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Abstract—Diabetes is one of the main public health chronic conditions that are potentially reaching epidemic proportions 

globally. Worldwide, the occurrence of these types of diseases are increasing sharply at a worrying degree, with death of 

around 18 million people every year from cardiovascular disease, for which diabetes and hypertension are major predisposing 

factors. Two major concerns are that much of this increase in Diabetes is predicated to be happened in developing countries, 

with a growing incidence of Type 2 Diabetes (T2D) at a younger age including some obese children even before puberty. 

However, in developed countries most people with diabetes are above the age of retirement. As such, understanding the 

aetiology of T2D is vital. It has been thought that T2D is resulting from the convergence of genetics, environment, diet and 

lifestyle risk factors; however, genetic susceptibility has been established as a key component of risk. Genome-wide association 

studies (GWAS) is a study design and analytic tool specifically developed for investigating the genetic architecture of human 

disease. The ultimate aim of GWAS is to identify the genetic risk factors for common complex diseases such as T2D. Traditional 

parametric statistical approaches such as linear modelling framework (e.g. logistic regression) have limited power for modelling 

the complexity of genotype-phenotype relationship that is characterized by non-linear interactions. These nonlinear interactions 

are necessary in discovering the aetiology of complex diseases. More specifically, the linear modelling model has some 

limitations such as examining each single nucleotide polymorphisms independently for the association to the phenotype 

ignoring the epistatic (gene-gene interactions) and non-genetics factors. This paper presents a novel approch based on the use 

of backpropogation technique inspired by image compression algorithm. The proposed classifier is fine-tuned for binary 

classification to predict those who could suffer from the disease among those who do not.  Simulation results indicated that the 

proposed technique showed an area under the curve, true positive rate, true negative rate values of 0.92, 0.9 and 0.8 

respectively when using 2500 hidden neurons. 

Index Terms— Backpropagation, GWAS study, hierarchical neural networks, SNPs, Artificial Intelligence, genome, Type 2 

Diabetes, logistic regression.    
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1 INTRODUCTION 

iabetes has emerged as one of the main alarms to
human health in this century.

Type 2 Diabetes (T2D) is a multifactorial disorder and is 
the result of the complex interaction between genetic, 
environment and sedentary lifestyle [1]. T2D remains the 
leading cause of a serious long term health complications. 
It is responsible for most cases of blindness (Diabetic reti-
nopathy), kidney failure and lower limb amputation. 
Moreover, high glucose levels (raised blood sugar) or 
Hyperglycaemia in the bloodstream can damage blood 
vessels which increases the likelihood of atherosclerosis 
(cardiovascular disease) and stroke cases and can cause 
nerve damage [2].  

Until recently, T2D was recognised only in people who 
are over the age of 40 but currently children also are be-
ing diagnosed with this disease [3]. According to World 
Health Organisation (WHO)1, Diabetes is one of a leading 
cause of death (2.7%) worldwide. In 2012, WHO1 revealed 
that diabetes killed 1.5 million people in the world. 
Beyond the human suffering, in the UK, the annual cost 
of T2D to the National Health Service is approximately 
£8.8 billion for direct cost which includes diagnosis, life-
style interventions, management, complications, and on-
going treatment. In addition to that, there is an indirect 
cost that was estimated to be £13 billion, this includes 
mortality, sickness, reduced productivity among people 
who remain in work and informal care [4], [5]. Addition-
ally, the International Diabetes Federation (IDF)2 reported 
that approximately 12% of global heath expenditure is 
spent on diabetic people.     

The identification of genetic markers that show evi-

1 http://www.who.int/  
2 http://www.idf.org/about-diabetes/facts-figures
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dence of increase susceptibility to T2D and related traits 
will facilitate the translation of this genetic information to 
the clinical practice and may open up the opportunity to 
improve risk prediction of the disease and enable delay or 
prevention of disease onset and to reduce expenditures of 
cares.  
It has been thought that complex diseases such as T2D 
involve multiple genetics with their interactions [6], [7]. 
Moreover, these genetics factors do not act independently 
but also interact with other factors such as environment, 
sociodemographic and clinical factors. In [8] suggested 
that the traditional parametric statistical approaches such 
as linear modelling (e.g. logistic regression) have limited 
power for modelling the complexity of genotype-
phenotype relationship that is characterised by non-linear 
interactions. These nonlinear interactions are necessary in 
discovering the aetiology of complex diseases. More spe-
cifically, the linear modelling approach has some limita-
tions such as examining each Single Nucleotide Polymor-
phisms (SNP) independently for the association to the 
phenotype ignoring the epistatic and non-genetics factors. 
The  subset of SNPs that should be included in the analy-
sis requires to be evaluated among a list of thousands or 
probably millions of candidates SNPs using advanced 
techniques such as filtering algorithms or wrapper algo-
rithms [8], [9]. Consequently, these challenges of tradi-
tional approaches have led to search for alternative meth-
ods such as Artificial Intelligence (AI) methods and tech-
niques. AI has already been successfully applied to a 
wide range of medical applications trying to contribute to 
the prediction of risk susceptibility to T2D. In [10], re-
searchers considered generalised multifactor dimension-
ality reduction (GMDR) approach for detecting Gene-
gene interaction. The study identified 24 core SNPs that 
appear to be important to T2D. Another study [7] also 
investigated gene-gene interaction using lasso-multiple 
regression approach. Researchers found that the SNPs 
from genes CDKN2BAS and KCNJ11 are significantly 
associated to T2D. Random Forest for GWAS has been 
implemented in [11] for exploiting SNP correlations. 
Moreover, support vector machine (SVM) has been pro-
posed in [12] to investigate risk assessment related to spe-
cific traits. Furthermore, random forest [13], support vec-
tor machine [13], artificial neural network [14] were used 
to model complex relationships and interactions between 
features SNPs and their association to the phenotype.  
This paper proposes the use of backpropagation and hier-
archical neural networks for the detection of T2D Genome 
Wide Association Study (GWAS) data. The model is in-
spired by image compression hieratical neural network 
system for the utilisation of compressed SNPs to analyse 
nonlinear multilayered interactions of large numbers of 
genetic variants. 

Examining the literture review, it is should be noted 
that, this paper presents a novel approach of using back-
propagation algorithm inspired by image compression 
hierarchical neural network for the classification of type 2 
diabetes GWAS analysis.      

