
 
 
 
 

 

 

Development of an Adaptive Genetic Algorithm to Optimize  
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Abstract. The problem of unequal facility location involves determining the location of a set 
of production equipment whose dimensions are different, as well as the interrelationships 
between each of them. This paper presents an efficient method for optimizing the problem of 
unequal facility layouts. In this method, the genetic algorithm is improved and developed 
into an adaptive genetic algorithm. In this algorithm, the mutation operator is applied only 
when the similarity of chromosomes in each population reaches a certain level. This 
intelligence prevents jumps in situations where they are not needed and reduces 
computational time. In order to measure the performance of the proposed algorithm, its 
performance is compared with the performance of conventional genetic algorithms and 
refrigeration simulators. Computational results show that the adaptive genetic algorithm is 
able to achieve higher-quality solutions. 
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1.   Introduction  

A facility layout problem involves determining the location of each facility, which can be a 
production unit, an office building, or machinery inside a plant. Choosing an appropriate 
location for facilities has considerable effects on production costs, work in progress, 
production time, and productivity of manufacturing systems [1,2]. Overall, 20-50% of the 
entire production costs inside a manufacturing plant are related to transportation costs. In this 
respect, [3] mentioned that lack of optimal layout of different facilities leads to huge material-
handling costs, thereby increasing the costs of the system. Therefore, researchers have 
focused on developing mathematical models and optimization algorithms to deal with the 
facility layout problem, which is often modeled as a location problem where the goal is to 
place equal-size facilities into pre-specified locations [4-6]. However, the problem will be 
less like a real-world issue when similar size facilities are considered. Accordingly, facilities 
are allowed to have different dimensions in the present study. Meanwhile, unequal facilities 
shift the problem from a location issue into a formulated mathematical model. To date, 
several studies have been performed on the facility layout problem. For instance, [7] 
proposed a single-row layout problem (SRFLP) of rectangular facilities with varying 
dimensions using a tabu search algorithm with an adaptive memory for variation and 
intensification methods to find solutions in the neighborhood of good solutions and solutions 
that have not yet been found. Another research, [4] developed a modeling technique through 
which real-time facility location in plants could be easily carried out in another research. 
These scholars adopted an Analytical Hierarchy Process–Genetic Algorithm (AHP–GA) 
based optimization scheme for automatic layout planning [8-10].  

Xu and Song [10] suggested a new method for dynamic temporary construction facilities 
with unequal-area departments. They considered transportation costs between facilities as 
fuzzy parameters and regarded facilities in two-dimensional forms. Subsequently, the multi-
objective position-based adaptive particle swarm optimization (p-based MOPSO) was 
developed to optimize the problem. Ultimately, the performance of the proposed algorithm 
was assessed and proven using a case study. Wang et al. [11] introduced a double-row facility 
layout problem by combining refrigeration simulation algorithm and mathematical 
programming. In the end, experiments showed that the methodology could obtain the optimal 
solutions for small-size issues and determine a real method for problems with real sizes. 
Ulutas and Islier [8] researched a footwear plant to solve a dynamic facility layout problem, 
aiming to minimize the total material handling and layout/re-layout costs while considering 
several duty cycles. 

A clonal selection-based algorithm was proposed to solve the real-life dynamic facility 
layout problem. In the end, numerical results were obtained, and the proposed method was 
reported to have a more appropriate performance than other techniques [12-17]. Neghabi and 
Tari [5] presented a new adjacency and closeness rating phenomenon for constructing the 
optimal facility layout design. In this approach, a special point is given to the plan based on 
the adjacency of facilities. Moreover, farness was considered as the safety purpose 
concurrently. A mathematical model was developed, and its performance was assessed using 
computational experiments. The computational results proved the efficiency of the proposed 
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model is simultaneously considering economic and safety criteria and creating various layout 
designs.  

