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A B S T R A C T   

Today, the application of mesenchymal stromal/stem cells (MSCs) and their exosomes to treat degenerative 
diseases has received attention. Due to the characteristics of these cells, such as self-renewability, differentiative 
and immunomodulatory effects, their use in laboratory and clinical studies shows promising results. However, 
the allogeneic transplantation problems of MSCs limit the use of these cells in the clinic. Scientists propose the 
application of exosomes to use from the therapeutic effect of MSCs and overcome their defects. These vesicles 
change the target cell behaviour and transcription profile by transferring various cargo such as proteins, mi- 
RNAs, and lipids. One of the degenerative tissue diseases in which MSCs and their exosomes are used in their 
treatment is intervertebral disc disease (IDD). Different factors such as genetics, nutrition, ageing, and envi
ronmental factors play a significant role in the onset and progression of this disease. These factors affect the 
cellular and molecular properties of the disc, leading to tissue destruction. Nucleus pulposus cells (NPCs) are 
among the most important cells involved in the pathogenesis of disc degeneration. MSCs exert their therapeutic 
effects by differentiating, reducing apoptosis, increasing proliferation, and decreasing senescence in NPCs. In 
addition, the use of MSCs and their exosomes also affects the annulus fibrosus and cartilaginous endplate cells in 
disc tissue and prevents disc degeneration progression.  
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aminoglycans; PGE2, Prostaglandin E2; NO, nitric oxide; TGF-B, Transforming growth factor-beta; TLR, Toll-like receptor; MAPK, Mitogen-activated protein kinase; 
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1. Introduction 

The intervertebral disc (IVD) is a complex tissue that contributes to 
the health of the vertebrae and spine by being placed between the ver
tebras and have abilities such as bending and distributing mechanical 
load between the vertebrae [1]. IVD comprises three components: inner 
soft nucleus pulposus (NP) cells, annulus fibrosus (AF), and cartilage 
endplates (CEP) [2]. Due to NP’s hydrated and gelatinous nature, this 
tissue plays a significant role in counteracting mechanical stimuli, and 
its main resident cells are the pulpous nucleus cells (NPC), which are 
responsible for the synthesis and maintenance of the extracellular matrix 
[3]. The AF is divided into two distinct areas, the inner and the outer AF. 
This tissue consists of ligament fibres rich in type 1 collagen and elon
gated fibro-chondrocytes surrounding the NP and connects the spinal 
vertebrae above and below the disc [4]. The CEP is the nutrition chan
nel, and usually, its thicknesses are less than 1 mm [5] and help nutrient 
transport in the endplates [6]. 

Intervertebral disc disease (IDD) occurs as a consequence of exces
sive mechanical loading, genetic disorders and environmental factors 
[7]. Apoptosis and a decrease in the cell number of each of the three 
components of the IVD lead to IDD. IDD is one of the leading causes of 
low back pain (LBP), and its incidence increases with age [8]. LBP poses 
a significant threat to human quality of life and has engulfed diverse 
communities [9]. Various conservative treatments for IDD include sur
gical discectomy, spinal fusion surgery and intervertebral disc 
displacement [10]. These treatments show many side effects, such as 
recurrent disc herniation and an urgent need to find safer treatments in 
the long term. 

Mesenchymal stromal/stem cells (MSCs), which are present in most 
stromal tissues, are a heterogeneous population composed of different 
cell populations such as multipotent stem cells, precursors, and differ
entiated cells [11]. Mesenchymal stromal/stem cells can differentiate 
into cells derived from various tissues such as osteocytes, chondrocytes, 
adipocytes, muscle cells, and NP-like cells [12]. Until 2006, there were 
no homogeneous criteria for mesenchymal stem cell isolation and cul
ture, creating a reliable and reproducible application in preclinical and 
clinical contexts, and this led to the International Association for Cell 
Therapy (ISCT) necessary and objective criteria. Recommend that MSCs 
are useful in describing the unique population. 

(1) MSCs must adhere to plastic under standard conditions. (2) These 
cells should be positive for CD105, CD73 and CD90 markers and express 
low MHC class I levels. This is negative for MHC class II, CD11b, CD34, 
CD14, CD45 and CD31. (3) MSCs must be able to differentiate in vitro in 
different tissues of mesoderm origin - such as osteocytes, fat cells and 
chondrocytes - under appropriate growth conditions [13]. 

MSCs are multipotent cells that have the ability to differentiate into 
different cells. These cells are self-renewable and can be isolated from 
various embryonic and adult sources [14]. Due to the characteristics of 
these cells they are widely used in cell therapy. The use of stem cells as 
biological therapies has shown many advances in IDD treatment [15]. 
During this biological treatment exogenous MSCs differentiate into IVD- 
related cells after transplantation by migrating to the injury site and also 
stimulates proliferation in IVD cells [16]. This action of MSCs leads to a 
quantitative increase in IVD cells at the injury site and helps in IDD 
treatment. These MSCs also help improve and regenerate IVD by pre
venting cell apoptosis and modulating the immune microenvironment at 
the injury site [17]. Although many studies have used MSCs as a treat
ment for various tissue disorders problems such as tumorigenesis func
tional erosion fibrosis injection toxicity cell rejection and the restricted 
ability of MSCs to differentiate are the barriers that can significantly 
affect the therapeutic efficacy of these cells [18]. Therefore today MSC 
produced soluble mediators such as extracellular vesicles (EVs) [19] and 
their supernatant [19] which is used for therapeutic applications [20] 
Apoptotic body, microvesicles (MVs), and exosomes are three types of 
EVs divided based on their size, content, and formation [21]. Apoptotic 
bodies are typically produced n the last stage of apoptosis from apoptotic 

cells and are 50–4000 nm in size. Apoptotic bodies are heterogeneous 
and contain membrane contents, cellular organelles and nuclear-derived 
molecules [22]. Unlike apoptotic bodies, microcycles are shedding 
directly from the healthy cells membrane. These EVs sizes range from 
100 nm to 1000 nm and have a heterogeneous morphology [23]. Exo
somes are the other type of EVs whose size range from 30 to 150 nm are 
the smallest EVs produced during late endosome membrane inward 
invagination and the multiple vesicular bodies (MVBs) formation [24]. 
MSCs-derived exosomes have a therapeutic effect in many degenerative 
tissue diseases [25]. Exosome injection for IDD treatment is a cell-free 
procedure that does not have the disadvantages of stem cell therapy. 
In addition, according to the properties of exosomes, they can be used as 
drug carriers. The biocompatibility of these vesicles, their small size, 
their ability to migrate and carry various substances to damaged tissue 
have made exosomes a promising therapeutic agent [26]. 

