm of NH3 

Wave number (cm
-1
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T % 
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Table. 3: The sensitivity(S%), response and recovery times of C1, C2 and C3 sensor devises 

Recovery 

time 

(Sec.) 

Response 

time 

(Sec.) 

Sensitivity 

ٍ%(S) 

Gas 

concentration 

ٍ(ppm) 

Sensor 

devise 

4.4 71.1 Little 05 

C1 9.3 7..3 Little 755 

0.1 05 90 705 

..0 70.1 02 05 

C2 75.9 4.0 01 755 

7.2 2.7 93 755 

0.0 75.3 73 05 

C3 2.1 0.1 05 755 

9.2 0 23 705 

 

4. ProposedNH3-sensing mechanism 

The NH3 gas sensor mechanism can be summarised in three steps:  

Step 1: Oxygen molecules in the air are adsorbed after being exposed on the Ag surface.  

Step 2: The adsorbed oxygen molecules in Step 1 are spilled over to ZnO, wherein the 

molecules are converted into another oxygenated anionic form, such as O2
−
, O

−
 and 

O
−2

, after capturing the electrons (Eqs. 7–10) from the conduction band of ZnO, 

thereby increasing the value of the electrical resistance of the sensor. 

 

 

 

 

Step 3: After the exposure of the thin films to NH3, absorbed oxygen (O2
−
, O

−
 and O

−2
) can 

react with NH3 molecules and break it into H2O, N2 and three electrons (Eq. 11). 

These electrons will be transmitted into the conduction band of ZnO, thereby 

causing high signal given the decrease in the resistance of the sensor [64,65]. All 

these steps are illustrated in Fig. 17. 

 

 

O2(gas)  → O2(ads)  (7) 

O2(ads) + e
-
(from ZnO) → O2

-
(ads)(8) 

O2
-
(ads)+ e

-
(from ZnO) → O

-
(ads)    (9) 

O
-
(ads)+ e

-
 (from ZnO) → O

-2
 (ads)   (10) 

 

2NH3 + 3O
-
(ads)  →N2 + 3H2O + 3e

-
(to ZnO)(11) 
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Fig. 17: Suggested steps to explain ammonia sensitivity 

5. Conclusion 

The prepared ZnO–Ag thin films showed high sensitivity (69%) to NH3 at room temperature 

(30 °C–33 °C). The sensitivity to NH3 gas at room temperature (30 °C–33 °C) is inversely 

proportional to the increased concentration of the prepared Ag nanoparticles because of the 

rising concentration of sodium produced from the reducing substance (e.g. sodium citrate) 

used for the preparation of Ag nanoparticles. 
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