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Abstract

Background: Machine learning is a branch of Artificial Intelligence that is concerned with the design and
development of algorithms, and it enables today’s computers to have the property of learning. Machine learning is
gradually growing and becoming a critical approach in many domains such as health, education, and business.

Methods: In this paper, we applied machine learning to the diabetes dataset with the aim of recognizing patterns
and combinations of factors that characterizes or explain re-admission among diabetes patients. The classifiers used
include Linear Discriminant Analysis, Random Forest, k–Nearest Neighbor, Naïve Bayes, J48 and Support vector
machine.

Results: Of the 100,000 cases, 78,363 were diabetic and over 47% were readmitted.Based on the classes that models
produced, diabetic patients who are more likely to be readmitted are either women, or Caucasians, or outpatients, or
those who undergo less rigorous lab procedures, treatment procedures, or those who receive less medication, and
are thus discharged without proper improvements or administration of insulin despite having been tested positive for
HbA1c.

Conclusion: Diabetic patients who do not undergo vigorous lab assessments, diagnosis, medications are more likely
to be readmitted when discharged without improvements and without receiving insulin administration, especially if
they are women, Caucasians, or both.
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Introduction
The approaches used in managing maladies have a major
influence on the medical outcome of the patient includ-
ing the probability of re-admission. A growing number
of publications suggest the urgent needs to explore and
identify the contributing factors that imply critical roles
in human diseases. This can help to uncover the mech-
anisms underlying diseases progression. Ideally, this can
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be achieved through experimental results that depict
valuable methods with better performance when com-
pared with other studies. In the same context, many
strategies were developed to achieve such objectives by
employing novel statistical models on large-scale datasets
[1–6]. Such an observation has prompted the requirement
of effective patient management protocols, especially for
those admitted into intensive care unit. However, the same
protocols are not fully applicable to Non–Intensive Care
Unit (Non-ICU) inpatients, and this has inculcated poor
inpatient management practices regarding the number of
treatments, the number of lab test conducted, discharge,
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insignificant changes or improvements at the time of dis-
charge, and high rates of re-admissions. Nonetheless, such
a claim has not been proven and the influence on these
factors on re-admission among diabetes. As such, this
study hypothesized that time spent in hospital, number
of lab procedures, number of medications, and num-
ber of diagnoses have an association with re-admission
rates and are proxies of in-hospital management prac-
tices that affect patient health outcomes. However, detec-
tion of Hemoglobin A1c (HbA1c) marker, administration
of insulin treatment, diabetes treatment instances, and
noted changes are factors that can moderate the admis-
sion and are treated as partial management factors in the
study. Some of the re-admission is avoidable although
this requires evidence-based treatments. According to [7]
in a retrospective cohort study evaluated the basic diag-
noses and 30-day re-admission patterns among Academic
Tertiary Medical Center patients’ and established within
30-days re-admissions are avoidable. In specific, the study
established that 8.0% of the 22.3% of the within 30 days re-
admissions are potentially avoidable. As a subtext to the
conclusion, the authors asserted that these re-admission
cases were related in direct or indirect consequences due
to the pre-conditions related to the primary diagnosis.
For instance, research demonstrated that patients admit-
ted for heart failure and other related diseases are more
likely to be readmitted for acute heart failure.However,
the re-occurrence of the heart condition is dependent on
the treatment administered, observed health outcome at
discharge, and other pre-existing health conditions.

Research contribution
Under the circumstances, it is essential for healthcare
stakeholders to pursue re-admission reduction strategies,
especially with a specific focus on the potentially avoid-
able re-admissions. The authors in [8] highlighted the
role that financial penalties imposed on health institu-
tions with higher re-admission rates in reducing the re-
admission incidences. Furthermore, the article assessed
and concluded that extensive assessment of patient needs,
reconciling medication, educating the patients, planning
timely outpatient appointments, and ensuring follow-up
through calls and messages are among the best emerg-
ing practices for reducing re-admission rates. However,
implementing these strategies requires significant funding
although the long-term impacts outweigh any financial
demands. Hence, it suffices to deduce that re-admissions
in a health facility are a priority area for improved
health facilities and reducing healthcare cost. Regardless
of the far-reaching interest in hospital re-admissions, lit-
tle research has explored re-admission among diabetes
patients. A reduction of diabetic patient re-admission
can reduce health cost while improving health outcomes
at the same time. More importantly, some studies have