The remainder of this paper is organised as follows: 
The background study and related works are illustrated 

in Section 2. The network structure is described in Section 
3, while the simulations results are presented in Section 4. 
Sections 5 and 5 demonstrate the discussion and conclu-
sion of this paper, respectively.    

2 BACKGROUND AND RELATED WORKS 

2.1 Genome-Wide Association Studies 

Genome-wide association studies (GWAS) is a study de-
sign and analytic tool specifically developed for investi-
gating the genetic architecture of human disease [21]. The 
ultimate aim of GWAS is to identify the genetic risk fac-
tors for common complex and chronical diseases such as 
T2D, Schizophrenia, Epilepsy, Obesity, Cardiovascular 
Disease, and Hypertension [21], [15]. GWAS aims to find 
SNPs that occur frequently in individuals who are affect-
ed with a disease, than individuals that are unaffected 
with the disease.  
The availability of genotyping technology has facilitated 
rapid progress in genome wide association studies. These 
genotyping technology specifically designed for assaying 
more than one million SNPs for example to sequence the 
entire human genome within a single day [22]. Recent 
DNA sequencing technology is Next Generation Sequenc-
ing (NGS), which is  developed to provide tools to se-
quence DNA and RNA and to enable cost effective and 
rapid performance of sequencing genome in comparison 
to the previous one, Sanger sequencing  [22], [23], [24]. 
There are two essential platforms consistently utilised for 
GWAS, including Illumina and Affymetrix platforms [21], 
[29]. Each of these techniques has offered different ap-
proach to measure and detect genomic variation (alleles). 
Although, GWAS have significant impact on the area of 
human genetics, there are still challenges associated to 
computational and statistical methods causing issues 
when conducting such approach. These challenges in-
clude scalability, missing markers and complex traits [25]. 
GWAS datasets contains millions of SNPs with thousands 
of individuals therefore to perform GWAS, the algorithms 
should be extremely scalable to avoid consume huge 
amount of computational resources and to reduce the 
time that is used to conduct GWAS. In addition to that, to 
handle missing markers that is generated due to the ab-
sent of genetic variants availability as there are still many 
genetic markers that are not genotyped. One of the popu-
lar approach to handle missing markers is imputation 
method [26], which simply means to impute the unidenti-
fied markers by using the accessible SNPs databases such 
as the 1000 Genome Projects [27] and International Hap-
Map Project [28]. One of the GWAS successful features is 
to detect a single gene related phenotype traits. However, 
this approach may not be successful in finding SNPs as-
sociated with complex traits/diseases such as T2D. As 
complex traits are more likely to be affected by multiple 
genes rather than a single gene, and each gene of these 
multiple genes separately may have a weak association 
with the disease as such it would be extremely difficult 
for a SNP with low marginal effects to be identified using 
single-locus methods. Hence, alternative approach such 
as multi-locus analysis needs to be conducted [21].    



Complex diseases recognised to have a genetic compo-
nent and they do not follow a simple pattern of inher-
itance and therefore they could not be explained or ana-
lysed based on the inheritance patterns of single gene 
diseases. As such, association analysis has been consid-
ered and it is applied on a case/control dataset that con-
sist of a large number of unrelated samples, to detect ge-
netic markers that are more frequently appears in cases 
(affected) rather than in controls(unaffected). This high-
lights the common disease - common variant hypothesis 
[29] indicating that common diseases are probably influ-
enced by genetic markers that are relatively common in
the population. Under this hypothesis, phenotype associ-
ated alleles are more likely established through using
common genetic markers specifically SNPs that have been
detected to compare between affected and unaffected
samples. However, other researchers do not agree with
this hypothesis as they suggested that common diseases
would not be possible to be caused by common alleles
and rather they would be influenced by rare variants [30],
[33].

2.2 The Nurses’ Health Study and the Health 
Professionals Follow-up Study data sets 

The Nurses’ Health Study (NHS) cohort and the Health 
Professionals Follow-up Study (HPFS) are used in this 
study, which are provided by the Genotypes and Pheno-
types (dbGap) database [16].  
The NHS was established in 1976. Participants were 
121,700 female registered nurses between age 30 to 55 and 
residing in 11 U.S states. All nurses responded to mailed 
questionnaire requesting information related to their 
medical history and lifestyle characteristics. Since then, 
the Nurses have been requested twice a year to fill ques-
tionnaire and attain updated information (for instance 
information on newly diagnosed illness) [45]. All NHS 
members were requested to provide blood samples, in 
which 32,826 members responded. For T2D study, the 
cases and controls participants were selected from those 
who provided a blood sample. Cases participants were 
identified as those who have reported themselves to be 
affected by T2D and it was confirmed by a medical record 
validation questionnaire. Controls participants were de-
fined as those without diabetes. The NHS participants 
consist of 1581 T2D cases and 1854 controls. 

For the HPFS data set, a nested case-control study was 
completed in which data such as age and other clinical 
factors were collected through questionnaire before the 
blood draw in 1990. In this case, the diabetes status was 
self-reported and then confirmed with questionnaire to 
include 1338 control 1164 T2D cases.  

Diabetes was diagnosed by the National Diabetes Data 
Group criteria before 1998 and the American Diabetes 
Association criteria in 1998-2002 [17], [18] [19]. 

PLINK v1.07 and v1.9 [20] for Windows are used  to con-

duct data quality control (QC) and preliminary analysis. 
PLINK is a whole genome data analysis toolset which is 
developed for handling SNP data. PLINK data contains 
two files which include information associated to genetic 
data for each participant in the study as well as recording 
information related to participant’s phenotype features 
such as affected (case sample) and unaffected (control 
sample). 

The NHS and HPFS datasets are merged using PLINK 
(NHS and HPFS participants were genotyped using the 
Affymetrix Genome-Wide Human 6.0 array). Pre-
established quality control protocols was performed [33].  

Individuals QC: Discordant sex information (homozy-
gosity rate between 0.2 and 0.8) were found in which 14 
samples were removed from the dataset. Individuals with 
elevated missing data rates (genotype failure rate ≥ 0.05) 
and outlying heterozygosity rate (heterozygosity rate ±3 
standard deviations from the mean) were identified and 
131 individuals are discarded from the analysis. Identity-
by-descent (IBD) was estimated to remove duplicated or 
related individuals (IBD > 0.185). This resulted in eight 
individuals being excluded from the dataset. Individuals 
with divergent ancestry were identified using the 2nd 
principal component score < 0.061 resulting in 51 indi-
viduals being removed. 101 individuals were removed 
due to missing genotype data rate of 0.05.  

