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Abstract—Chronic Kidney Disease is a serious lifelong condi-
tion that induced by either kidney pathology or reduced kidney
functions. Early prediction and proper treatments can possibly
stop, or slow the progression of this chronic disease to end-stage,
where dialysis or kidney transplantation is the only way to save
patient’s life. In this study, we examine the ability of several
machine-learning methods for early prediction of Chronic Kidney
Disease. This matter has been studied widely; however, we are
supporting our methodology by the use of predictive analytics, in
which we examine the relationship in between data parameters as
well as with the target class attribute. Predictive analytics enables
us to introduce the optimal subset of parameters to feed machine
learning to build a set of predictive models. This study starts
with 24 parameters in addition to the class attribute, and ends
up by 30% of them as ideal sub set to predict Chronic Kidney
Disease. A total of 4 machine learning based classifiers have
been evaluated within a supervised learning setting, achieving
highest performance outcomes of AUC 0.995, sensitivity 0.9897,
and specificity 1. The experimental procedure concludes that
advances in machine learning, with assist of predictive analytics,
represent a promising setting by which to recognize intelligent
solutions, which in turn prove the ability of predication in the
kidney disease domain and beyond.

Index Terms—Chronic Kidney Disease; Predictive analytics;
Machine learning;

I. INTRODUCTION

Chronic Kidney Disease (CKD) is a serious public health

condition worldwide that tied to unpleasant health outcomes,

particularly in low-to-middle income countries where millions

die due to lack of affordable treatment [1] [2]. CKD is a long-

term condition induced by damage to both kidneys. Kidney

damage refers to any kind of kidney pathology that gives

the possibility to reduce the capacity of kidney functions,

particularly the reduction in glomerular filtration rate (GFR)

[4]. Kidneys have millions of tiny blood vessels work as

filters to remove waste products from the blood. In some

instances, this filtration system breaks down and kidneys lose

their ability to filter out waste products, which results in kidney

disease. There is no single underlying cause to CKD, but the

deterioration is commonly irreversible and can lead to serious

health problems. In the past decade, the US National Kidney

Foundation’s Kidney Disease Outcomes Quality Initiative has

established the first guideline that defined CKD, regardless of

the cause, as based on 3 or more months of either kidney

damage (pathologic abnormalities, or imaging abnormalities)

or GFR rate <60 mL/min/1.73 m2 [3].

The mean prevalence rate of CKD in both of US and Europe

is about 11% [4]. The economic burden of CKD to health

care systems is enormous, and tends to increase because of

aging populations and elevated prevalence of Type 2 diabetes

[5]. Between 2011 and 2012, there were about 1.9 million

adults with CKD in England as registered in the Quality

Outcomes Framework (QOF). However, the prevalence of

category G3-G5 CKD in England has been anticipated to

6.8%, which equates to 3 million individuals [6]. The overall

annual cost of CKD to the UK National Health Service (NHS)

is estimated at about £795 for every patient diagnosed with

CKD and recorded in the QOF; this is equivalent to 1.44 to

1.45 billion a year [5]. Early detection and treatment of CKD

can possibly slow or stop the progression of kidney disease

[1] [4]. Identifying people with CKD in early stage will help

reduce the risk of end-stage renal disease (ESRD) [5].

Epidemiology discloses relationships between the develop-

ment of CKD and many other clinical characteristics. Fac-

tors that can influence the development of CKD consist of

genetics, diabetes, hypertension, and ageing [4]. In general,

a nephrologist uses two tests to check for CKD, blood test

and urine test. The blood test measures how well kidneys are

filtering the blood to remove creatinine, which is a normal

waste product of muscle breakdown. The urine test, on the

other hand, can show the existence of protein in the urine.

Protein in particular (albumin) is a component of the blood

that does not normally pass through the kidney filters into the
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urine. If urine test reveals the existence of albumin, it means

that the kidney filters are damaged and may reflect Chronic

Kidney Disease.