identified socioeconomic status, ethnicity, disease bur-
den, public coverage, and history of hospitalization as
key re-admission risk factors. Besides these factors and
principal admission conditions, re-admission can be a fac-
tor of health management practices. This study provides
information on the managerial causes of re-admission
using six machine learning models. Additionally, most
studies employ regression data mining technique and as
such this study provides a framework for implement-
ing other machine learning techniques in exploring the
causative agents of re-admission rates among diabetes
patients. The primary importance of the algorithm is to
help hospitals identify multiple strategies that work effec-
tively for re-admission of a given health condition. In
specific, implementation of multiple strategies will focus
on improved communication, the safety of the medica-
tion, advancements in care planning, and enhanced train-
ing on the management of medical conditions that often
lead to re-admissions. Each of these sub-domains involves
decision making and given the size and nature of health-
care information, data mining and deep learning tech-
niques may prove critical in reducing the re-admission
rates.

Methodology
Figure 1 illustrates the high-level machine learning pro-
cess diagram used in the paper. The study explored
the probable predictors of diabetes hospital re-admission
among the hospitals using machine learning techniques
along with other exploratory methods. The dataset con-
sists of 55 attributes and only 18 were used as per the
scope of the study. The performance of the models is eval-
uated using the conventional confusion matrix and ROC
efficiency analysis. The final re-admission model is based
on the best performing model as per the true positive
rates, sensitivity and specificity.

Linear discriminant analysis
LDA algorithm is a variant of Fisher’s linear discriminant
and it classifies data to vector format based linear com-
bination of attributes based on a target factor or class
variable. The algorithm has a close technical resemblance
to Analysis of Variance (ANOVA) and regression as it
explains the influences of predictors using linear com-
binations [5]. There are two approaches to LDA. The
techniques assume that the data conforms to Gaussian
distribution and as such, assumes that each attribute has
a bell-shape curve when visualized and it also assumes
that each variable has the same variance, and that data
points of each attribute vary around the average by the
same amount. That is, the algorithm requires the data and
its attributes to be normally distributed and of constant
variance or standard variation. As a result, the algorithm
estimates the mean and the variance of the data for each
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Fig. 1 The Machine Learning Process Diagram

of the class that it creates using the conventional statistical
techniques.

μ = 1
nk

∑
(x) (1)

Where μ is the mean of each input attribute (x) for each
class (k) and n is the total number of observations in the
dataset. The variance associated with the classes is also
computed using the following conventional method.

σ 2 = 1
n − k

∑
(x − μ)2 (2)

In Eq. 2, sigma squared is the variance across all instance
serving as input in the model, k is the number of classes,
and n is the number of observations or instance in the
dataset. μ is the mean and is computed using Eq. 1.

Besides the assumptions, the algorithm makes predic-
tion using a probabilistic approach that can be summa-
rized in two steps. Firstly, LDA classifies predictors and
assigns them to a class based on the value of the posterior
probability denoted as

π
(
y = �i

∣∣x
)

(3)

The objective is to minimize the total probability of mis-
classifying the features, and this approach relies on Bayes’

rule and the Gaussian distribution assumption for class
means where:

π
(
x
∣∣y = �i

)
(4)

Secondly, LDA finds a linear combination of the predic-
tors that return the optimum predictor value, and this
study uses the latter. LDA algorithm can be implemented
in five basic steps. First, in performing LDA classification,
the d-dimensional mean vectors are computed for the
classes identified in the dataset using the mean approach
(Eq. 1). The variance and the normality assumption must
be checked before proceeding. Second, both within and
between-class scatters are computed and returned as a
matrix. The within-class scatter or distances are com-
puted based on Eq. 5.