Genetic Markers QC: it should be noted that genetic 
markers (SNPs) were removed from the analysis when 
SNPs with excessive missing data rates were identified 
resulting in this case with the exclusion of 29 SNPs. An-
other, 116863 variants with missing genotype rate of 0.01 
and 178004 variants with minor allele frequency (MAF) < 
0.05 were eliminated. Furthermore, 2248 variants were 
removed due to Hardy-Weinberg Equilibrium (HWE) 
with p-value < 0.001 in control samples. Following the 
QC steps, there were 608342 markers with 0.961665 geno-
type rate in remaining samples. 

2.3 Analysis 

Logistic regression is performed to look at the association 
of all SNPs within our dataset for the binary classification 
to distinguish between case (value 0) and control subjects 
(value 1). In this case, standard case-control association 
analysis is performed  to extract information from unre-
lated white racial subpopulation which has allowed us to 
provide information about  the frequency of alleles or 
genotypes at genetic marker loci (SNP) to compare be-
tween cases and controls of the PLINKV.19 merged data 
of NHS and HPFS Datasets. Pearson’s Chi-squared test 
(𝑥2) is used to test the null hypothesis (no association). 

Logistic regression is utilised (as illustrated in Algo-
rithm 1) to statistically analysis genetic model. A p-value 
threshold of 10−2 is considered resulting in 6609 SNPs.  

Allelic association test has been performed to explore 
the association between single allele of the SNP and the 
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disease trait specifically for T2D among our dataset. 
Manhattan plot has been used to visualize the results of 
the association as represented in Figure 1. In this plot 
each dot represents a single SNP and the x-axis corre-
sponds to a chromosome location or number, while the y-
axis is the negative of the log of observed p-value of the 
SNPs. The smallest p-value has the strongest associations 
and it will appeared at the uppermost in Manhattan plot.   

Algorithm 1 Logistic Regression 

1: 

2: 

3: 

4: 

Let 𝑌 ∈ {0,1} a binary variable, 0 for control 
and 1 for status and Let 𝑋 ∈ {0,1,2} be a geno-
type at a particular SNP. 
Let 0, 1, 2 represent homozygous major 
allele 𝐴𝐴, heterozygous allele 𝐴𝑎 and ho-
mozygous minor allele 𝑎𝑎  respectively. 
Y = 1, IFF (𝑋) = 𝑃(𝑌 = 1|𝑋) 

𝑙𝑜𝑔𝑖𝑡(𝑋) = ln
𝜃(𝑋)

1 − 𝜃(𝑋)
𝑙𝑜𝑔𝑖𝑡(𝑋)~𝛽0 + 𝛽1𝑋

Fig.1. Manhattan Plot for Logistic Regression Analysis. 
Showing the SNPs that reached Bonferroni Level of Sig-
nificant, Red Line. 

3 NETWORK STRUCTURES 

3.1 Backpropagation Algorithm (BP) 

In this work, backpropagation learning algorithm for 
neural networks is used for the classification of cases and 
control T2D genetic data. The algorithm is also referred to 
as error-backpropagation. This algorithm can be used to 
train multilayer feedforward neural network using 
gradient descent. The learning algorithm was developed 
by different researchers independently. It was 
investigated by Werbos in 1974 [31], then by Parker in 
1982 [32] and rediscovered independently by Rumelhart, 
Hinton and Williams in 1986 [34]. An algorithm that is 
closely related was proposed by Le Cun [35]. 

Consider a neural network consisting of an output layer 
and a hidden layer. We refer to the input units by the 
index k, the output units by the index i, and the hidden 
neurons by the index j. 

Let the number of inputs to be M, the number of outputs 
to be N, and the number of hidden units is S. Let y 
represents the N-tuple outputs of the output layer, and x 
is the M-tuple inputs to the network. There are two sets of 
matrices representing the weights of the network. The 
weights matrix that connects the input neurons to the 

hidden layer is represented by 1
jkW and has MS 

elements. While, the weights matrix that connects the 

hidden layer to the output layer is referred to by 2
ijW and 

contains SN   elements. The biases of the network can 

either be represented separately in the neural network or 
by adding an extra input line of value one for each layer 
of the network. 
Now, if an input pattern p is given to the network, the 
hidden neuron j receives a net input nj determined as 
follows: 
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where f is usually a nonlinear transfer function and has to 
be differentiable. 
The output of the hidden layer is the input to the next 
layer which is the output layer in this case. Therefore, the 
net input to the output unit i is: 
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and the output unit i produces the following output 
value: 
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Notice that, the transfer function at the output layer can 
be different to the transfer function in the hidden layer. 
However, for simplicity we will assume that they are the 
same in all the layers of the network. 

Let 
p

id represent the target value of the output unit i 

when the input pattern p is represented to the input of 
the network. Then, the error produced at this unit is: 

p
i

p
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p
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The overall network error or the cost function per pattern 
is described by the following equation: 
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By substituting the output y, the above equation becomes: 
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The change in the weight that connect a hidden unit to an 
output unit is given by the following equation: 
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where  is a positive real value representing the learning 
rate, and 
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Therefore, the change in the weight of the output unit i is: 
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In order to update a weight that connects the input layer 

to the hidden layer, the chain rule can be used as follows: 
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This means that, we have: 
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where p
j is given as follows:
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The algorithm starts by initialising the weights and biases 
of the network to small random values. Then, the input 
patterns are presented to the network. In this case, the 
network calculates the output values produced at each 
layer. These outputs are used as inputs to the next layer. 
Once the external outputs are calculated, the error signals 
are determined. The error signals are propagated 

backwards to update the values of the weights matrix. 
This is the online training algorithm which can minimise 
the cost function for small values of the learning rate by 
following the local gradient.  On the other hand, batch 
training, where the weights are only updated when all 
input patterns are presented to the network, requires 
additional memory at each unit. Therefore, the online 
training is faster especially for a very large training set. 
Algorithm 2 summaries these steps involved in the 
backpropagation learning. 