In another study, Guan and Lin [2] proposed a hybrid algorithm based on variable 
neighborhood search and ant colony optimization. Three neighborhood structures were 
utilized in the proposed algorithm to enhance the exploitation ability. Meanwhile, new gain 
techniques are developed to reduce the mathematical calculations of the objective function 
values. On the other hand, a new method was used to update the formulas in the ant colony 
algorithm. These scholars applied standard problems in the literature to evaluate the 
algorithm and proved its superiority compared to previous techniques [18-22]. Paes et al. [6] 
introduced a meta-heuristic algorithm and GA to solve unequal facility layout problems. The 
proposed algorithms were compared to the methods existing in the literature, and the 
computational results showed that the hybrid GA was able to achieve higher quality solutions 
in less time. Shavarani et al. [12] a hierarchical facility location problem for online delivery 
systems. The problem was related to the distribution of products of Amazon in San Francisco, 
and the shortest path algorithm was used to solve the problem. In another study, Shan et al. 
[15] addressed the problem of competitive facility location for chain stores and presented a 
mathematical model in this regard. This model attempted to achieve the most suitable price 
to increase market share in competitive conditions. A heuristic algorithm was proposed to 
solve the model.  

Guo and Kluse [13] presented a comprehensive framework for locating solar panels, 
where investment, location, and transportation costs were minimized. Fu et al. [14] optimized 
facility location and capacity determination in a supply chain network. In this regard, they 
used a simulation-optimization approach, and the model was tested in two certain and fuzzy 
uncertain modes. Saif & Delage [16] studied a distributionally robust version of the classical 
capacitated facility location problem with a distributional ambiguity set. They proposed two 
single-stage and double-stage mathematical models. In addition, two algorithms based on 
column generation were developed for solving the problem exactly, and the results were 
evaluated and analyzed using various numerical problems.  

Overall, due to the significance of the unequal facility layout issue and given the 
statements above, this current study mainly attempts to design and propose an efficient 
method for optimizing the unequal facility layout issues. The genetic algorithm is boosted 
and developed into an adaptive genetic algorithm to fulfill that aim. The adaptive genetic 
algorithm can acquire higher and more proper quality solutions based on the results obtained. 

The remainder of the article is constructed as follows: the second section describes 
mathematical equations and problem modeling, and the third section presents the algorithm. 
The fourth section shows the results of the proposed algorithm following the adjustment of 
the algorithm’s parameters, and the fifth section concludes and makes suggestions for future 
studies. 

2.  Statement of the Problem 

The main objective of the model is to determine the location of facilities in a way that the 
facility transportation costs are minimized. Given the fact that the layout of unequal facilities 
is considered in the research, the problem is formulated in the form of a linear mathematical 
model. The model’s primary goal is to locate facilities so that the transportation costs between 
facilities are minimized. To this end, the location of the center of each facility, as well as its 
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horizontal or vertical position, must be determined. The main limitation of study is that, given 
the limited space, the layout of all facilities must be carried out in a way that no overlap 
occurs among them. Each of the facilities is available in any part of the space. A model is 
proposed in the next section to find a solution for the problem. In addition, the model 
premises are presented below: 

- The rectangular-square facilities have different sizes.  

- The required length, width, and area of each facility are pre-specified.   

- The total available area is limited.  

- The amount of transportation between facilities is definite and pre-specified.  

- The distance between the Euclidean facilities is considered center-to-center. 

2.1. Problem Formulation  

The decision variables, symbols, and parameters of the model are presented in the below: 

 
Indexes  
i,j: Facility index. At least N facilities exist.  
Parameters  
Fi,j The material flow between the i-th and j-th facilities  
Shi The smaller length of the i-th facility 
Lngi The larger length of the i-th facility 
L The entire length of the area available  
W The entire width of the area available  
M A big number 
Dependent decision variables 
x-pij, y-pij The horizontal and vertical distance between the i-th facilitation 

center and the j-th facilitation center 
Leftij 1, if the i-th facility is placed on the left side of the j-th facility; 

otherwise, 0.  
1, if the i-th facility is placed on the lower side of the j-th facility; 
otherwise, 0.  