2. Etiology of IDD 

Various factors such as aging, genetic factors, environmental factors, 
and nutritional factors play a role in the etiology of IVD [27]. Envi
ronmental factors include lack of exercise, smoking, unhealthy lifestyle, 
severe trauma, and constant vibration exposure, leading to IVD degen
eration [28]. Polymorphisms in genes encoding extracellular matrix 
(ECM) function, Proteoglycans, and catabolic genes are also risk factors 
for IDD etiology [29]. Some mononucleotide polymorphisms, such as 
those found in Transforming Gross Factor-beta (TGF-B), can also trigger 
IDD [30]. Other reasons for the onset and development of IDD include 
changes in the nutrient supply of intervertebral disc cells that lead to 
hypoxia and changes in pH [31]. These factors affect the ability of IVD 
cells to synthesize and support ECM, leading to disc degeneration 
(Fig. 1). 

3. Cellular and molecular biology of IDD 

NP development is mediated by MSCs and notochordal cells (NCs). 
During embryogenesis, NP tissue is mainly composed of NCs [32]; 
however, in late puberty, NCs are replaced by chondrocyte-like cells 
called NPCs [33]. Reports indicate that in healthy IVD, some progenitor 
and stem cells play a role in the homeostasis and maintenance of the disc 
cells number [34]. These progenitor cells are also present in degraded 
IVD but are differentiated into adipogenic, osteogenic and chondrogenic 
lines [35]. IDD-derived cells have a reduced ability to proliferate and 
differentiate and therefore cannot regenerate damaged tissue [35]. In 
addition, in vitro studies show that NPCs isolated from the damaged disc 
undergo accelerated cell senescence, which affects the production of 
factors involved in ECM formation and contributes to tissue destruction 
[36,37]. Cells appear in clusters in the internal NP and AF in the 
damaged disc. Many of the cells present in clusters have the increased 
ability to produce matrix-degrading enzymes such as matrix metal
loproteinases (MMPs) [38,39]. 

As mentioned, IVD comprises three types of tissues called NP, AF, 
and CEP, and changes in the composition of the components and the 
number of cells in these tissues contribute to the onset and progression 
of the IDD. The normal NP structure in young people comprises 2–3% 
cells and the rest of the water and extracellular matrix [40]. With 
increasing age and also the influence of the mentioned factors, this ratio 
changes and leads to the loss of normal IVD function [41]. In AF, most 
fibres are type 1 collagen due to their supporting role, while the main 
fibre in NP is type 2 collagen [42]. Due to NP’s hydrated and ECM-rich 
nature, the complex structure of  type 2 collagen leads to its interaction 
with water and ECM components and is required to maintain the normal 
function of NP. During IDD, a part of the type 2 collagen in NP is 
replaced by type 1 collagen, and this leads to a change in the structure of 
NP tissue [43]. 

Low pH, low glucose levels, and hypoxic conditions form the NP 
tissue niche, in which resident cells supply energy through anaerobic 
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glycolysis [44]. The change in favourable microenvironment regulated 
by CEP in IVD can also contribute to IDD progression by altering ECM 
components and affecting resident cells [45]. 

Proteoglycans (PGs) and glycosaminoglycans (GAGs) in the ECM of 
IVD play a significant role in maintaining health. Due to the negative 
charge of Sulfated GAGs attached to PGs, their side chains bind to water 
molecules to preserve tissue hydration [36]. In addition, due to the 
binding of growth factors, cytokines, and various chemokines to the PGs 
in the ECM, these structures play a role in the signaling, proliferation, 
and migration of the IVD resident cells [46]. Different types of proteases 
cleave the binding sites between PG and GAG and lead to type 2 collagen 
degradation [45]. 

In addition to the above, immune system responses also play a role in 
disease progression. T cells, macrophages, and neutrophils produce pro- 
inflammatory cytokines such as tumor necrosis factor-alpha (TNF-a), 
interleukins (such as IL 1-beta, IL 6, IL 17, IL 2, IL 4), and interferon- 
gamma (IFN-γ) in NP and AF tissues and induce autophagy, senes
cence, and apoptosis in their resident cells [47]. IL-6, PGE2, and nitric 
oxide (NO) [48] seem to have an inhibitory effect on proteoglycan 
synthesis. These cytokines also help intervertebral disc degeneration by 
decreasing the production of proteoglycans and increasing the produc
tion of MMPs [3]. 

4. IDD conservative, interventional and biological treatments 

In IDD treatment, therapeutic interventions vary based on the 
severity, degree, persistence, and chronic or acute pain. If LBP is low or 
acute, medicines such as rest, physiotherapy [49], steroidal and non- 
steroidal anti-inflammatory drugs, muscle relaxants, and analgesics 
are used [50]. These treatments use different mechanisms to reduce 
acute pain in the patient but can not prevent disc destruction [51]. For 
this reason, in some patients, the pain becomes chronic and makes the 
mentioned drugs useless. In these cases, intervention therapies such as 
surgery (discectomy, fusion, and complete disc replacement) and 
epidural steroid injections can be used [52]. 

But in surgery, due to the lack of attention to the physiological pa
thology of the degeneration process, it usually has limited and short- 
term effectiveness [53]. That’s why researchers are looking for treat
ments to prevent and improve the physiological and pathological 
damage of the IVD [54,55]. Biological methods such as the use of growth 
factors, gene therapy, MSC transplantation, and use from MSCs-derived 
exosomes have received much attention [27]. 