Swithin =
c∑

i=1
Si (5)

and

Si =
n∑

x∈Di
(x − μi ) (x − μi)

T (6)
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where i is the scatter for every class identified in the
dataset and μ is the mean of the classes computed using
Eq. 1.

The Between-class scatter is calculated using Eq. 7.

Sbetween =
c∑

i−1
Ni (μi − μ ) (μi − μ)T (7)

In Eq. 7, S is general mean value while μ and N refers
to the sample mean and sizes of identified classes respec-
tively. The third step involves solving Eigenvectors asso-
ciated with the product of the within-class and out-class
matrices. The fourth step involves sorting the linear dis-
criminant to identify the new feature subspace. The selec-
tion and sorting using decreasing magnitudes of Eigen-
values. The last step involves the transformation of the
samples or observations onto the new linear discrimi-
nant sub-spaces. The pseudo-code for LDA is presented
in Algortihm 1.

Algorithm 1 Linear Discriminant Analysis

1:
(

D = {(
xT

i , yi
)}n

i=1

)
:

2: Di =
{

xT
j |yi = ci, j = 1, ..., n

}
, i = 1, 2

//declaration of class-specific subsets
3: μi = mean (Di) , i = 1, 2

//calculation of class means
4: B = (μ1 − μ2) (μ1 − μ2)

T

//Computation of between-class scatter
5: Zi = Di − 1niμ

T
i , i = 1, 2

// Center scatter matrix
6: Si = ZT

i Zi, i = 1, 2
//The scatter of the respective classes

7: S = S1 + S2
//Computation of within-class scatter distances

8: λ1,w = eigen
(
S−1B

)

//Computation of eigenvector using dominance

For the classes i, the algorithm divides the data into
D1 and D2 then calculates the within and between the
class distances, and the best linear discriminant is a vec-
tor obtained from the product of transpose of within-class
and between-class scatter matrices.

Random forest
Random forest is a variant of decision degree growing
technique and it is different from the other classifiers,
because it supports random growth branches within the
selected subspace. The random forest model predicts
the outcome based on a set of random base regression
trees. The algorithm selects a node at each random base
regression and split it to grow the other branches. It

is important to note that Random Forest is an ensem-
ble algorithm because it combines different trees. Ide-
ally, ensemble algorithms combine one or more classifiers
with the different types. Random forest can be thought
of a bootstrapping approach for improving the results
obtained from the decision tree. The algorithm works
in the following order. First, it selects a bootstrap sam-
ple S(i)from the sample space and the argument denoting
the bootstrap sample refers to the ith bootstrap. The
algorithm learns a conventional decision tree although
through implementation of a modified decision tree algo-
rithm. The modification is specific and is systematically
implemented as the tree grows. That is, at each node of
decision tree, instead of implementing an iteration for
all possible feature split, RF randomly selects a subset
of features such that f ⊆ F and then splits the fea-
tures in the subset (f ). The splitting is based on the
best feature in the subset and during implementation,
the algorithm chooses the subset that it is much smaller
than the set of all features. Small size of subset reduces
the burden to decide on the number of features to split
since datasets with large size subsets tend to increase the
computational complexity. Hence, the narrowing of the
attributes to be learned improves the learning speed of the
algorithm.

Algorithm 2 Random Forest (Decision Tree Ensemble)
Prerequisite: Specify the training set S :=
(x1, y1) , ..., (xn, yn) the set of all features F, and the
number of trees to be included in the forest B

1: function RANDOM FOREST (S, F)

2: H ← 0
3: for i ∈ 1, ..., B do
4: S(i) ← 1 Bootstrap sample drawn from S
5: hi RandomizedTreelearn(S(i), F)

6: H ← H ∪ {hi}
7: end for
8: return H
9: end function

10: function RANDOMIZEDTREELEARN (S, F)

11: At each node:
12: f ← Draw a small subset of F
13: Split the best feature in f
14: return The Learned Tree (Model)
15: end function

The algorithm uses bagging to implement the ensem-
ble decision tree, and it is prudent to note that bagging
reduces the variance of the decision tree algorithm.