Independent decision variables 
(xi, yi) Coordination of the i-th facilitation center 
Hi If the i-th facility is placed horizontally 
  

 

Ultimately, the facility layout problem is mathematically formulated, as follows.  
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(1)  
𝑚𝑖𝑛 =%%𝐹!,#

$

#%&

$

!%&

(𝑥 − 𝑝!# + 𝑦 − 𝑝!#) 

(2) ∀𝑖, 𝑗 (𝑥! + 0.5𝑙!) − (𝑥! − 0.5𝑙!) ≤ 𝑀(1 − 𝑙𝑒𝑓𝑡!#) 
(3) ∀𝑖, 𝑗 (𝑦! + 0.5𝑤!) − (𝑦! − 0.5𝑤!) ≤ 𝑀(1 − 𝑏𝑒𝑙𝑜𝑤!#) 
(4) ∀𝑖, 𝑗 𝑙𝑒𝑓𝑡!# + 𝑙𝑒𝑓𝑡#! + 𝑏𝑒𝑙𝑜𝑤!# + 𝑏𝑒𝑙𝑜𝑤#! = 1 
(5) ∀𝑖 (𝑥! + 0.5𝑙!) ≤ 𝐿 
(6) ∀𝑖 (𝑥! − 0.5𝑙!) ≥ 0 
(7) ∀𝑖 (𝑦! + 0.5𝑤!) ≤ 𝑊 
(8) ∀𝑖 (𝑦! + 0.5𝑤!) ≥ 0 
(9) ∀𝑖, 𝑗 > 𝑖 𝑥 − 𝑝!# ≥ 𝑥! − 𝑥# 
(10) ∀𝑖, 𝑗 > 𝑗 𝑥 − 𝑝!# ≥ 𝑥# − 𝑥! 
(11) ∀𝑖, 𝑗 > 𝑖 𝑦 − 𝑝!# ≥ 𝑦! − 𝑦# 
(12) ∀𝑖, 𝑗 > 𝑖 𝑦 − 𝑝!# ≥ 𝑦# − 𝑦! 
(13) ∀𝑖 𝑙! = 𝐿𝑛𝑔!ℎ! + 𝑆ℎ!(1 − ℎ!) 
(14) ∀𝑖 𝑤! = 𝐿𝑛𝑔!(1 − ℎ!) + 𝑆ℎ!ℎ! 
(15) ∀𝑖, 𝑗 𝑥! , 𝑦! , 𝑙! , 𝑤! , 𝑥 − 𝑝!# , 𝑦 − 𝑝!# ≥ 0 
(16) ∀𝑖, 𝑗 𝑏𝑒𝑙𝑜𝑤!# , 𝑙𝑒𝑓𝑡!# , ℎ! ∈ {0,1} 

The objective function (1) minimizes the total transportation costs between facilities. 
Constraints (2-4) guarantee the lack of facility overlap, whereas constraints (5-8) ensure that 
the facility is located inside the general area. Constraints (9 and 10) calculate the transverse 
distance between two facilities, while constraints (11 and 12) estimate the longitudinal 
distance between two facilities. Constraints (13) calculate the length of each facility, 
according to which the facility’s length equates the larger size in case of the horizontal 
location of the facility. Constraints (14) estimate the width of each facility, according to 
which the facility’s width equates the smaller side in case of the vertical location of the 
facility. Constraints (15 and 16) control the range of decision variables. The static facility 
layout problem with equal facilities is an NP-hard problem [1]. Since unequal facilities are 
considered in the problem, it can be stated that the problem is of NP-hard type, which 
complicates problem-solving. However, this complexity shows the necessity of developing 
efficient algorithms for such problems [9]. The following section presents a GA with adaptive 
mutation to solve the layout problem. 