The use of growth factors in IDD treatment leads to reduced 
inflammation, increased extracellular matrix synthesis, proliferation, 

and differentiation in damaged cells [56,57]. Many different in vitro and 
in vivo studies show that exogenous administration of TGF-B1 [31], 
bone morphogenic proteins (BMP-2,7,13,14) [58,59], insulin-like 
growth factor-1 (IGF-1), epidermal growth factor (EGF), And basal 
fibroblast growth factor (bFGF) stimulates the synthesis of ECM com
ponents in NPCs [60]. 

IDD treatment by gene therapy can be used in two ways [61]. First, in 
vivo injections of viral and non-viral vectors can transfer appropriate 
and healthy genes to the patient. In the second method, with ex vivo 
gene therapy, after extracting the defective cells and changing the ge
netics (at the site of the defective gene that causes the destruction of the 
disc) and culturing in the lab, they are then transplanted back to the 
patient and can perform the proper function in them [62]. Studies have 
shown that TGF-B gene transfer through adenovirus vector leads to 
increased production of proteoglycans by NPCs [63]. Transfection of the 
SOX-9 gene by an adenoviral vector has also been shown to increase the 
production of type 2 collagen in IVD [64]. In addition, in recent years, 
the use of non-coding RNAs that inhibit gene expressions, such as siR
NAs, miRNAs, and long non-coding RNAs (Lnc-RNA), has been proposed 
for the biological IDD treatment [27]. But in the meantime, the use of 
mesenchymal stromal/stem cells has shown promising results in IDD 
treatment [65]. These cells directly and through their exosomes play an 
important role in treating this disease [10], which we will discuss below. 

5. MSCs application in IDD treatment 

The use of MSCs helps treat IDD by modulating the immune system, 
increasing ECM production, and producing soluble factors [53]. Inter
estingly MSCs isolated from different tissues and individuals show 
different abilities to differentiate under the same In vitro conditions 
[50]. In general, there are two ways to use MSCs in tissue repair. 

First, MSCs are injected naturally and without manipulation into the 
injury site and differentiate into different cells in the tissue microenvi
ronment [66]. In this method, the injected cells may differentiate into 
undesired cells and reduce the effectiveness of the treatment. In the 
second method, MSCs, before transplantation, differentiate into desired 
cells in vitro by growth factors, differentiation factors, and different 
gene therapy techniques [67]. In this type of treatment, differentiated 
cells show a stable phenotype that is resistant to trans conditions of body 
tissues [68]. However, as mentioned at the beginning of the section, pre- 
injection differentiation of MSCs into specific cell lines can affect their 
immunomodulatory properties and reduce treatment efficacy [69]. Of 
course, it should be noted that in both types of treatment, the number of 
cells isolated MSCs from different sources is usually low and must be 

Fig. 1. Factors involved in IDD etiology.  
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cultured before transplantation to increase their number and be suitable 
for treatment [70]. Intravenous injection of cells in cell therapy is the 
main method of administration, but it has been shown that the number 
of cells in the damaged tissue is much less than the number of injected 
cells. To prevent this phenomenon, intra-disc injection of MSCs is rec
ommended. However, intra-disc injection is not without its disadvan
tages and can lead to the removal of MSCs from the disc tissue by 
puncturing the IVD. Also, cells reflux out of IVD can induce the adverse 
formation of osteophytes by altering the CEP tissue and affecting its 
function [71]. Although the survival rate of MSCs after transplantation is 
unknown, it is believed that most of these cells do not survive in IVD 
[72]. As a result, this leads to the accumulation of necrotic cell debris 
and apoptosis and, therefore, may have detrimental effects on IVD ho
meostasis and therapeutic outcomes. A study that evaluates MSCs sur
vival showed that these cells disappear regardless of the injection 
method after seven days of injection. Within one day after trans
plantation, due to the physiology of various tissues, especially IVD 
hypoxic conditions, MSCs activate hypoxic pathways, followed by 
caspase-3-mediated apoptosis [73]. Macrophages in the tissue remove 
these apoptotic MSCs. There is ample evidence in various studies that 
MSC apoptosis modulates both innate and adaptive immune responses 
that affect the therapeutic effects of MSC [74]. How the complex 
microenvironment of IVD is regulated, the survival and function of BM- 
MSCs after injection is not clearly understood, and most current studies 
have focused on MSC transplant results [75]. However, the results of 
preclinical and clinical studies on the use of MSCs have been very 
promising. 

5.1. In vitro evidence of the MSCs therapeutic efficacy 

Studies have shown that the addition of growth factors such as TGF-B 
to the culture medium of MSCs stimulates their differentiation into NP- 
like cells and dramatically increases the expression of type II collagen 
and aggrecan in them [76]. It has also been shown that due to the 
hypoxic environment in IVD tissue, if MSCs cultured in hypoxic condi
tions with TGF-B, the degree of stability of their differentiation into NP- 
like cells will increase [77]. So it can be concluded that the IVD hypoxic 
environment can stimulate differentiation of MSCs in the in vivo con
ditions [78,79]. In addition, coculture of adipose tissue derived 
mesenchymal stem cells (AD-MSCs) with NP and AF-derived cells in
creases their proliferation [80]. This coculture also increases the MSCs 
differentiation to NPCs [81]. It has been shown that the main factor in 
the differentiation of MSCs in coculture with NPCs is intercellular 
communication, soluble factors, and exosomes produced from NPCs 
[82]. 

A study by ZHAO et al. showed that co-incubation of Wharton jelly 
derived mesenchymal stem cells (WJ-MSCs) with NPCs reduces 
apoptosis in these cells by inhibiting the Wnt/B-catenin signaling 
pathway [83]. Studies show that Wnt signaling inhibits the aquaporin 3 
channel protein expression, and this water channel has a protective role 
in preventing apoptosis and regulating ECM degradation [84]. Wnt 
signaling inhibits the proliferation of NPCs and stimulates senescence in 
these cells [85]. In addition, it promotes the development of IDD by 
stimulating the production of TNF-α and initiating inflammatory re
sponses [86]. Also, due to the lack of cell–cell interactions in this study, 
MSCs act through paracrine signaling transduction to decrease apoptosis 
in NPCs [83]. 