This study uses CKD data set donated by Apollo Hospitals,

India that available online at the UCI machine learning reposi-

tory [5]. Using this data, we aim at (a) examine the correlation

between predictors (i.e. input parameters) and the development

of CKD using predictive analysis approaches. This will enable

us to reduce the number of required parameters to predict the

occurrence of CKD as well as eliminate redundant and noisy

parameters. (b) Examine the capability of using one of the two

tests for the prediction of CKD, either blood test or urine test,

and then measure its accuracy and applicability. (c) Employ

machine learning methods to early prediction of CKD using

the most relevant and representative parameters.

This paper is organised as follows. Section II presents the

data and its processing methods, which starts from handling

extreme values to the use of predictive analytics for selecting

optimal subset of parameters. Section III builds four predictive

models for CKD and examine them using a number of

performance matrices. Section IV discusses key differeances

between models and concludes the study. Limitations is given

in Section V.

II. MATERIALS AND METHODS

A. Data

The CKD data set consists of 24 parameters (i.e. predictors)

in addition to the binary class attribute. As illustrated in

table 1, parameters are distributed as three main groups.

Parameters extracted from blood serum chemistry and blood

haematology tests, which is about 41.7%. Parameters derived

from urine test represent about 29.15%. The last group of

parameters includes general information about other clinical

factors that may induce CKD and represents 29.15%. Total

number of records in this data set is 400, in which 62.5% are

for patients diagnosed with CKD, while other 37.5% are for

healthy individuals. There are 12 numerical parameters, two

categorical with five levels, while the remaining parameters are

binary and been coded as zero for normal instances and one

for abnormality. CKD data set is a raw data and we therefore

consider a number of data processing techniques before prior

to analysis and the development of predictive models.

B. Extreme values

Extreme values or outliers are extreme data points that

located away from other members of a given data cluster

[8]. In CKD data set, outliers may be arise because of errors

or a natural variance of data. These extreme data points

usually increase the variance of data and influence the normal

distribution assumption that is required for parametric analysis

[9]. Researchers usually use boxplots as an easy way of visual

inspection to detect outliers; however, we have employed

the following mathematical notation using interquartile range

(IQR) to identify extreme data points in CKD.

TABLE I: DATA DESCRIPTION

Parameters Measurement Missing Percent
Glucose Num. (mg/dL) 44 11

Urea Num. (mg/dL) 19 4.8

Creatinine Num. (mg/dL) 17 4.3

Sodium Num. (mEq/L) 87 21.8

Potassium Num. (mmol/L) 88 22

Haemoglobin Num. (g/dL) 52 13

Packed Cell Volume Num. 71 17.8

White Blood Cell Count Num. (cells/mcL) 106 26.5

Red Blood Cell Count Num. (m.c./mcL) 131 32.8

Specific Gravity Num. (1.002-1.030) 47 11.8

Urine Glucose Category (0-5) 49 12.3

Albumin Category (0-5) 46 11.5

Bacteria Binary 4 1

Red Blood Cells in Urine Binary 152 38

Pus Cell Binary 65 16.25

Age Num. (years) 9 2.3

Hypertension Binary 2 0.5

Blood Pressure Num. (mm/Hg) 12 3

Diabetes Binary 2 0.5

Coronary Artery Disease Binary 2 0.5

Appetite Binary 1 0.25

Pedal edema Binary 1 0.25

Anemia Binary 1 0.25

Ext. values =

{
Points > Q3 + 1.5 (IQR)
Points < Q1− 1.5 (IQR)

(1)

Where Q1 is the first quartile, Q3 is the third quartile,
and IQR = Q3 − Q1 [9]. We have three main option

to handle outliers, (a) keep and handle them just like any

other data points. (b) Remove them from data sample, and

(c) modify them to the next highest or lowest values within

the distribution that are not suspected to be outlier. Modifying

outliers is the recommended method [9], in particular with

CKD data set as the data points are most likely to be legitimate

data points. Therefore, we have decided to modify extreme

outliers only, which represent 0.24% of the total data points.

We believe that modifying this tiny amount of extreme outliers

would not have a noticeable impact on the statistical inference,

while it would make these extreme data points closer to the

population sample. Ghosh and his colleague in [10] have

reported that modifying up to 2.5% of outliers would probably

maintain characteristics of the data and would not adjust

the distribution considerably. Furthermore, this process has

dropped the skewness of the following parameters, blood

pressure by 66%, blood glucose by 12%, blood urea by 24%,

and serum creatinine by 65%.