Support vector machine
Support Vector Machine is a group of supervised learn-
ing techniques that classify data based on regression
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analysis. One of the variables in the training sample should
be categorical so that the learning process assigns new
categorical value as part of the predictive outcome. As
such, SVM is a non-likelihood binary classifier lever-
aging the linear properties. Besides classification and
regression, SVM detects outliers and is versatile when
applied to dimensionality high [1]. Ideally, a training vec-
tor variable, that has at least two categories, is defined as
follows:

xi ∈ R
p, i = 1, ..., n (8)

where xi represents the training observation and Rp indi-
cates the real-valued p-dimensional feature space and
predictor vector space. A pseudo-code for a simple SVM
algorithm is illustrated:

Algorithm 3 Support Vector Machine)
AttributeSupportVector(ASV )

={Closest Attribute Pair from Opposite Classes}
1: while margin constraint violating points exist do
2: Find the violator
3: ASV = ASV∪ Violator
4: if any αp < 0 because of addition of c to S then
5: ASV = ASV

p
6: Repeat all the violating points are pruned
7: end if
8: end while

The algorithm searches for candidate support vectors
denoted as S and it assumes that SV occupies as a space
where the parameters of the linear features of the hyper-
plane are stored.

k-nearest neighbor
kNN classifies data using the same distance measure-
ment techniques as LDA and other regression-based algo-
rithms. In classification application, the algorithm pro-
duces class members while in regression application it
returns the value of a feature or a predictor [9]. The
technique can identify the most significant predictor and
as such was given preference in the analysis. Nonethe-
less, the algorithm requires high memory and is sensi-
tive to non-contributed features despite being considered
insensitive to outliers and versatile among many other
qualifying features. The algorithm creates classes or clus-
ters based on the mean distance between data-points.
The mean distance is calculated using the following
equation.

�(x) = 1
k

.
∑

(xi, yi) ∈ kNN(x, L, K)yi (9)

In Eq. 9, kNN (x, L, K), k denotes the K nearest neigh-
bors of the input attribute (x) in the learning set space (i).

The classification and prediction application of the algo-
rithm depends on the dominant k class and the predictive
equation is as the following:

�(x) = argmaxc ∈ y.
∑

(xi, yi) ∈ N (x, L, K)yi (10)

It is imperative to note that output class consists of
members from the target attribute and the distance used
in assigning the attributes to classes is based on Euclidean
distance. The implementation of the algorithm consists
of six steps. The first step involves the computation of
Euclidean distance. In the second step, the computed n
distances are arranged in a non-decreasing order, and in
the third step, a positive integer k is drawn from the sorted
Euclidean distances. In the fourth step, k-points corre-
sponding to the k-distances are established and assigned
based on proximity to the center of the class. Finally, for
k >0 and for (number of points in the i, an attribute x
is assigned to that class if ki > kj for all i �= j is true.
Algorithm 4 shows the kNN steps process:

Algorithm 4 k-Nearest Neighbor)
Preconditions: Specify training data (X), class

labels (Y ), and unknown sample (x)
1: Classify (X, Y , x)
2: for i = 1 to m do
3: Compute distance d (Xi, x)

4: end
5: for Compute Set I contains the minimum sets of k

distances d (Xi, x)

6: Return majority label for {Yi; i ∈ I}

Naïve Bayes
Even though Naïve Bayes is one of the supervised learning
techniques, it is probabilistic in nature so that the classifi-
cation is based on Naïve Bayes’ rules of probability, espe-
cially those of association. Conditional probability is the
construct of Naïve Bayes classifier [9–16]. The algorithm
assigns instance probabilities to the predictors parsed in a
vector format representing each probable outcome. Naïve
Bayes classifier is the posterior probability that the divi-
dend of the product of prior with likelihood and evidence
returns. The construction of the model from the output
of the analysis is quite complex although the probabilistic
computation from the generated classes is straightforward
[17–22]. The Bayes Theorem upon which the Naïve Bayes
classifier is based can be written as follows:

P (μ|ν) = P(ν|μ)P(μ)

P(ν)
(11)

Where μ and v are events or instances in an experiment
and P(μ) and P(ν) are the probability of their occurrence.
The conditional probability of an event μ occurring after
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v is the basis of Naïve Bayes classifier. The classifier uses
maximum likelihood hypothesis to assign data points to
classes. The algorithm assumes that each feature is inde-
pendent and makes equal contribution to the outcome
or all features belonging to the same class have the same
influence on that class. In Eq. 11, the algorithm com-
putes the probability of event μ provided that v already
occurred, and as such v is the evidence and the proba-
bility P(μ) is regarded as the priori probability. That is,
it refers to probability obtained before seeing the evi-
dence while the conditional probability P (μ|ν) is priori
probability of v since it is a probability computed with
evidence.