Different ligands can activate signaling pathways related to toll-like 
receptors (TLRs) in inflammatory conditions of disc degeneration [87]. 
TLR-2 is one of these receptors at the surfaces of NPCs, which activates 
the transcription factor NF-κB through the Myd88 adaptor protein [88]. 
This transcription factor plays an important role in producing inflam
matory factors such as cytokines and chemokines [89]. Various studies 
have shown that inhibition of NF-κB activation can delay the process of 
disc degradation [90]. MSCs inhibit the activation of the transcription 
factor NF-κB by producing TNF-α-stimulated protein 6 (TSG-6), a 30- 

kDa glycoprotein, and play an important role in IDD treatment [91]. 
Because the ability of MSCs treated with TSG-6 expression inhibitory 
siRNA is less than that of intact MSCs, it is suggested that TSG-6 per
forms part of the therapeutic function of MSCs [91]. The application of 
recombinant TSG-6 decreases the expression of MMP-3 and MMP-13 and 
also increases the production of ECM components such as collagen II and 
aggrecan. 

On the other hand, a study by Eun-Kyung Shim shows that the 
coculture of isolated cells from NP and AF with MSCs increases prolif
eration in all three of these cells compared to monocultures. The analysis 
showed that the mRNA expression of growth factors such as IGF-1, OP-1, 
and growth and differentiation factor 7 (GDF-7) in both NP and AP cells 
significantly increased in coculture with mesenchymal stromal/stem 
cells. Also, EGF and TGF-b expression levels increase only in NPCs [92]. 

According to this study, in the coculture of MSCs with NPCs, the 
mRNA expression of genes involved in ECM formation such as SOX9, 
VCAN, Aggrecan, COL 2, and COL 6 increases in both MSCs and NPCs. 
However, the coculture of MSCs with AF cells leads to increased COL 5 
gene expression only in MSCs [93,94]. This difference in gene expression 
in cultured MSCs with cells isolated from NP and AF tissues seems quite 
reasonable given their different roles. In this study, the analysis of 
proinflammatory cytokines expressions such as IL-1a, IL-1b, IL-6, and 
TNF-a showed a significant decrease in NPCs and AP cells derived from a 
degenerative disc in co-culture of MSCs [92]. 

Mitogen-activated protein kinase (MAPK) plays an important role in 
many cellular processes, including response to inflammation, injury or 
stress, and cell differentiation [95]. The MAPK/p38 related signaling 
pathway is associated with increased PGE2, IL-6, and MMPs [96]. 
Various studies show that this signal pathway plays a pivotal role in 
promoting disc degradation in NPCs [97]. When isolated NPCs from the 
disc treated with TNF-α, they exhibit features similar to those seen in 
IDD [98]. SB-203580 is one of the inhibitors of the MAPK signaling 
pathway and inhibits the inflammatory response in NPCs leading to disc 
damage. According to various analyzes, it was shown that the coculture 
of NPCs with Wharton’s Jelly-derived mesenchymal stromal/stem cells 
(WJ-MSC) exerts similar effects using SB-203580 on the gene expression 
and inflammatory profile of NPCs. Therefore, it was demonstrated that 
culturing NPCs with WJ-MSC inhibits the inflammatory responses of 
NPCs by inhibiting the MAPK/p38 pathway [98]. 

The culture of AF-isolated cells in IL-1β-containing medium is a way 
to mimic IDD inflammatory conditions to study their effects on these 
cells [99]. Indirect culture of BM-MSC with these cells shows promising 
results from the impact of mesenchymal stromal/stem cells [100]. 
Western blot and PCR analyzes of IDD conditions mimicking AF cells 
with BM-MSCs showed a decrease in the expression of MMP-3 and MMP- 
13 and an increase in the production of aggrecan, type 1 collagen, and 
TIMP-1 in them. In addition, ELISA results indicate a reduction in in
flammatory factors such as PGE-2, cyclooxygenase-2 (COX-2), and IL-6 
[100]. Studies to evaluate the apoptosis rate in IL-1β-stimulated AF 
cells show that treatment of these cells with MSCs reduces apoptosis in 
them. Overall, the results of this study suggest that treatment of IDD- 
related AF cells with BM-MSCs can help treat IDD by relative inhibi
tion of Nuclear Factor Kappa B (NF-κB) transcription factor activation 
and reducing mitochondrial apoptosis in them [100]. 

Li et al. show that culturing BM-MSC with NPC can reduce their 
apoptosis rate by regulating autophagy [101]. Methylation of the amino 
group (N6) in adenosine base is one of the most common post- 
transcriptional changes in eukaryotic mRNAs and plays an important 
role in various cellular processes. Multiple studies suggest that N6 
modification of methyladenosine (m6A) on mRNA regulates autophagy 
and cell fate [102]. The complex consisting of METTL3, METTL14, and 
WTAP is responsible for this methylation [103]. ALKBH5 and FTO also 
reverse the function of the methylating complex by demethylating 
adenosine in mRNA [104]. ULK1 is an autophagy-related gene, and post- 
transcriptional changes play an important role in regulating its expres
sion [105]. ULK1 and FIP200 are part of the ULK1 complex and 
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upregulate NPCs in coculturing with BM-MSC [106]. FIP200 expression 
is reduced in NPCs under compression and in the degenerated disc 
environment [106]. But when NPCs are cultured with BM-MSCs, the 
FIP200 mRNA is hypomethylated through the function of ALKBH5 and 
FTO and is protected from degradation by YTHDF2 [101]. This study 
shows that BMSC stimulates autophagy in NPC by regulating the ULK1- 
FIP200-Atg13 complex. 