C. Incomplete cases

Incomplete cases or missing values is one of the popular

problems in real-world data sets, and especially in medical data

[21]. Approximately 45% of all data sets in the UCI online

machine-learning repository have some forms of missing as
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reported by Tran and his partners [11]. Table 1 reveals the

mount of incomplete cases to CKD data parameters. We

can observe that incomplete cases vary from a parameter

to another. It starts as little as 1%, and reaches 38% for

red blood cells (rbc) parameter. Incomplete cases can cause

serious concerns for the development of predictive models,

including the non-applicability of several machine-learning

(ML) methods to data with incomplete cases [9]. Even though

some ML methods can handle this type of data by ignoring

them, however the majority cannot. Thus, waste of data

and fundamental learning errors are presumably take place.

Therefore, the first step toward valid predictive models is to

address incomplete cases.

So let us represent CKD data set as a matrix N × P that

contain data values of P parameters for all N participants. A

parameter P = (P1, P2, ..., Pj), where j is the dimension of
data set (i.e. 400). The complete cases (i.e. observed values) in

certain parameter Pi are collectively denoted as P
obs
i , while

incomplete cases (i.e. missing values) of Pi are collectively

denoted as Pmiss
i . Hence P = (P obs

i , Pmiss
i ). In this study,

we use multiple imputations (MI) method [12] to handle

incomplete cases of parameters that meet our threshold of

missingness according to the following equation [9].

∀ Pi ∈ P =

{
Impute, Pmiss

i < R
Ignore, otherwise

(2)

In this context, we will discard any data parameter Pi that

has incomplete rate of greater than or equal to R, where
R = (1/5)N or 20% of the whole population. Consequently,

five parameters have been ignored and will not been involved

in the development of predictive models. Theses parameters

are sodium, potassium, red and white blood cells count, and

finally red blood cells in urine. The method of ignoring

parameters with incomplete rate of greater than or equal to R is
proposed and discussed in our previous work [9]. In general,

MI uses regression analysis to fill a model for incomplete

cases on a multivariate basis, where MI treats parameters with

incomplete cases as outcomes and the rest of parameters as

predictors. MI is a sophisticated approach that perceives the

uncertainty related to imputation process.

In MI method, the imputation process repeats m times,

in this study we have specified m = 5. This generates
five complete data sets and variations between imputed sets

represent uncertainty in the imputation process. Finally, we

analysis imputed sets separately to generate multiple analysis

results (i.e. estimates such as mean, slandered deviation, and

regression coefficients) using following equations [12].

Q̄ =
1

m

m∑
i=1

Q̂(i) (3)

T = Ū +

(
1 +

1

m

)
B (4)

B =
1

m− 1

m∑
i=1

(
Q̂(i) − Q̄

)2

(5)

Ū =
1

m

m∑
i=1

U (i) (6)

For m imputed sets, the estimate Q and the estimated

total variance T are calculated as described in equation

3 and equation 4 respectively [13]. Where Q̄ is the final

combination of estimate Q, and Q = (Q1, . . . , Qk), which
is the factor to be estimated with k elementns.In addition,

Q̂(i) =
(
Q̂

(i)
1 , . . . , Q̂

(i)
k

)
is the estimated factor using ith set of

imputed data, where i = (1, . . . ,m). B and U are respectively

the between-imputation and the average within-imputation of

CKD data. Finally, U (i) is the estimated covariance matrix of

Q̂(i) [13].

D. Analysis

In this section, we employ predictive analytics methods to

examine relevance of input parameters to class attribute, as

well as association between parameters themselves. This is a

fundamental point toward an effective and valid prediction of

CKD. Typically, the stronger the relevance of a parameter to

the class attribute means that this parameter is necessary for

an optimal learning performance and predication. Conversely,

parameters with weak relevance may not be important for the

learning procedure, and we can discard them as noisy param-

eters. However, strong association between two parameters

indicates the existence of redundant data that can be elimi-

nated to reduce the number of input parameters. Therefore,

it is worthwhile to analyse input parameters to define their

discriminatory power in the prediction of CKD in the early

stage. This step enables us to understand the level of overlap

between CKD and healthy individuals with respect to certain

parameter.