J48
J48 is one of the decision tree growing algorithm. How-
ever, J48 is the reincarnation of the C4.5 algorithm, which
is an extension of the ID3 algorithm [23]. As such, J48 is
a hierarchical tree learning technique and it has several
mandatory parameters including the confidence value and
the minimum learning instance, which are translated to
branches and nodes in the final decision tree [23–29].

Data assembly and pre-processing
The study used diabetes data that was collected across
130 hospitals in the US in the years between 1999–2008
[30]. The dataset includes data systematically composed
from contributing electronic health records’ providers
that contained encounter data such as inpatient, outpa-
tient and emergency, demographics, provider specialty,
diagnosis, in-hospital procedures, in-hospital mortality,
laboratory and pharmacy data. The complete list of
the features and description is provided in Table S1

(Additional file 1). The data has 55 attributes, about
100,000 observations, and has missing values. However,
the study used a sample based on the treatment of dia-
betes. In specific, of the 100,000 cases, 78,363 meet
the inclusion criteria since they received medication for
diabetes. Consequently, the study explored re-admission
incidences among patients who had received treatment.
The amount of missing information, the type of the
data (categorical or numeric) that guided the data clean-
ing process, re-admission, Insulin prescription, HbA1c
test results, and observed changes were retained as the
major out-come associated with time spent in the hospi-
tal, the number of diagnoses, lab procedures, procedures,
and medications [31, 32]. Of the 55, only 18 variables
were selected as per the scope for analysis and even
about 8 of the selected served as proxy controls. The
study was split into 70% training and 30% validation
subsets.

K-fold validation
To improve the overall accuracy and validate a model, we
relied on the 10-fold cross validation method applied for
estimating accuracy. The training dataset is split into k-
subsets and the subset held out while the model is fully
trained on remaining subsets. Figure 2 illustrates the val-
idation method. The K-fold Cross-validation method uti-
lizes the defined training feature set and randomly splits it
into k equal subsets. The model is trained k times. During
each iteration, 1 subset is excluded for use as validation.
This technique reduces over-fitting issues, which occurs
when a model trains the data too closely to a set of data,
which can result in failure to predict future information
reliably [2, 12, 33].

Fig. 2 Cross-Validation Scheme for both training validation subsets
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Discussion
Exploratory analysis
Of the 47.7% diabetic patients who were readmitted,
11.6% stayed in the hospital for less than 30 days while
36.1% stayed for more than 30 days. A majority (52.3%)
of those who stayed for more than 30 days did not
receive any medical procedures during the first visit. In
general, diabetic patients who received a fewer num-
ber of lab procedures, treatment procedures, medica-
tions, and diagnoses are more likely to be readmitted
than their counterparts. Furthermore, the more frequent
a patient is admitted as an in-patient the less likely the
probability of re-admission. Our study indicated that,
women (53.3%) and Caucasian (74.6%) diabetic patients
are more vulnerable to re-admission than male and
the other races. Besides several lab procedures, medica-
tions, and diagnoses, insulin administration and HbA1c
results exacerbate the re-admission rates among diabetic
patients.

Scatterplots
The Scatterplots of re-admission incidences with an over-
lay of HbA1c measurements and change recorded at the
time of discharge are shown in Figs. 3 and 4.

Figure 3 illustrates the Scatterplot of the number of
diagnoses and lab procedures that patient received for
re-admission rates. The figures have 8 panels display-
ing scatters of diagnoses and lab procedures for differ-
ent instances of HbA1c results and change. The plot
shows that patients who had negative HbA1c tests results
received several diagnosis and very few were readmitted.