 Algorithm 2 Backpropagation Algorithm 

1: 

2: 

3: 

4: 

5: 

6: 

Initialise the network by selecting small random 
values for the weights and biases of the network. 
Select an input pattern to be presented to the 
network. 
Calculate the output of each layer until the 
external output is determined. 
Compute the delta values for the output layer as 
demonstrated before. 
Compute the deltas for the proceeding layers by 
propagating the errors backwards. 
Determine the change in the weights and update 
the weights of the network for all layers of the 
network as follows: 

)t(w)t(w)1t(w ijijij 

3.2  Hierarchical Neural Network 

Namphol and Chin [38] proposed compressor and 
decompressor (CODEC), which is called Hierarchical 
Neural Networks (HNN) as illustrated in Fig. 2 for image 
compression. The system consists of three sections, which 
are the input-layer, the hidden-layer, and the output-layer 
sections. At the input layer section, there are M blocks 
corresponding to the number of nonoverlapped blocks of 
the image. Each block is constructed from P2 nodes, 
corresponding to the size of each block of the image. The 
hidden-layer section is constructed from the combiner, 
the compressor, and the decombiner. The first structure 
acts as a multiplexer to the input subblocks and contains 
less nodes than the number of neurons of the input layer. 
The second structure has less neurons than the combiner 
and its outputs represent the compressed data, which are 
stored for latter processing. The reconstruction of the 
compressed image involves decombining the stored data 
using the decombiner which acts as the demultiplexer. 
The output of the decombiner is forwarded to the output-
layer section in which the compressed image data is 
reconstructed. 
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Fig. 2. Hierarchical CODEC system [38]. 

The network has symmetric structure which allows it to be 

trained outside-in (i.e., the outer layers are trained first, then 

the inner layers are trained). The training procedure 

used Nested Training Algorithm (NTA) which is an extend-

ed version of backpropagation.    
In this case, the input training set to the network is defined 

as 

𝑋𝑡
[𝑚]

= {𝑥𝑡,1
[𝑚]

+ 𝑥𝑡,2
[𝑚]

, … . 𝑥𝑡,𝑝
[𝑚]

} (17) 

The output of the hidden layer is defined as 
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𝑥𝑡,𝑘
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where 𝑤𝑟,𝑘
[𝑚]

 is the weight from the k
th

 node of the input layer 

to the r
th

 node of the hidden layer. 

The output for the output layer is calculated as 

𝑦𝑡,𝑘
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= 𝑓 (∑ 𝑤𝑘,𝑟
[𝑚]

ℎ𝑡,𝑟
[𝑚]

+ 𝑏𝑘
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In our works, Hierarchical Neural Network is used as an 
unsupervised learning method [38], which was adapted 
to identify SNP interactions     

3.3 Evaluation and Validation 

Performance of the proposed BP inspired by the hierar-
chical neural network classifier is measured using a re-
ceiver operating characteristic curve (ROC) and measuring 
the area under the curve (AUC), along with various other 
performance metrics including;  true positive rate (TPR), 
true negative rate (TNR), Gini, Logarithmic Loss, and 
Mean Squared Error (MSE). The data is randomly divided 
into three smaller sets, 80% for training the models, 10% 
for tuning, and 10% to test the models performance.  

TPR and TNR are used to measure the positive and 
negative predictive capabilities of classifiers in binary clas-
sification settings.  

Furthermore, in this analysis the ROC curve is widely 
used to assess and compare classifiers performance.  ROC 
curve is a graphical plot to display the performance of a 
binary classification model. It is created by plotting the 
true positive rate (also known as sensitivity) against the 
false positive rate which can be represented as (1-
specificity). AUC value represents the probability of a 

correct classification as for the positive and negative in-
stances; the positive class will be ranked higher thus a 
higher AUC means a better classification. An ideal model 
would have a point in the upper North West corner of the 
ROC curve, which means that the model has accurately 
classified all people with T2D. In contrast, a model with 
random prediction performance will fall along the diago-
nal line of the ROC curve, in which TPR and FPR are 
equal over all different decision thresholds. The Gini coef-
ficient value can be derived from Area Under the ROC 
curve (AUC), where 𝐺𝑖𝑛𝑖 = 2 ∗ 𝐴𝑈𝐶 − 1. It represents the 
area between the ROC curve and the diagonal line, i.e. 
random prediction. The Gini coefficient is usually used in 
binary classification settings, Gini closer to 1 indicates 
higher learning rate.      
Logarithmic Loss (Logloss) is a classification loss function 
which measures the performance of a classification model 
where the prediction input is a probability value between 
0 and 1.  An ideal Logloss value would be 0, which is an 
indication of a perfect model that correctly classifies T2D 
from healthy individuals. 

The Mean Squared Error (MSE) is another performance 
metric measures the difference between actual values and 
the predicted values. MSE value closer to 0 denotes that 
the classification model is correctly classifies T2D from 
healthy individuals. 

BP inspired by HNN is used to discover the epistatic 
interactions between SNPs before it is fine-tuned for the 
classification of T2D and is benchmarked with the super-
vised Deep Learning (DL) classifier and Random Forest 
(RF) classifier model. This study specifies 400 trees to 
train RF models with a maximum tree depth of 40. For DL 
a RectifierWithDropout activation function is employed 
with a number of epochs is set to 100 iterations and four 
hidden layers with 10 neurons. Input dropout ratio set to 
0.1 and hidden dropout ratios for each layer set to 0.5. 
Early stopping is adopted using stopping metric set to 
Logloss and stopping tolerance and stopping rounds to 
1 × 10−2 and 5, respectively. The learning rate and mo-
mentum are experimentally revealed. The learning rate is 
configured to 0.005 with rate annealing, and rate decay is 
set to 1 × 10−6 and 1, respectively.  Momentum is set to 
0.5 with momentum stable to 0 and momentum ramp to 
1 × 106.   
For first iteration of HNN models (2500 hidden neurons), 
a RectifierWithDropout activation function is used, a 
number of epochs are set to 10 iterations and two hidden 
layers with 10 neurons. For the second (2500, 1500 hidden 
neurons) and third (2500, 1500, 700 hidden neurons) clas-
sifiers, a RectifierWithDropout activation function is 
used, a number of epochs are set to 10 iterations and two 
hidden layers with 20 neurons. For all HNN classifiers an 
adaptive learning rate is adopted with parameters ρ and ε 
set to 0.99 and 1 × 10−8  respectively. Simulation, visual-
isation and evaluation were carried out using H2O 
machine learning platform in R software environment. It 
should be noted that due to the large number of SNPs 
and big genetic data used for our machine learning algo-
rithms, all other types of machine learning algorithms 
failed to run. Subsections below describes the tuning pa-

1 2 P2 

1 2 P2 1 2 P2 

1 2 Nn 1 2 Nn 1 2 Nn

P2 2 1 P2 2 1 

P2 
2 1 
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1 2 M 

1 2 M 

Combiner 

Compressor 

Decombiner 



rameters applied with BP classifier model. 