1) Parameters derived from blood tests: After declaring

personal and family history, the first step toward the diag-

nosis of CKD doctor’s take is usually to order blood serum

chemistry test to measure kidneys function through the level

of waste products such as creatinine and urea in the blood.

There are many other parameters within blood test that can

be used as indicators of high risk of CKD such as level of

blood glucose, haemoglobin, and haematocrit (i.e. packed cell

volume (PCV). In this section, we measure the correlation

between these parameters using different statistical test such

as Pearson’s correlation, Chi-Square test for association, or

analysis of variance (ANOVA). The main aim is to identify

any correlation and its significant values to understand the

relationships between these parameters as well as to verify

the likelihood of redundant parameters.

Pearson’s correlation test has revealed a strong positive

relationship between creatinine and urea. The correlation co-

efficient of these two waste products was 0.801 at a signif-

icant level of 0.01. Creatinine is a waste product of muscle

catabolism of creatine phosphate [14]. Although creatinine

level can be raised by many factors such as age, sex, ethnicity,

diet rich in proteins and muscle mass, which in turn influences

GFR itself as a biomarker [4]. However, it remains the most
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prescribed analyses to estimate the GFR [14]. On the other

hand, urea is the main nitrogenous waste product of protein

and amino acid catabolism. The use of urea as indicator of

kidney function might not be accurate enough to influence

GFR. In fact, GFR has to decline by around a half before urea

level increases above the upper limit of the reference range as

stated in medical literature [15]. Therefore, urea seems to be

insensitive pointer of reduced GFR, and therefore cannot be

used for an early predication of CKD. As shown in figure 1, we

have scattered urea values by creatinine levels and can clearly

observe the correlation between them. Values of these two

parameters for healthy individuals are squeezed in the lower

left-hand side, where values between 5 and 50mg/dL for urea
and mostly less than 3mg/dL for creatinine. Consequently, we
discard the use of urea as a predictor because it is a redundant

parameter according to the correlation test as well as it is not

sufficient for early prediction of CKD.

Fig. 1: Creatinine and urea in blood by class attribute.

Similarly, we have notes that the correlation between

haemoglobin and PCV is 0.883 at a significant level of

0.01. This is a strong positive correlation as presented in

figure 2, where values of these two parameters for healthy

individuals aggregated at the top right-hand side of the scatter

plot. Haemoglobin is a complex protein located in red blood

cells, which contains an iron molecule. The primary role of

haemoglobin is to deliver oxygen from the lungs to the body

cells, and to substitute the oxygen for carbon dioxide. Accord-

ing to the Scottish Intercollegiate Guidelines Network (SIGN)

[4], the kidney creates less erythropoietin gradually with the

progression of CKD and patients can become anaemic. In

addition, estimates reveal that one-third of males and two-

third of females in stage 4 of CKD have a haemoglobin level

below the normal range.
PCV is the volume percentage of red blood cells in blood,

which increases with a rise in the quantity of red blood

cells or a decline in the plasma volume. Haemoglobin and

PCV might indicate that a patient has anaemia (figure 3),

which is one of the indicator toward kidney failure. As can

be observe in figure 2, the majority of patients with CKD

(86%) recorded values of haemoglobin less than 13 g/dL,

Fig. 2: PCV and haemoglobin in blood by class attribute.

compared to 0.66% of healthy individuals. Likewise only 6%

of healthy individuals registered PCV level of below 40%,

compared to 82.8% of patients with CKD. Moreover, ANOVA

test with 95% of confidence interval has revealed a significant

correlation between anaemia and both of haemoglobin and

PCV at p < 0.001. Figure 3 illustrates the clear influence
of anaemia on levels of PCV and haemoglobin. Based on

these findings we can consider that the existence of PCV and

anaemia parameters are redundant, which can be dispensed

and thus dependence on the haemoglobin factor for early

prediction of CKD.

Fig. 3: The influence of anaemia on PCV and haemoglobin.