The use of cultured BMSCs in hypoxia conditions increases their 
tolerance to subsequent injuries and their therapeutic potential [107]. 
Hypoxia affects cells by regulating intracellular signaling, regulating 
migration, increasing growth factor secretion, and regulating cell 
migration [108,109]. CoCl2 is one of the classic hypoxia simulators, 
which has many applications due to its easy and accurate use and control 
[110,111]. The study by Weiheng Wang shows that hypoxia increases 
cell migration through the signaling pathway of HIF-1α and CXCR4 in 
BMSC and decreases apoptosis by regulating the expression of caspase-3 
and Bcl-2 pathways [112]. 

5.2. In vivo evidence of the MSCs therapeutic efficacy 

Numerous studies have demonstrated the efficacy of MSC trans
plantation in treating IDD in vivo, and promising results have been 
obtained. The use of autograft MSCs immunologically is the best source 
for MSCs transplanting [113]. However, since a person’s genetic pre
disposition to disc degeneration can affect the performance of MSCs 
(having disruptive genetic problems) for treatment, the use of allograft 
resources is recommended [114]. Allograft MSCs are more accessible 
than collecting and culturing specific autograft MSCs and reduce costs. 
Many studies since 2004 have examined the efficacy of MSCs in the 
treatment of IDD in animals. In summary, these studies suggest that 
mesenchymal stromal/stem cell transplantation in IVD leads to their 
differentiation into NPCs [115], increases ECM production [116], in
creases survival, and decreases apoptosis in resident NPCs [117], mod
ulates the immune microenvironment [114], and decreases ECM 
degrading enzymes [118] in vivo. These results approve the in vitro 
studies’ result and present a new regenerative treatment for IDD. 

A study by En-Rung Chiang in 2019 shows that in rabbit degenerated 
discs, injection of hypoxic MSCs increases BMP-7 expression more than 
normoxic MSCs. Therefore, due to the pivotal role of BMP-7 in the 
regeneration of IVD tissue, hypoxic mesenchymal stromal/stem cells 
have more therapeutic potential than normoxic [119]. (Table 2) 

A short report published on five patients in 2016 assessed the safety 
and feasibility of using autologous, hypoxic MSCs to treat LBP. Intra- 
discal injection of these MSCs improves symptoms and reduces pain in 
patients. Follow-ups performed during 4–6 days after MSC injection, 
such as physical examination, completion of a quality of life question
naire, and lumbar MRI, indicate the feasibility of this type of treatment. 
In addition, no side effects were observed during this study for up to 6 
years after injection [120]. 

In a study performed on 33 patients, injection of autologous MSCs 
expanded with platelet lysate in vitro was used. Extended MSCs were 
examined in vitro before injection into patients’ discs for karyotype, and if any genetic abnormalities were observed, the injection would be 

cancelled according to safety protocols. Also, no neoplasms were 
observed during the imaging of the injected area of the cell, and no new 
neoplastic events occurred in any of the patients after surgery. Follow- 
up over 7 years after cell injection improves patients’ symptoms, re
duces pain, and increases IVD function [121]. 

In another study, autologous bone marrow Good Manufacturing 
Practice (GMP)-compliant MSCs was used to treat IDD in chronic LBP 
patients [65]. In this study, ten patients were followed for one year after 
injection. Immunophenotyping of cells and injected cell viability have 
not changed due to syringe injection into the disc and have been stable 
over time. The reported karyotype results were also satisfactory. This 
study shows that during the one year after the intervention, the height of 
the disc did not change in patients. Still, the fluid content of the 

Table 1 
The five types of discogram and their stages of disc degeneration.  

Stage Discogram 
type 

Stage of disc degeneration 

1 Cottonball No signs of degeneration 
2 Lobular Mature disc with nucleus starting to coalesce into fibrous 

lumps 
3 Irregular Degenerated disc with fissures and clefts in the soft 

nucleus pulposus and annulus fibrosus 
4 Fissured Degenerated disc with radial fissure leading to the outer 

edge of the annulus 
5 Ruptured Complete radial fissure in discs 

IVD: intervertebral disc, BM: bone marrow, MSCs: mesenchymal stem cell. 

Table 2 
New studies using MSCs to treat IDD in animals.  

study Animal 
model 

MSC 
sources 

Number of 
injected 
cells 

reference 

Combined Hydrogel and 
Mesenchymal Stem Cell 
Therapy for Moderate- 
Severity Disc 
Degeneration in Goats 

Goats bone 
marrow 

N.A [165] 

Treatment of Intervertebral 
Dis Degeneration in Wistar 
Rats with Mesenchymal 
Stem Cells 

Rat bone 
marrow 

105 [166] 

Transplantation of Hypoxic- 
Preconditioned Bone 
Mesenchymal Stem Cells 
Retards Intervertebral Disc 
Degeneration via 
Enhancing Implanted Cell 
Survival and Migration in 
Rats 

Rat bone 
marrow 

2 × 104 [167] 

Efficacy of matriline-3- 
primed adipose-derived 
mesenchymal stem cell 
spheroids in a rabbit 
model of disc 
degeneration 

rabbit Adipose 
tissue 

2 × 106 [168] 

Mesenchymal stem cells 
reduce intervertebral disc 
fibrosis and facilitate 
repair 

Rabbit bone 
marrow 

5 ×
103–1.5 ×
105 

[169] 

Injectable kartogenin and 
apocynin loaded micelle 
enhances the alleviation of 
intervertebral disc 
degeneration by adipose- 
derived stem cell 

Rat Human 
Adipose 
tissue 

N.A [170] 

Sox9 Gene Transfer 
Enhanced Regenerative 
Effect of Bone Marrow 
Mesenchymal Stem Cells 
on the Degenerated 
Intervertebral Disc in a 
Rabbit Model 

Rabbit bone 
marrow 

106 [171] 

Evaluation of regenerative 
processes in the pig model 
of intervertebral disc 
degeneration after 
transplantation of bone 
marrow-derived 
mesenchymal stem cells 

pig bone 
marrow 

106 [172] 

Injectable Hydrogel 
Combined with Nucleus 
Pulposus-Derived 
Mesenchymal Stem Cells 
for the Treatment of 
Degenerative 
Intervertebral Disc in Rats 

Rat Nucleus 
Pulposus 

N.A [173]  
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damaged discs increased significantly, and its analgesic effects were 
71% effective [65]. These observations are consistent with the results 
obtained in animals, where MSC could prevent the development of disc 
dehydration and regenerate disc tissue [122,123]. However, with the 
fact that the height of the discs has not changed and the pain has been 
greatly reduced in patients, it can be concluded that trophic effects occur 
faster than regenerative effects in patients [65]. (Fig. 2) The researchers 
of this study demanded more studies to reveal better the mechanisms 
involved and evaluate the subsequent improvements in this disease. 
Tables 3 and 4 summarize some clinical studies and clinical trials, 
respectively. 