Input dropout ratio parameter randomly specifies select-
ed neurons to be ignored during each of the training it-
erations to improve generalization process. While the 
Hidden dropout ratios parameter can randomly select 
neurons from each hidden layer to be ignored during 
each of the training iterations to improve generalisation 
process. The stopping metric parameter determines the 
early stop of training process when the model’s misclassi-
fication rate does not improve, while the stopping toler-
ance parameter allocating a threshold to stop training 
iterations when tolerance is crossed. The stopping rounds 
parameter quits the training in case the selection for stop-
ping metric does not enhance for a particular value of 
training iterations. Max w2 parameter is a maximum on 
the sum of the squared incoming weights into any one 
neuron. It is useful when activation function is set to Rec-
tifier. This help stability for Rectifier. The learning rate is 
a hyper-parameter measured as the difference between 
the forecasted and actual values to adjust training of BP. 
While rate annealing parameter is the inverse of the num-
ber of training samples that requires to trim the learning 
rate by 50%. Rate annealing cuts down the learning rate 
to freeze into local minima in the optimization concept. 
While the rate decay parameter controls the change of 
learning rate across layers. 

Momentum is a method to improve both learning speed 
and accuracy. There are three momentum attributes in-
cluding; momentum start, momentum stable, and mo-
mentum ramp. The momentum start is employed to con-
trol the amount of momentum at the start of learning pro-
cess. Momentum stable is utilized to regulate the amount 
of learning in which momentum increases. Finally, mo-
mentum ramp will control the final momentum value 
reached after momentum ramp training samples. 

4 SIMULATION AND DISCUSSION 

The results of examining the proposed model for the T2D 
data set is acquired using HNN and BP. In comparison, 
Deep Learning (DL) and Random Forest (RF) classifiers 
are used to benchmark the performance of combined 
HNN and BP (HNN+BP). This evaluation considers SNPs 
generated with a p-value threshold of 10−2  resulting in 
6609 SNPs. HNN uses these SNPs to extract the abstract 
representation of the features and to capture the non-
linear epistatic interactions between SNPs. The results 
based on several HNN iterations. The first HNN consists 
of 2500 hidden neurons while the second and third HNN 
use (2500, 1500), and (2500, 1500, 700) hidden neurons 
respectively. 

Table 1 illustrates the performance metrics of 
HNN+BP, DL, and RF for the validation set.  Metric val-
ues for the first HNN+BP (2500 hidden units), second 
HNN+BP (2500,1500), and third HNN+BP (2500,1500,700) 
were obtained using optimized F1 threshold with values 
0.3412, 0.3192, and 0.3474 respectively. The performance 
metrics for DL and RF were acquired using optimised F1 
threshold with values 0.37, and 0.5, respectively.   

TABLE 1 

PERFORMANCE METRICS FOR HNN+BP, DL, RF FOR VALIDA-

TION SET  

Metric
HNN+BP1 

(%) 

HNN+BP2 

(%) 

HNN+BP3 

(%) 

DL 

(%) 

RF 

(%) 

AUC 95.46 92.06 86.89 97.81 74.36 

TPR 93.09 90.90 86.18 97.09 91.63 

TNR 88.46 78.63 72.64 88.88 28.63 

Logloss 32.41 39.32 47.10 28.78 65.19 

Gini 90.93 84.13 73.79 95.62 48.72 

MSE 07.78 11.29 15.01 08.12 22.97 

HNN+BP1=2500 hidden units.  

HNN+BP2=2500,1500 hidden units.  

HNN+BP3=2500,1500,700 hidden units.  

Table 2 presents the performance metrics obtained us-
ing the test set for HNN+BP, DL, and RF. Metric values 
for the first HNN+BP (2500 hidden units), second 
HNN+BP (2500,1500), and third HNN+BP (2500,1500,700) 
were obtained using optimised F1 threshold with values 
0.2770, 0.4340, and 0.3424, respectively. The performance 
metrics for DL and RF were gained using optimized F1 
threshold with values 0.3683, and 0.515 respectively. The 
results are lower than those produced using validation set 
except for HNN (2500, 1500, 700) hidden units as 2.49% 
improvement is observed.  

TABLE 2  

PERFORMANCE MEASURE FOR HNN+BP, DL, RF FOR THE 

TEST SET  

Models AUC 

(%) 

TPR 

(%) 

TNR 

(%) 

Logloss 

(%) 

Gini 

(%) 

MSE 

(%) 

HNN+BP1 92.89 90.87 80.53 45.82 85.78 11.62 

HNN+BP2 89.50 85.47 79.77 47.61 79.01 13.91 

HNN+BP3 89.38 90.20 69.84 41.55 78.77 13.34 

DL 96.74 96.28 84.35 31.17 93.49 8.93 

RF 73.24 83.10 46.56 65.53 46.49 23.13 

The classification accuracy of HNN+BP shows a pro-
gressive deterioration as the input raw features are steadi-
ly compressed down to 700 hidden neurons using valida-
tion and test sets. DL classifier achieved comparable re-
sults to those produced using HNN (2500 compressed 
units) in the validation set. The results evidently show 
that HNN+BP outperforms RF classifier.      

Fig.3 presents the ROC curves for HNN, DL and RF 
models classifiers. Despite the gradual deterioration in 
the performance of HNN, the hierarchal neural network 
achieved accuracy values above 89% with 700 hidden 
units. This is significant in comparison to the RF which 
achieves accuracy value slightly higher than 73%. 
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(a) ROC for HNN 2500

(b) ROC for HNN 1500

(c) ROC for HNN 700

(d) ROC for RF

(e) ROC for DL

Fig. 3.  Performance ROC curves for the test set. (a) to (c) for HNN. 
(d) for RF. (e) for DL.