The final parameter in the blood test of CKD data is

glucose; there is a small overlapping area between healthy

individuals and patients with CKD as shown in below boxplot.
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Although 2% of healthy individuals reported blood glucose of

140, compared to 57.2% of patients with CKD that reported

blood glucose of 140 and higher. However, the overlapping

area affects the correlation of blood glucose with the class

attribute, which recorded at 0.427. Conversely, blood glucose

appear to be strongly correlated to urine glucose with about 0.7

of correlation coefficient at significant level <0.001. Glucose

levels in both of blood and urine are indicators of diabetes

(0.520 at significant level <0.001). Therefore, it is not wise to

use all three parameters together for predictive models, where

using one of them is sufficient while others are redundant

parameters.

Fig. 4: Blood glucose of patients and healthy individuals.

2) Parameters derived from urine tests: Urine test can

expose abnormalities that indicate to, and help to identify

reasons of CKD. A 24-hour urine test reveals the amount of

urine produced by kidneys. This provides a precise evaluation

of how well the kidneys are functioning, as well as the amount

of protein leaks from kidney’s filter into the urine in a single

day [16]. Six parameters are included within urine test section,

namely specific gravity, urine glucose, albumin, existence of

bacteria, pus cell, and pus cell clumps. Approximately, 80% of

patients with CKD have recorded specific gravity of 1.015 and

lower, whereas less than 1% of healthy individuals recorded

same values. Specific gravity is one of the parameters that

significantly correlated to class attributes, -0.720 at significant

level of < 0.001.

We have discussed urine glucose parameters and its associa-

tion to blood glucose and diabetes in the previous sub section.

Moving on to albumin parameter, measuring albumin level in

urea is essential for the diagnosis of kidney diseases, since it

is proven risk factor for mortality of end-stage kidney disease

in individuals having diabetes [17]. In CKD data, 99.3% of

healthy individuals have a normal level of albumin, compared

to 25.6% of patients with CKD at normal level. Moreover,

albumin has a significant correlation to class attribute, 0.603

at a significant level of <0.001. Conversely, pus cells does not

show a strong influence on class attribute. Although it is a sign

Fig. 5: Urine specific gravity.

of bacterial infection within the kidneys or bladder, however

with correlation coefficient of 0.322, pus cells parameter

may add less information to the end model. Similarly pus

cell clumps parameter does not have a noticeable effect on

class attribute with correlation coefficient of 0.265. It is not

presented in about 83% of patients with CKD and 97% of

healthy individuals. Pus cells and pus cell clumps parameters

are both indicators of bacterial infection, where the existence

of bacteria in urine as a parameter also does not show a

significant contribution toward predicting class attribute. A

correlation coefficient of bacteria parameter to class attribute

is 0.187.

3) Other influencing parameters: Starting with age param-
eter, which is one of the factors that influence CKD. According

to SIGN [4], CKD is observed more often in elder individuals

and therefore is likely to increase the affected population as

a whole. As shown in figure 6, the risk of developing CKD

starts between 30 and 40 years of age, then sharply increases

to reach its peak at about 60 years. ANOVA has revealed that

there is a difference in the means age of population between

patients with CKD and healthy individuals at significant level

of <0.001. However, with a correlation coefficient of 0.215,

age parameter does not appear to have a strong influence on

class attribute.

High blood pressure is quite popular in CKD and repre-

sents a primary focus for intervention to prevent progression

[4]. Jafar and other in [18], have reported that a systolic

blood pressure of >130 mmHg is significantly related to

the development of CKD. In our data set, 34% of patients

with CKD have reported a blood pressure of between 90 and

120 mmHg, while none of healthy individuals have recorded
similar values. The correlation between blood pressure and

class attribute is less than 0.3, which makes this parameter a

weak for prediction of early stage of CKD. This is mainly

because comparable quantities of patients have recorded a

blood pressure of same levels. For example, about 29% of

patients with CKD and 25.5% of healthy individuals have
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Fig. 6: Age distribution.

registered a blood pressure at 70 mmHg. Blood pressure can
be an indicator of hypertension that has been collected as a

binary parameter, i.e. presence or absence. However, with a

correlation coefficient of 0.270, there is no significant influence

between them. Conversely, we noticed a good correlation

between hypertension parameter and class attribute, where

none of healthy individuals have hypertension, compared to

41% of patients with CKD.