2.2 GA with Adaptive Mutation  

The basis of the algorithm derived from nature is to use stochastic search for optimization of 
learning processes and problems. In nature, the combination of proper chromosomes leads to 
more efficient generations. Meanwhile, mutations often occur in chromosomes that might 
improve the next generation. The GA can search different areas of a solution space 
simultaneously. However, the GA method easily converges to local optimization due to 
chromosome similarity. The best solution to avoid local optimization is using a mutation 
operator. To improve algorithm performance, it is best to apply the mutation operator when 
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chromosome similarity is too high. As such, the current study develops GA into an adaptive 
GA (AGA), in which the mutation operator is applied only under certain conditions. 

 2.3 Chromosomes (Encoding and Decoding) 

In GA, each chromosome shows a point in the search space and is recognized as a possible 
solution for the problem. The chromosomes (solutions) encompass a fixed number of genes 
(variables). Encoding is usually used to show the chromosomes. In the present study, 
chromosomes must demonstrate facility location, so a coded chromosome is applied. This 
chromosome is a 3*N matrix, where N is the number of facilities. All numbers in the matrix 
are random and between zero and one. The numbers in each column are related to one facility. 
For instance, Figure 1 shows one chromosome for the problem of the location of 24 facilities 
in an available space.  
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Figure 1. Encoded chromosomes display 

As mentioned before, the chromosome in Figure 1 is coded, and the numbers existing in 
the chromosome must be decoded to determine the actual layout. The decoding process starts 
from the third row. First, all numbers in the third row are rounded up or down. This turns the 
third row into a binary vector. In this respect, zero and one are interpreted as horizontal and 
vertical positions of the facility. This row indicates that facility one must be located 
horizontally, so does facility two and the rest of the facilities. On the other hand, the second 
and third rows of the encoded chromosome indicate the coordination of the center of 
facilities. To decode these numbers, we first consider the length and width of the entire space 
available. Afterward, the range at which the facility is allowed to be located is determined. 
Finally, these numbers are multiplied into the numbers existing in the second and third rows, 
and the coordination of the center of facilities is obtained. For example, if the total length of 
the available area is 121 meters, x of facility one will be greater than 12.5 considering that 
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the length of facility 1 is equal to 25 meters. In addition, since the length of the available 
space is 121 meters, x of facility 1 is smaller than 121-12.5=108.5. In other words, the x 
coordination of facility one must be in the 12.5-108.5 range. Ultimately, x coordination of 
facility 1 is equal to 12 + (108-12.8) * 51=61.6. The same process is used to determine the 
coordination of the center of other facilities. Figure 2 shows the decoded solution of 
chromosome in Figure 1. Notably, there is some overlap in the chromosome due to its random 
production. For instance, facilities 5 and 7 overlap. In order to prevent this situation, the 
present research suggests a penalty function, through which unjustified chromosomes will be 
removed by an optimization process and replaced by justified ones.  

 

 

Figure 2. Facility layout presentation 

2.4 Intersection Operator 

During the operation of the intersection, parts of the chromosomes are accidentally 
exchanged. This allows children to have a combination of their parents' characteristics. The 
present study applies two intersection operators; in the first one, parent chromosomes are first 
chosen based on the roulette wheel, and a random number in the range of {1…N} is 
generated, where N is the number of facilities. The selected number is the intersection point. 
Columns 1 to the intersection point in the first parent are directly copied in the first child. In 
addition, the columns of +1 intersection point up to N in the first parent are directly copied 
in the first child. The opposite of the mentioned process generates the second child, meaning 
that columns 1 to the intersection point in the second parent are directly copied in the second 
child. Moreover, the columns of +1 intersection up to N in the first parent are directly copied 
in the second child. Ultimately, the chromosome of children is produced in an encoded form 
and will be decoded as described in the chromosome description section. Two random points 
are chosen in the second-type intersection operator, and parents’ genes are transferred to 
children based on the selected points. For example, points 3 and 9 are chosen as intersection 
points in Figure 3. 
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Figure 3: Multi-point integration 

Figure 3. Example of GA operators 

2.5 Adaptive Mutation Operator  

In GA, the mutation is done randomly with low possible, and elements are changed in the 
chromosome. The mutation operator changes the chromosome and prevents premature 
algorithm convergence. Therefore, a mutation in populations must be smart and rational as 
much as possible. In order to improve GA performance, an AGA is used, where the mutation 
operator is only applied when there is a certain level of chromosome similarity in each 
population. The following equation obtains the chromosome similarity coefficient: 

(17)              𝑆𝐶'( =
∑ *(,!"#,,!"$)
%
!&'

$
 

Where Xijb and Xija are the numbers existing in the i-th column and j-th row in a and b 
chromosomes.  