2 RATIONAL DISCUSSION 

Genetic association studies have significantly expanded 
the understanding of the genetic variants that cause pre-
disposing to complex human diseases. 
The last decade has seen a significant expansion in our 
knowledge of genetic variants associated with common 
diseases. Critical to this has been the ability to measure 
genetic variation at hundreds of thousands of markers 
across the human genome, in large numbers of individu-
als. Genome-wide association studies exploited these 
technological developments in large case-control studies, 
with unprecedented success to find the non-linear rela-
tionships exist in genotype-phenotype interactions as 
standard multi-variable statistical approach such as lo-
gistic regression is more suitable for capturing linear in-
teractions but not the epistatic interactions present among 
SNPs. This work focuses on detecting epistatic interac-
tions in high-dimensional T2D GWAS data. The selected 
set of SNPs is used for the binary classification of pheno-
types outcome, with the support of back prorogation al-
gorithm and hierarchical neural network.  

Using HNN, the results in the simulation process was 
tested to demonstrate a gradual deterioration as the 
number of features compressed down to 700 hidden 
units. However, the classification accuracy value of the 
700 compressed neurons remains reasonable with 89.38% 
in the test set. The best result obtained using 2500 com-
pressed units (AUC=92.89%, TPR=90.87%, TNR=80.53%, 
Logloss= 45.82%, Gini=85.78%, MSE=11.62%). 

RF and DL algorithms are used to benchmark HNN 
classification performance. RF is a prevalent method that 
is increasingly and successfully used in genetic studies 
[16], [23], [42], [43]. In this analysis, the result shows that 
using 6609 SNPs it was possible to achieve 73.24% classi-
fication accuracy. TPR and TNR are instable indicating 
that RF classifier has the low discriminatory capacity for 
this given dataset to separate cases and controls pheno-
types. In comparison, even though HNN showing trivial 
deterioration ranging from AUC=92.89% to AUC=89.38% 
these results remain significantly higher than what RF is 
achieved.  This is because, in HNN CODEC system, the 
multiple hidden layers compress the input features into 
abstract representations with modelling the complexity of 
non-linearity of genotype-phenotype interactions general-
ly observed in genetic data. This algorithm outperforms 
the traditional supervised classification models and offers 
a powerful way to enhance GWAS data analysis.      

Using 6609 SNPs to train DL it was possible to obtain 
high performance result of (AUC=96.74%, TPR=96.28%, 
TNR=84.35%, Logloss= 31.17%, Gini=93.49%, 
MSE=8.93%). HNN with 2500 compressed units (initially 
6609 SNPs) achieved less predictive accuracy than DL 
using (6609 SNPs), the results still comparable and signif-
icant for both models with AUC=92.89% for HNN and 
AUC=96.74% for DL. Obtaining high results despite the 
fact that the original data compressed gradually from 
6609 SNPs to 700 SNPs with a lower predictive accuracy 
of 89.38% is encouraging and demonstrate the potential of 



applying BP with HNN for the classification of type 2 
diabetes GWAS data.      

Fig. 4. Proposed BP with the HNN binary genetic data 
classification for T2D.  

Figure 4 illustates the proposed system which consists 
from a HNN that can reduce and compact the number of 
SNPS and the BP neural network structure which can 
perform the binary classification. While Table 3 provides 
summary about the parameter selections for our 
experiemnts.  

 TABLE 3 

SUMMARY OF THE PARAMETERS SELECTIONS FOR THE PRO-

POSED MODELS

Model No of 

Neurons 

for HNN 

Size DL Epochs f (x) 

HNN+BP1 2500 2 hidden 

layers 

with 10 

neurons 

10 max(0, x) 

HNN+BP2 2500 

then1500 

2 hidden 

layers 

with 20 

neurons 

10 max(0, x) 

HNN+BP3 2500 

then1500 

then 700 

2 hidden 

layers 

with 20 

neurons 

10 max(0, x) 

Momentum term and learning rates are experimentally deter-

mined. 

Table 4 shows various litreture review for the 
prediction of T2D using genetic data. Ban et al. [47] and 
Bae et al [37] looked at the used of SVM for the early 
prediction of T2D. Their results has indicated that SVM 
can generate reasnable acucracy using the korean cohort 
study and the T2D-gene consolutium data sets, 
respectively. Kim et al [39] looked at the use of the NHS 
and the HPFS data sets for the early prediction of T2D 

HPFS and the NHS data sets repectively, while our 
reesarch has shown AUC of 0.96 for the use of DL for a 
combined HPFS and NHS data set. 

TABLE 4 

THE PREDICTION OF T2D USING GENETIC DATA  AND MACHINE 

LEARNING ALGORITHMS 

Study Model P-
value 

AUC Sens Spec Data Set

Ban et. 

al. [47] 

SVM <0.6 0.65 56% 73% Korean 

cohort 

studies 

Bae et. 

al. [37] 

SVM  <10-6 0.89 - - T2D-GENE 

Kim et al 

[39] 

Deep 

NN 

<10-2 0.93 - - HPFS 

Kim et al 

[39] 

Deep 

NN 

<10-2 0.92 NHS 

Proposed 

model 

HNN1+ 

DL 

<10-2 0.92 0.90 0.80 HPFS+NHS 

This 

study 

DL <10-2 0.96 0.96 0.84 HPFS+NHS 

3 CONCLUSION 

This paper reports a comprehensive expermental study to 

explore a novel approach for classifying Type 2 diabe-tes 
genetics data. Backpropagation algorithm inspired by 
hierarchical neural network has been proposed and used 
for  identifying epistatic interactions and classification of 
high-dimensional GWAS data in T2D. The datasets which 
was used for this study is provided by the Genotypes and 
Phenotypes (dbGap) database. Various stringent quality 
control assessment steps followed by logistic regression 
association analysis adjusted GC are performed for sin-
gle-SNP analysis. Using 5393 T2D case-control samples, 
we achieved (AUC=92.89%, TPR=90.87%, TNR=80.53%) 
using 2500 compressed neurons.  

The results provided by this study is very encroaching, 
however, more improvement is required, by furthering 
the work of parameters tuning and optimisation of pro-
posed model to improve the classification results.  

The fact that we use p-value threshold to extract a 
subset of SNPs this is a standard and common way wide-
ly used in the literature, however, using this method there 
is a significant possibility to include redundant variables. 
Using Linkage Disequilibrium (LD) pruning method can 
reduce the number of redundant predictors.  