The prevalence of coronary artery disease (CAD) between

patients with CKD is 13.6%, which is not a considerable to

some extent to be considered for early prediction of CKD.

Likewise for appetite parameter and pedal edema. The pres-

ence of coronary artery disease, appetite, and pedal edema was

limited to a very small amount of patients, which reduces their

ability to influence class attribute.

E. Optimal subset of parameters

In this stage, we get to choose the final sub set of parameters

to create predictive models using a set of machine learning

methods. As explained in figure 7, we started this study

with 24 parameters and end up with 7 most informative

and representative sub set of parameters. We have selected

these 7 parameters by investigating their correlation to each

other as well as to class attribute using different statistical

methods. We have also identified threshold of correlation

as a minimum boundary of parameter selection, by which

we eliminate parameters with correlation coefficient of less

than 0.300. Accordingly, the optimal subset of parameters

includes haemoglobin, specific gravity, albumin, hypertension,

blood glucose, creatinine, and pus cells. Moreover, we have

employed a wrapper approach to confirm the selection of

the final sub set of parameters. A majority vote of three

machine-learning classifiers, i.e. random forest, support vector

machine and logistic regression, has approved this selection as

an optimal, representative sub set for predication of CKD.

III. PREDICTIVE MODELS FOR CKD

As a final step before initialising predictive models, we

normalised data to get all the seven parameters on the same

level of measurement. Normalisation prevents parameters to

Fig. 7: Parameters selection procedure.

overwhelm each other and enhance machine learning ability

to measure similarities and distances between instances, and

thus discover patterns in data. Moreover, Jin and others [19]

have reported that normalised data are remarkably increasing

the training speed of neural network. In this paper, we have

employed a min-max normalisation method, which rescale

parameters to be between 0 and 1 as formulated in the

following equation [20].

xn =
x− xmin

xmax − xmin
(7)

where x is a certain value to be normalised, xmin and xmax

are the minimum and maximum observed values of a given

quantitative attribute Pi, xn is the normalised value of x, and
x, xmin, xmax ∈ Pi.

Now we reached the stage of assessing the capability of

several machine learning (ML) methods for early prediction of

CKD. The involved ML methods are classification and regres-

sion tree (RPART), support vector machine (SVM), logistic

regression (LOGR) and multilayer perceptron neural network

(MLP). We compare the overall performance of these ML

methods using a number of performance matrixes including

sensitivity (TPR), specificity (TNR), precision (PPV), and

classification accuracy (ACC). The evaluation includes ROC

curve analysis and measuring area under the curve (AUC),

required time to build predictive models as well as overall

error rate (ERR). Using holdout method, we have randomly

divided the data set into 60/40 percent for training and testing.

The evaluation results of the predictive models for early

prediction of CKD presented as follows. Table 2, lists experi-

mental results of each model in terms of the six performance

matrices, in addition to the overall error and required training

time. Figure 8, provides a visual assessment of sensitivity,

specificity and classification accuracy of ML methods. Figure

9, demonstrates the AUC values resulting from ROC analysis,

PPV along with F1 measure as a harmonic mean of precision

and sensitivity.

It is apparent that all of the predictive models have yielded

considerably good results in predicting CKD, in which the
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highest sensitivity was 0.9897 and has jointly achieved by

MLP and LOGR models, followed by SVM and then RPART

model. LOGR and MLP models have shown similar per-

formance over nearly all of the performance matrices, with

exception of the AUC, where MLP achieving the highest AUC

values of 0.995. Although RPART model has obtained the

highest specificity, however it was also the less sensitive to

predict CKD. MLP and LOGR models were more stable with

respect to performance analysis then RPART and SVM, and

they are both showing lowest overall error rates.

Fig. 8: Sensitivity, specificity, and accuracy.

Fig. 9: Precision, F1, and Area under the ROC curve

According to the F1 score, as a harmonic mean of sensitivity

and precision, RPART overcomes SVM that came at the

end of the list, while the highest F1 score was 0.984 and

shared between MLP and LOGR models. The ROC plot, i.e.