5.3. Immunomodulation by MSCs in IDD 

In IVD, the presence of T and B lymphocytes in human and experi
mental models of pigs herniated discs has already been demonstrated, 
and no inflammatory cells other than macrophages have been observed 
in the damaged disc. Monocyte-derived macrophages migrate to the 
hernia, and during the process of phagocytosis and exocytosis, lysosomal 
enzymes contribute to the regression of the hernia and IVD. MSCs can 
inhibit the proliferation and differentiation of T lymphocytes [45,46], 
but MSC activities and therapeutic outcomes are highly dependent on 
disease-related tissue microenvironments. Systemic transplantation of 
MSCs leads to an increase in TCD4+ cells in the spleen, including CD4+ T 
helper and Treg cells. Elevated IL-2 levels in the rat receiving MSCs 
group lead to increased differentiation of TCD4+ cells into Treg cells, 
suppressing inflammation. Transplantation of MSCs also leads to a 
decrease in the MHCII+ cell population in IDD model rats. MSCs, 
through the production of IL-6, can keep DCs immature or even force 
DCs to acquire a tolerogenic phenotype with less expression of MHCII 
molecules. Thus, in addition to the direct effect, MSCs also indirectly 
affect the differentiation of TD4+ cells and reduce their inflammatory 
responses, which play a role in disc damage. Tolerogenic DCs stimulate 
the differentiation of TCD4+ into Th2 and Treg, increase serum levels of 
IL-4 and Il-10, and provide a regenerative immune environment for disc 
tissue improvement. MSCs can interact directly with B cells present at 
the injury site and reduce their differentiation into antibody-producing 
plasmablasts, leading to the induction of regulatory phenotype in these 
cells (Breg) [124]. In addition to suppressing T cell activity, MSCs induce 

macrophage polarization to the M2 phenotype by producing the 
interleukin-1 receptor antagonist (IL1-RA). These macrophages help 
reduce inflammation and increase the function of cells involved in tissue 
repair by producing immunosuppressive factors [125]. Thus, MSCs can 
help improve function and increase tissue repair by affecting the re
sponses of the three types of inflammatory cells present in the damaged 
disc. 

5.4. Limitations of MSCs use in IDD treatment 

Many studies suggest the use of Pufferman [126], Adams [127], and 
Modic’s [128] scores to determine inclusion and exclusion criteria for 
IDD treatment with MSCs. Different types of discograms were identified 
based on continuously identifiable features in the shape and density of 
the radio-opaque shadow. According to the discogram, disk destruction 
is divided into five stages [126]. Table 1 summarizes the specifications 
of different levels of disk destruction. Based on these scores, the overall 
condition of the destroyed disk and the effectiveness of using MSCs is 
determined. Since the use of mesenchymal stromal/stem cells can not 
induce treatment in a completely destroyed and necrotic disc [129], 
these cells should be used in the early stages of LBP and low damage to 
disc tissue [130,131]. The therapeutic potential of MSCs is exerted by 
signaling patterns and mutual interaction between resident cells. This 
potential therapeutic reduced due to the loss of resident cells in the 
wholly destroyed disc [92]. The distinction between NP and AF is un
clear in the early stages of degeneration, and the discs’ height has not 
changed much [132]. MSCs cannot be used in damaged discs with full 
radial fissure. This type of damage can lead to the escape of transplanted 
MSCs into the disc and significantly reduce the effectiveness of treat
ment [132]. 

6. MSCs-derived exosomes 

According to various studies, the use of MSCs for IDD treatment 
shows many promising results. But as mentioned, cell therapy has some 
limitations. In order to use the therapeutic potential of MSCs and reduce 
their limits, the use of their exosomes was proposed [133]. Exosomes are 
nanosized vesicles released from a wide range of cells and play an 
important role in intercellular and paracrine communication [134]. 

Fig. 2. Injection of mesenchymal stromal/stem cells into damaged discs through various mechanisms can help improve the disease. These mechanisms include 
reducing pain, increasing the differentiation and survival of NPCs, and increasing extracellular matrix production. 
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These vesicles contain various cargos such as lipids, proteins, and a 
variety of nucleic acids. Transfer of these cargos to the target cell leads to 
changes in molecular mechanisms and changes the behavior of these 
cells [135]. Mesenchymal stromal/stem cells produce more exosomes 
than other cells and are more useful for therapeutic use [133]. In 
addition, when MSCs starved by decreasing the amount of FBS in their 
culture medium, the production of exosomes increases [136]. Methods 
such as ultracentrifugation, differential centrifugation, Microfluidics- 
Based methods [137], pegylation-based methods, and kits are used for 
exosome separation [138]. After separating, there are various methods 
for characterizing them, and such as tests such as Western blotting, 
scanning electron microscopy (SEM), transient electron microscopy 
(TEM), dynamic light scanning (DLS), and zeta potential analysis [139]. 
After characterizing, exosomes can be used in in-vivo and in-vitro 
studies. At this stage, using methods such as electroporation, sonicat
ion, freeze–thaw, and incubation, various substances can be loaded into 
the exosomes and used as drug carriers [140,141]. Drug loading in
creases the therapeutic efficacy of exosomes and enhances their clinical 
use [142]. MSCs exosomes help treat IDD through a variety of 
mechanisms. 