ACKNOWLEDGMENT 

The authors would like to acknowledge Khawarizmi In-
ternational College (Abu Dhabi, UAE) for the financial 
support for this research. The dataset(s) used for the 
analyses described in this manuscript were obtained from 
the database of Genotype and Phenotype (dbGaP) found 
at http://www.ncbi.nlm.nih.gov/gap through dbGaP 
accession number phs000091.v2.p1. The Nurses' Health 



10 

Study (NHS) and Health Professionals' Follow-up Study 
(HPFS) is part of the Gene Environment Association Stud-
ies initiative (GENEVA, http://www.genevastudy.org) 
funded by the trans-NIH Genes, Environment, and 
Health Initiative (GEI).  
The author will also like to give their appreciation for The 
University of Anbar, Iraq, for some experiments that was 
carried out by their staff.  

References 

[1] J. Gulcher and K. Stefansson, “Clinical risk factors,
DNA variants, and the development of type 2
diabetes.,” N. Engl. J. Med., vol. 360, no. 13, p.
1360; author reply 1361, 2009.

[2] S. E. Inzucchi, R. M. Bergenstal, J. B. Buse, M.
Diamant, E. Ferrannini, M. Nauck, A. L. Peters, A.
Tsapas, R. Wender, D. R. Matthews, American
Diabetes Association (ADA), and European
Association for the Study of Diabetes (EASD),
“Management of hyperglycemia in type 2
diabetes: a patient-centered approach: position
statement of the American Diabetes Association
(ADA) and the European Association for the
Study of Diabetes (EASD).,” Diabetes Care, vol.
35, no. 6, pp. 1364–1379, 2012.

[3] S. Fazeli Farsani, M. P. Van Der Aa, M. M. J. Van
Der Vorst, C. A. J. Knibbe, and A. De Boer,
“Global trends in the incidence and prevalence of
type 2 diabetes in children and adolescents: A
systematic review and evaluation of
methodological approaches,” Diabetologia, vol.
56, no. 7, pp. 1471–1488, 2013.

[4] N. Hex, C. Bartlett, D. Wright, M. Taylor, and D.
Varley, “Estimating the current and future costs of
Type1 and Type2 diabetes in the UK, including
direct health costs and indirect societal and
productivity costs,” Diabet. Med., vol. 29, no. 7,
pp. 855–862, 2012.

[5] S. P. Deng and D. S. Huang, “SFAPS: An R

package for structure/function analysis of protein

sequences based on informational spectrum

method,” Methods, vol. 69, no. 3, pp. 207–212,

2014.

[6] J. F. Xia, X. M. Zhao, J. Song, and D. S. Huang,

“APIS: Accurate prediction of hot spots in protein

interfaces by combining protrusion index with

solvent accessibility,” BMC Bioinformatics, vol.

11, 2010.
[7] M. H. Wanga, J. Li, V. S. Y. Yeung, B. C. Y. Zee, R.

H. Y. Yu, S. Ho, and M. M. Y. Waye, “Four pairs
of gene-gene interactions associated with
increased risk for type 2 diabetes (CDKN2BAS-
KCNJ11), obesity (SLC2A9-IGF2BP2, FTO-
APOA5), and hypertension (MC4R-IGF2BP2) in
Chinese women,” Meta Gene, vol. 2, no. 1, pp.
384–391, 2014.

[8] J. H. Moore, F. W. Asselbergs, and S. M. Williams,

“Bioinformatics challenges for genome-wide 
association studies,” Bioinformatics, vol. 26, no. 4, 
pp. 445–455, 2010. 

[9] T. W. T. C. C. Consortium, “Genome-wide
association study of 14 000 cases of seven common
diseases and 3 000 shared controls,” Nature, vol.
447, no. 7145, pp. 661–678, 2007.

[10] Z. Zhu, X. Tong, Z. Zhu, M. Liang, W. Cui, K. Su,
M. D. Li, and J. Zhu, “Development of GMDR-
GPU for Gene-Gene Interaction Analysis and Its
Application to WTCCC GWAS Data for Type 2
Diabetes,” PLoS One, vol. 8, no. 4, 2013.

[11] V. Botta, G. Louppe, P. Geurts, and L. Wehenkel,
“Exploiting SNP correlations within random
forest for genome-wide association studies,” PLoS
One, vol. 9, no. 4, 2014.

[12] Z. Wei, K. Wang, H.-Q. Qu, H. Zhang, J. Bradfield,
C. Kim, E. Frackleton, C. Hou, J. T. Glessner, R.
Chiavacci, C. Stanley, D. Monos, S. F. A. Grant, C.
Polychronakos, and H. Hakonarson, “From
disease association to risk assessment: an
optimistic view from genome-wide association
studies on type 1 diabetes.,” PLoS Genet., vol. 5,
no. 10, p. e1000678, 2009.

[13] López, B., Torrent-Fontbona, F., Viñas, R.,
Fernández-Real, J.M.: Single Nucleotide
Polymorphism relevance learning with Random
Forests for Type 2 diabetes risk prediction. Artif.
Intell. Med. 85, 43–49 (2018).

[14] Koo, C.L.C., Liew, M.M.J., Mohamad, M.S., Salleh,
A.H.M.: A review for detecting gene-gene
interactions using machine learning methods in
genetic epidemiology. Biomed Res. Int. 2013, 13
(2013).

[15] D.-S. Huang and X. Huang, “Improved

performance in protein secondary structure

prediction by combining multiple predictions,”

Protein Pept. Lett., vol. 13, no. 10, 2006.

[16] K. A. Tryka, L. Hao, A. Sturcke, Y. Jin, Z. Y. Wang,

L. Ziyabari, M. Lee, N. Popova, N. Sharopova, M.

Kimura, and M. Feolo, “NCBI’s database of

genotypes and phenotypes: DbGaP,” Nucleic

Acids Res., vol. 42, no. D1, pp. 975–979, 2014.

[17] M. C. Cornelis, L. Qi, C. Zhang, et al. Joint effects of

common genetic variants on the risk for type 2

diabetes in U.S. men and women of European 

ancestry. Ann Intern Med. 2009;150(8):541–550. 

[18] L. Qi, M. C. Cornelis, P. Kraft, et al. Genetic

variants at 2q24 are associated with susceptibility

to type 2 diabetes. Hum Mol Genet. 2010;

19(13):2706–2715.

[19] C. C.  Laurie, K. F. Doheny, D. B. Mirel DB, et al.

Quality control and quality assurance in

genotypic data for genome-wide association

studies. Genet Epidemiol. 2010; 34(6):591–602.

[20] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M.