TPR against 1-TNR, (figure 10) demonstrates the similarity

in the performance profile with a few exceptions, while

precision/recall curve (figure 11) shows some differences in

predictive models behaviour. On this curve, SVM was clearly

the least performed model, followed by LOGR model. The use

of precision/recall curve is a common way to assess predictive

Fig. 10: Sensitivity, specificity, and accuracy.

Fig. 11: Precision, F1, and Area under the ROC curve

models as it express and plots both of type 1 and type 2 errors

(α and β respectively). Despite MLP and RPART models

showing an identical performance on precision/recall curve.

However, RPART model showing slightly higher type 1 error,

which makes MLP predictive model superior over this curve.

This what we could not see clearly over the ROC curve.

IV. DISCUSSION AND CONCLUSION

To investigate ability of machine-learning, supported by

predictive analysis, for early predication of CKD, an exper-

imental procedure has undertaken in this study, considering

a dataset collected from Apollo Hospitals—India, containing

400 instances. Two class labels used as targets in the study (i.e.

patients with CKD and healthy individuals), over which four

machine-learning methods were simulated. The classification

and regression tree, i.e. RPART model, showing considerably

good result. It uses the ratio of information gain for splitting

criterion, where the optimal spilt would decrease impurity of

resulting subsets. In this study, RPART stopping criterion of

splitting was five, which means that next split will not occur
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TABLE II: Predictive power of MLs

ML methods TPR TNR PPV ACC F1 score AUC Overall error Time(milliseconds)
RPART 0.9339 1.000 1.000 0.956 0.965 0.982 4% 10

SVM 0.9892 0.8955 0.9292 0.950 0.958 0.973 5% 30

LOGR 0.9897 0.9677 0.9797 0.981 0.984 0.994 2% 50

MLP 0.9897 0.9677 0.9797 0.981 0.984 0.995 2% 40

unless there are five instances in a leaf node. Furthermore, we

have identified an equal prior probability for class attribute.

RPART predictive model for early predication of CKD consists

of seven terminal nodes.

In this experimental procedure, we have applied two black-

box models for early prediction of CKD, i.e. SVM and MLP

models. A 7-7-1 MLP neural network architecture shows the

highest AUC of 0.995 and TPR of 0.9897. The output of

MLP model is somewhat difficult to express in comparison

with RPART or LOGR models. LOGR model allows a simple

calculation of the probability of prediction using the regression

equation. When MLP requires connection weights of 71 to

predict CKD in early stage, LOGR requires only 7 coefficients

to predict the same output. MLP model uses a computational

intensive back propagation algorithm to adjust connection

weights and identify the ideal set of weights and bias values

to predict CKD, while minimising error rate. SVM model, on

the other hand, is one of the binary classification models using

kernel-based learning methods. For this research, a degree

2 polynomial kernel has been employed for predication of

CKD in early stages. With 16 support vectors, MLP creates

a decision boundary in features space, wish is also known as

hyper-plane, the ideal decision boundary should maximise the

margin between healthy individuals and patients with CKD for

an optimal predication.

Results showed that the highest AUC and TPR have

achieved by MLP model, while the highest TNR of 1.00 has

obtained by RPART model. Although RPART model can be

interpreted as sets of decision rules. However, the main down-

side of RPART model is considering a single parameter at each

splitting process, whereas takes into account combination of

parameters could lead to better predication of CKD. Moreover,

MPL model showing lowest type 1 error, which makes her

the best-performed predictive model. This is mainly because

MLP is adaptive to handle complicated predictions. Hidden

nodes enable neural network to model complex relationships

between parameters as well as handle nonlinearity in data.

Totally, results illustrate that machine learning represents an

encouraging and viable approach for early prediction of CKD.

V. LIMITATIONS

No information about any kind of medications has been

collected with this data. Value of some parameters maybe

affected by prescribed drugs. For instance, patients may be

prescribed a drug to control blood pressure. In this case,

healthy as well as patients with CKD will record approximate

values of blood pressure, which in turn weakens predictive

power of blood pressure parameter.
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