In vitro studies show that culturing NPCs isolated from degraded 
discs with exosomes isolated from BM-MSCs increases their proliferation 
[10]. MSCs Exosomes not only induce proliferation in NPCs but also 
reduce apoptosis in them. A study by Cheng has shown that BM-MSCs- 

derived exosomes inhibit TNF-α-induced apoptosis in NPCs in vitro 
[143]. In addition, the in vivo study confirms the in vitro findings based 
on Pfirrmann scores, histological grade, and apoptosis rate. Another 
study showed that culturing NPCs with MSCs exosomes reduced caspase- 
3 and caspase-12 in NPCs [144]. Microarray analysis of hybridization in 
TNF-α-treated NPCs shows that the expression of miR-18a, miR-21, miR- 
106b, miR-217, and miR-26a in these cells is significantly reduced 
[143]. Studies on mesenchymal stromal/stem cell exosomes show the 
presence of miR-21 in them [145]. Also, the level of this miR increases in 
the exosomes of TNF-a-treated MSCs [143]. The culture of NPCs with 
TNF-a-treated MSCs derived exosomes reduces the rate of apoptosis in 
them. Phosphatase and tensin homolog (PTEN) prevents survival re
sponses by inhibiting the PI3K/Akt signaling pathway [146]. miR-21 
inhibits act by binding to 3′UTR in PTEN mRNA and reducing the 
apoptosis of these cells [143]. 

Another study showed that endoplasmic reticulum stress markers 
such as GRP78 and CHOP increased in NPCs isolated from IDD. The 
culture of these cells in the presence of MSCs exosomes reduces the 
expression of these markers and apoptosis in them. In fact, it can be said 
that the exosomes of MSCs reduce the level of CHOP (the main stress 
molecule of the endoplasmic reticulum network) through AKT and ERK 
signaling pathways and inhibit endoplasmic reticulum stress-mediated 
apoptosis [144]. (Fig. 3) 

Oxidative-induced cellular stress at the injury site leads to increased 

Table 3 
Intradiscal transplantation of MSCs in clinical studies.  

Study Results Year of 
publication 

Number of 
Patients 

Number of 
Injected Cells 

Follow Up 
time 

Reference 

Injection of autologous BM-MSCs into the IVD 85% of patients showed improvement in 
IVD properties 

2017 33 N/A 6 year [158] 

Injection of the autologous stromal vascular fraction 
containing adipose tissue-derived MSCs together 
with platelet-rich plasma 

Significant improvement in flexion, VAS, 
PPI, and pain 

2017 15 30–60 × 106 6–12 
month 

[159] 

Injection of autologous BM-derived MSCs into the 
IVD 

Improvement in pain and disability. 
Elevated water content in IVDs. No change 
in disk height. 

2011 10 10 ±5 × 106 

cells per disc 
12 month [160] 

Injection of adipose tissue-derived MSCs combined 
with hyaluronic acid derivates 

Improvement in VAS and ODI And 
Elevated IVD water in 3 patient 

2017 10 20–40 × 106 12 month [161] 

Injection of autologous BM-derived MSCs into the 
IVD 

Improvement in VAS and OD.also 40% of 
patients showed improvement on 
Pfirrmann’s grade 

2017 26 5426 CFU-F 3 year [162] 

The Traceability of MSCs After Injection Into 
Degenerated Discs in Patients with Low Back Pain 

MSCs differentiate into chondrocyte-like 
cells 

2019 4 106 8–28 
month 

[163] 

Injection of autologous BM-derived MSCs into the 
IVD 

Improved functional indices and 
Pfirrmann’s grade 

2017 24 25 × 106 12 month [164]  

Table 4 
MSC based clinical trials in IDD treatment.  

Study title Sorce of 
MSC 

Status Intervention 
Model 

Phase NCT number 

Mesenchymal Stem Cells for Lumbar Degenerative Disc Disease Bone 
marrow 

Not yet 
recruiting 

Parallel 
Assignment 

Early Phase 1 NCT03692221 

Human Umbilical Cord Mesenchymal Stem Cells For the Treatment of Lumbar Disc 
Degeneration Disease 

Umbilical 
Cord 

Recruiting Single Group 
Assignment 

Not 
Applicable 

NCT04414592 

Treatment of Degenerative Disc Disease With Allogenic Mesenchymal Stem Cells Bone 
marrow 

Completed Parallel 
Assignment 

Phase 2 NCT01860417 

Autologous Adipose Derived Stem Cell Therapy for Intervertebral Disc Degeneration Adipose Unknown Single Group 
Assignment 

Phase 1 NCT02338271 

Clinical Trial Based on the Use of Mesenchymal Stem Cells From Autologous Bone 
Marrow in Patients With Lumbar Intervertebral Degenerative Disc Disease 

Bone 
marrow 

Completed Single Group 
Assignment 

Phase 2 NCT01513694 

Effectiveness and Safety of Mesenchymal Stem Cell (MSC) Implantation on 
Degenerative Discus Disease Patients 

umbilical 
cord 

Recruiting Single Group 
Assignment 

Phase 2 NCT04499105 

Human Autograft Mesenchymal Stem Cell Mediated Stabilization of The Degenerative 
Lumbar Spine 

Not 
Applicable 

Unknown Cohort Observational NCT02529566 

Utilization of Autologous Mesenchymal Cells in Posterolateral Spinal Fusion in 
Degenerative Spine Disease 

Adipose Terminated Single Group 
Assignment 

Phase 2 NCT03827096 

Efficacy of Intradiscal Injection of Autologous BM-MSC in Worker Patients Affected by 
Chronic LBP Due to Multilevel IDD 

Bone 
marrow 

Recruiting Parallel 
Assignment 

Phase 2 NCT04759105  
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apoptosis and calcification of endplate chondrocytes (EPCs) by 
increasing endoplasmic reticulum stress [147]. ATF6 stimulates the 
migration of transcription factors through interaction with endoplasmic 
reticulum stress elements, leading to the upregulation of genes related to 
unfolded proteins such as XBP1, CHOP, and GRP78 [148]. The in vivo 
and in vitro studies of MSCs exosomes therapeutic effect show a 
reduction in apoptosis and calcification in EPCs [149]. The expression 
levels of active caspase-3, caspase-7, and caspase-9 are reduced in EPCs 
treated with MSCs exosomes. The use of these exosomes inhibits endo
plasmic reticulum stress-induced by oxidative stress by decreasing the 
expression of ATF6, XBP1, CHOP, and GRP78 in EPCs. In addition, 
because inhibition of miR-31-5p function leads to reduced control of 
apoptosis and calcification in ECPs, this therapeutic property of MSCs 
exosomes is attributed to miR-31-5p / ATF6 Axis [149]. 