A. R. Ferreira, D. Bender, J. Maller, P. Sklar, P. I.

W. de Bakker, M. J. Daly, and P. C. Sham,

http://www.genevastudy.org/


“PLINK: A tool set for whole-genome association 

and population-based linkage analyses,” Am. J. 

Hum. Genet., vol. 81, no. 3, pp. 559–575, 2007. 
[21] W. S. Bush and J. H. Moore, “Chapter 11: Genome-

Wide Association Studies,” PLoS Comput. Biol.,
vol. 8, no. 12, 2012.

[22] S. Behjati and P. S. Tarpey, “What is next
generation sequencing?,” Arch. Dis. Child. Educ.
Pract. Ed., vol. 98, no. 6, pp. 236–238, 2013.

[23] C. S. Pareek, R. Smoczynski, and A. Tretyn,
“Sequencing technologies and genome
sequencing,” J. Appl. Genet., vol. 52, no. 4, pp.
413–435, 2011.

[24] J. Xuan, Y. Yu, T. Qing, L. Guo, and L. Shi, “Next-
generation sequencing in the clinic  : Promises
and challenges,” Cancer Lett., vol. 340, no. 2, pp.
284–295, 2013.

[25] X. Zhang, S. Huang, Z. Zhang, and W. Wang,
“Chapter 10: Mining Genome-Wide Genetic
Markers,” PLoS Comput. Biol., vol. 8, no. 12, 2012.

[26] P. Fomby and A. J. Cherlin, “Fast and accurate
genotype imputation in genome-wide association
studies through pre-phasing,” vol. 72, no. 2, pp.
181–204, 2011.

[27] A. Auton, et. al., “A global reference for human
genetic variation,” Nature, vol. 526, no. 7571, pp.
68–74, 2015.

[28] T. International and H. Consortium, “The
International HapMap Project.,” Nature, vol. 426,
no. 6968, pp. 789–796, 2003.

[29] R. Shields, “Common disease: Are causative
alleles common or rare?,” PLoS Biol., vol. 9, no. 1,
pp. 9–10, 2011.

[30] E. T. Cirulli and D. B. Goldstein, “Uncovering the
roles of rare variants in common disease through
whole-genome sequencing,” Nat. Reniews Genet.,
vol. 11, pp. 415–425, 2010.

[31] P. Werbos, "Beyond Regression: New tools for

prediction and analysis in the behaviour sciences".

PhD. Thesis, Harvard university, 1974.

[32] D. B. Parker,. "Learning logic", Technical report

TR-47, centre for computational research in

economics and management science,

Massachusetts institute of technology, Cambridge,

1985.

[33] D.-S. Huang, L. Zhang, K. Han, S. Deng, K. Yang,

and H. Zhang, “Prediction of Protein-Protein

Interactions Based on Protein-Protein Correlation

Using Least Squares Regression,” Curr. Protein

Pept. Sci., vol. 15, no. 6, pp. 553–560, 2014.

[34] D.E., Rumelhart, G. E. Hinton, and R. J. Williams.

“Learning presentation by back-propagating

errors,” Nature, 323, pp. 533-536, 1986.

[35] Y. Le Cun, Une Procédure d’ apprentissage pour

réseau à seuil assymétrique. In cognitiva 85: A la

frontiére de l’intelligence artificielle des sciences

de la connaissance des neurosciences (Paris 1985),

599-604. Paris: CESTA.

[36] D. S. Huang and H. J. Yu, “Normalized feature

vectors: A novel alignment-free sequence

comparison method based on the numbers of

adjacent amino acids,” IEEE/ACM Trans.

Comput. Biol. Bioinforma., vol. 10, no. 2, pp. 457–

467, 2013.

[37] S. Bae and T. Park, "Risk prediction using

common and rare genetic variants: Application to

Type 2 diabetes", IEEE International Conference

on Bioinformatics and Biomedicine (BIBM), pp.

1757-1760. 2017

[38] A. S. H, . Namphol, M. Chin, Arozullah,  “Image

compression with a hierarchical neural network,”

IEEE Transactions on aerospace and electronic

systems, 32(1), pp. 326-337, 1996.
[39] J. Kim, M.J. Kwak and M. Bajaj, "Genetic

prediction of type 2 diabetes using deep neural
network", Clinical Genetics, pp. 822-829, 2018

[40] D. S. Huang, X. M. Zhao, G. Bin Huang, and Y. M.

Cheung, “Classifying protein sequences using

hydropathy blocks,” Pattern Recognit., vol. 39, no.

12, pp. 2293–2300, 2006.

[41] D.-S. Huang and C.-H. Zheng, “Independent

component analysis-based penalized discriminant

method for tumor classification using gene

expression data.,” Bioinformatics, vol. 22, no. 15,

pp. 1855–62, 2006.

[42] S. P. Deng, L. Zhu, and D. S. Huang, “Mining the

bladder cancer-associated genes by an integrated

strategy for the construction and analysis of

differential co-expression networks,” BMC

Genomics, vol. 16, no. 3, 2015.

[43] M. B. Kursa, “Robustness of Random Forest-based

gene selection methods,” BMC Bioinformatics,

vol. 15, no. 1, p. 8, 2014.

[44] P. Donaldson, A. Daly, L. Ermini, and D. Bevitt,

Genetics of Complex Disease. New York: Garland

Science, Taylor & Francis Group, 2016.

[45] J. Graffelman and B. S. Weir, “Testing for Hardy –

Weinberg equilibrium at biallelic genetic markers

on the X chromosome,” vol. 116, no. 6, pp. 558–

568, 2016.

[46] Y. Zhang, Y. Liu, Y. Liu, Y. Zhang, and Z. Su,

“Genetic Variants of Retinoic Acid Receptor-

Related Orphan Receptor Alpha Determine

Susceptibility to Type 2 Diabetes Mellitus in Han

Chinese,” Genes., 2016

[47] H.J. Ban, J.Y. Heo, K.S. Oh, K.J. Park, "

Identification of type 2 diabetes-associated

combination of SNPs using support vector

machine", BMC genetics, 2010.

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Kim%2C+J
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Kwak%2C+MJ
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Bajaj%2C+M
https://bmcgenet.biomedcentral.com/articles/10.1186/1471-2156-11-26
https://bmcgenet.biomedcentral.com/articles/10.1186/1471-2156-11-26
https://bmcgenet.biomedcentral.com/articles/10.1186/1471-2156-11-26

	NoticetoReadeforTCBB2878556
	tcbb-2878556-pp