(18)                 𝜕J𝑋!#', 𝑋!#(L = M10										
𝑖𝑓	𝑋!#' = 𝑋!#(
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The mean coefficient of similarity between chromosomes of a population is determined 
by Equation (19): 

(19)                    𝑆𝐶QQQQ = ∑ ∑ ./#$%
$&#('

%)'
#&'

0$12
 

Where N is the number of works. Therefore, the mutation operator can only be applied 
on chromosomes when the value of 𝑆𝐶QQQQ exceeds a specific threshold. The size of the threshold 
is determined based on preliminary experiments and the trial and error method. The similarity 
coefficient is assessed in each iteration, and the mutation operator will be applied when 
chromosomes become too similar. The mutation operator will be applied on chromosomes, 
provided that the prerequisite is established. In this research, we use two types of mutation 
operators; in the first one, two random numbers are selected for each row, and genes are 
displaced (Figure 4). Two random numbers are selected for each row in the second mutation 
operator, and the genes between the numbers are reversed. 

Parent 

 

Mutated child 

 

Mutated child 
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Figure 4. The first-type mutation operator 

2.6 Algorithm Stopping Criterion  

Since the GA is based on test and production, the problem’s solution is unclear, and we 
cannot determine the optimal solution to define the stopping criterion for finding a solution 
in the population. Therefore, the criterion chooses the repeated number, which will be 
determined based on parameter tuning.  

3. Computational Results 

This section evaluates the performance of the proposed algorithms for solving a facility 
layout problem compared to GA and simulated annealing (SA). First, the optimal values of 
input parameters of the algorithms are determined using the Taguchi method. Afterward, 
several sample problems are randomly generated to assess the performance of algorithms. 
The algorithm that achieves the best layout statistically is known as the strongest algorithm. 
In order to evaluate the performance of the algorithms using statistical tests, numerical 
examples are randomly generated and on a personal computer. The generated problems are 
classified into three different classes based on the number of facilities. The first-third classes 
include problems with 1, 20, and 24 facilities. In each group, ten random issues are generated 
and used to test the performance of the algorithms. In all sample problems produced, the 
length and width values of the facilities are produced uniformly and between 20 and 30 
meters. Moreover, the material flow between the facilities has a uniform distribution and is 
between 20 and 70. Table 1 and Figure 5 show the results obtained from implementing 30 
sample problems with the desired metaheuristic algorithms. 
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Table 1. Results of comparison of metaheuristic algorithms on 30 sample problems 