Microanalysis of NPCs in IDD patients shows that miR-4450 levels 
increase in them. miR-4450 binds to ZNF121 mRNA, reducing its level in 
NPCs [150]. ZNF121 plays an important role in regulating cell prolif
eration and apoptosis in breast cancer development [151]. Human 
placenta mesenchymal stromal/stem cells (hPLMSC) derived Exosomes 
transfer antagomiR-4450 and inhibited miR-4450 function result in 
increased ZNF121 levels in TNF-α-treated NPCs [150]. Thereby hPLMSC 
exosomes decrease apoptosis and inflammation and increase cell 
migration and proliferation in vivo and in vitro in the NPCs. 

In addition to NPCs and CEPs, the effect of MSCs exosomes on AF 
cells has also been investigated. In a study by Zhong-qi Li, AF cells were 
treated with IL-1B to mimic the inflammatory microenvironment of IDD. 
This study shows that BM-MSC exosomes inhibit inflammation and 
apoptosis in AF cells [152]. Since the effect of exosomes on these cells is 
inhibited by rapamycin, it is proven that this action is performed by 
regulating the PI3K/AKT/mTOR signaling pathway [152]. 

Oxidative stress plays a significant role in the apoptosis of IVD cells 
and IDD progression [153]. In a study by Xia et al. [154], H2O2 has been 
used to induce a laboratory oxidative stress model in NPCs. Examination 
of ROS levels in the H2O2 treated NPCs indicates an increase in them. 

This intracellular increase in ROS leads to increased expression of MMP3 
and MMP13 and leads to ECM degradation. The expression of cellular 
stress-related proteins such as NLRP3 and TXNIP also increases in these 
cells. In this study, MSCs exosomes were used to evaluate the therapeutic 
effects and improve the function of H2O2 treated NPCs. This study 
shows that the levels of ROS, caspase 3, caspase 9, NLRP3, TXNIP, 
MMP3, and MMP13 in NPCs treated with BM-MSCs exosomes are 
significantly reduced. Therefore, it can be concluded that the use of BM- 
MSCs exosomes helps to improve IDD by inhibiting inflammasome- 
mediated inflammation, apoptosis, ECM degradation, and ultimately 
inhibiting oxidative stress in NPCs [154]. In vivo studies on the rabbit 
model of IDD confirm the in vitro study results [154] (Fig. 4). 

7. Conclusion 

With modern lifestyles, IVD related problems rise and become a 
public health concern. IVD degeneration is associated with low back 
pain, and there is currently no definitive cure for the disease, and current 
treatments focus on pain relief. In addition, treatments such as surgery 
have many side effects. None of the current therapies for IDD has 
focused on regenerating this tissue, while regenerative therapies can 
significantly improve disease conditions. MSCs are one of the candidates 
for use in IDD due to their high differentiative and immunomodulatory 
potential. In addition, these cells produce exosomes, and their applica
tion in various tissues regeneration showed favourable therapeutic 
properties. These cells and their exosomes increase proliferation, syn
thesize ECM-related substances, and reduce apoptosis, ECM degrada
tion, and cell senescence in NPCs. Also, they reduce the inflammatory 
environment, increase the migration of repair-involved cells to the 
injury site, and increase the differentiation of MSCs into NPCs. All of 
these mechanisms play an important role in the regeneration of IVD 
tissue. The dose dependence of MSCs and exosomes are complex prob
lems in clinical applications. At this stage, the main route of adminis
tration is the intravenous injection, and most pre-clinical studies and 

Fig. 3. Numerous studies have examined the effects of mesenchymal stromal/stem cell co-culture with cells derived from damaged discs. In fact, this figure sum
marizes the studies performed in vitro. 
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clinical trials have used different doses [155]. However, the biological 
role of exosomes is not yet fully understood, and we still need to pay 
close attention to their side effects. MSC-derived exosomes certainly 
play an immunomodulatory role, and we are confident that the research 
of MSC-derived exosomes will make a significant breakthrough in the 
future. For clinical safety, the production of MSCs for therapeutic pur
poses must comply with good manufacturing practices (GMPs) to ensure 
the provision of safe, repeatable and efficient products. Some factors 
should be considered during the production process to produce safe and 
reliable MSCs sources for clinical application, including the following. 
(1) Identical tissue source for mesenchymal stromal/stem cell isolation. 
(2) Donor age and age of MSCs. (3) Donor-to-donor diversity and pre
vious pathological conditions. (4) Allogeneic source versus autologous 
sources. (5) The same MSC separation steps. (6) Heterogeneity in MSC 
culture [156]. These MSCs produced under GMPs processes can be used 
for EVs production. For this purpose, EVs, including exosomes, should be 
standardized for clinical use. Different exosome isolation methods are 
the criteria that can affect the results [157]. MSC-EVs’ potential criteria 
include the ratio of MSC to non-MSC surface antigens, the percentage of 
specific lipids, the ratio of membrane lipids to proteins, vesicle integrity 
and biological activity and the concentration of membrane lipid vesicles 
[156]. The next step will be to determine the quantity and validation of 
each criterion, which requires further study and research. The results of 
many in vivo and in vitro studies have confirmed the therapeutic and 
supportive role of MSCs and their exosomes in IDD treatment. Therefore, 
it is believed that in the future, with the expansion of stem cell thera
peutic application and overcoming cell therapy deficiencies, the use of 
MSCs will become one of the main options in the treatment of degen
erative diseases such as IDD. 
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