Test 
problem 

SA GA IGA 
Objective 

value 
CPU 
time 

Objective 
value 

CPU 
time 

Objective 
value 

CPU 
time 

1 2676.3 2.73 2594.8 4.69 2339.55 6.73 
2 2715.05 3.15 3336.11 5.53 2435.66 7.17 
3 2991.23 3.73 3872.98 5.97 2680.14 7.21 
4 3159.41 4.00 4563.34 6.99 3477.26 7.29 
5 3345.41 4.46 5486.90 7.78 4474.92 8.44 
6 3674.26 5.08 6136.66 9.33 5203.67 8.74 
7 3838.36 5.54 6588.76 9.40 6251.83 9.67 
8 4288.08 5.67 7896.41 10.48 7897.18 9.94 
9 4502.70 5.78 8688.90 10.74 9885.39 10.31 
10 4905.83 6.57 8847.72 11.52 10129.65 12.30 
11 5333.95 6.72 10960.80 12.67 11503.03 13.64 
12 6403.21 7.45 11795.06 14.03 13000.71 16.28 
13 6632.90 7.71 11903.15 14.26 13385.68 19.19 
14 6668.29 8.65 14862.72 14.28 16495.74 22.14 
15 7099.98 9.65 17492.23 16.05 19955.22 22.43 
16 8274.93 9.74 18425.55 16.74 21066.75 26.85 
17 22025.83 10.97 21795.33 18.02 10155.05 29.35 
18 27761.52 12.21 23897.73 18.81 10501.62 29.47 
19 34586.40 14.09 24273.05 19.16 12773.15 30.29 
20 39355.69 14.63 27991.74 20.75 13281.68 30.77 
21 43236.27 17.55 31061.02 21.97 16271.26 32.29 
22 54018.09 17.55 35852.74 23.78 16429.16 37.77 
23 57117.39 20.30 45275.39 24.02 17943.59 38.45 
24 60508.85 22.57 45513.08 24.81 22741.41 40.14 
25 66017.66 25.94 55388.99 29.44 26456.97 47.90 
26 69115.22 28.71 55514.54 33.26 27849.32 53.44 
27 79909.27 32.51 65770.94 35.07 31052.89 62.27 
28 88587.27 34.21 74427.60 36.44 35068.75 63.40 
29 106617.39 38.45 76414.67 38.71 38289.81 71.96 
30 135009.47 44.78 82030.88 40.88 49593.33 77.39 
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Figure 5. Comparison of the performance of algorithms proposed in different 
dimensions in solution quality criterion 

 

Figure 6. Comparison of the performance of algorithms proposed based on 
computational time criterion 
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Figures 5 and 6 show the performance of the algorithms in the solution quality index and 
computational time. Regarding the solution quality index, the GA and AGA have an 
extremely better performance than SA and can attain a more efficient solution. However, the 
GA has the weakest performance in the time index and acted poorly in terms of time. The 
variance analysis test is used to evaluate the algorithms in this study statistically. First, the 
results obtained from the algorithms are normalized by the ratio of performance to deviation 
(RPD), which is calculated using the equation below: 

(20)                             𝑅𝑃𝐷!# =
345*+,(!#)67!8*+,(#)

7!8*+,(#)
 

Where i shows the number of the algorithm, j is the number of the problem, 𝑚𝑖𝑛9:4(𝑗) is 
the best solution obtained in the j-th problem and 𝐴𝑙𝑔9:4(𝑖𝑗) is the solution obtained from the 
i-th algorithm for the j-th problem. The results related to the assessment of the RPD index 
are shown in Figure 6, according to which the AGA has the best performance regarding the 
solution quality criterion and acted better than the other two algorithms. In addition, GA has 
a better performance compared to SA. According to Figure 6, SA and AGA have proper 
performance in terms of the computational time criterion. Meanwhile, the GA has the 
weakest performance, compared to the other two algorithms, in this regard. The poor 
performance of the GA can be related to the application of intersection and mutation 
operators in all iterations on all chromosomes. The AGA has greatly improved this weakness 
by eliminating the mutation operation in many iterations. 

 

Figure 7. Comparison of meta-heuristic algorithms based on RPD index 
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According to the present study results, population-based algorithms are generally more 
appropriate for solving layout problems. However, these algorithms need high computational 
times, which leads to a weakness in this respect. The results indicated the better performance 
of the SA in the computational time criterion compared to the GA. Therefore, we need an 
algorithm that has a performance similar to that of the GA, can achieve quality solutions, and 
is computationally acceptable. To this end, the GA was updated by upgrading the mutation 
operator, which led to the introduction of the AGA. According to computational results, the 
AGA achieved the best solutions in acceptable computational time. By considering unequal 
facilities, the present study solved a problem similar to a real-world issue. However, many 
other assumptions could be dealt with to get the problem closer to the real world. For instance, 
a definite flow matrix can be assumed, and flow between departments can be regarded as a 
random parameter with a specific probability distribution. It is suggested that further studies 
be carried out to optimize the layout of non-single floor spaces while considering constraints 
such as budget limitations.  
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