Those who received less than 10 diagnoses and less than
70 procedures were more likely to be readmitted. None of
the patients received more than diagnosis and a majority
were admitted for more than 30 days.

Figure 4 depicts a scatter plot of a number of diagnoses
and lab procedures. The re-admission rates are quite dif-
ferent between a group of patients who noted change at
discharge than those who did not. Those who failed to
note significant improvement at discharge received more
than 50 medications and less than 10 diagnoses. However,
re-admission is higher among those who noted improve-
ment at discharge.

Density distributions
The distribution of re-admission and subsequent patterns
associated with reported change and results of HbA1c are
shown in Figs. 5 and 6.

Figures 5 and 6 illustrate the density distribution of
number of medications, lab procedures, and diagnoses
grouped by re-admission, HbA1c results, insulin admin-
istration change at discharge. Notably, the distribution
density of the number of lab procedures, medications,
and diagnoses are the same for grouping categories.
Figure 6 shows significant differences in the number of
medications and lab procedures. For instance, the aver-
age number of medications differs between ’No’, ’Up’,
’Steady’, and ’Down’ insulin categories. A similar differ-
ence in mean of the number of medications is observed
in the change distribution curve with those recording
change at discharge receiving more medications than their
counterparts.

Fig. 3 Scatterplot of Medications and Diagnoses
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Fig. 4 Scatterplot of Medications and Diagnoses

Fig. 5 Density Plots of Predictors by re-admission and HbA1c



Alloghani et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 9):253 Page 9 of 16

Fig. 6 Density Plots of Predictors by Insulin and change

Smooth linear fits
Figures 7 and 8 illustrate the smooth line fits asso-
ciated with Scatterplots. The smoothen fits include a
95% confidence interval and demonstrates the likely
performance of linear regression models in forecasting
re-admission.

Figures 7 and 8 depict smooth linear fits of the Scatter-
plots and density plots in Figs. 3, 4, 5, and 6. The figures
illustrate that the number of lab procedures has linear
relationships with the number of diagnoses although the
data is likely to be heteroskedastic. The number of diag-
noses and medications also have the same relationship and
plot patterns. For medication versus procedures, the rela-
tionship is linear and change in diabetes status increases
with medications and lab procedures. As for re-admission,
incidents of more than 30 days re-admission reduced with
increasing number of diagnoses, lab procedures, and med-
ications. Similarly, the probability of detecting HbA1c
increases with increasing number of diagnoses and lab
procedures.

Model evaluation
The performance of the models in predicting re-
admission incidence was based on the confusion matrix
and in specific the percentage of the correctly predicted
read-mission categories.

Table 1 depicts that Naïve Bayes correctly classified
the re-admission rates less than 30 days and none re-
admission incidences. SVM accurately classified 48.3% of
the re-admission incidence exceeding 30 days. The objec-
tive is to obtain the performing model.

Individual model performance
The LDA model yields two linear discriminants LD1 and
LD2 with proportion trace of 0.9646 and 0.0354 respec-
tively. Hence, the first LD explains more than 96.46% of
the between-group variance while the second account for
3.54% of the between-group variance.

LD1 = 003 ∗ Lab Procedures − 0.102 ∗ Procedures
+0.08 ∗ Medications + 0.18 ∗ Emergency + 0.67 Inpatient

+0.17Diagnoses
(12)

Figure 9 illustrates the plot of LD1 versus LD2. Equation
12 depicts the profile of diabetic patients.

The predictors were significantly correlated at 5% level
and they influenced re-admission based on the frequency
of each. The kNN model used all the 16 predictors to learn
the data and selected three as significant predictors. In
specific, the kNN model proposes that high re-admission
for diabetes treatment is caused by a fewer number of
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Fig. 7 Smooth Linear Fits with Insulin and Change as Facets

lab procedures, diagnoses, and medications. However,
the rates are higher among patients who tested positive
for HbA1c and did not fail to receive insulin treatment
(Fig. 3).

SVM classified the readmitted diabetic patients into
three classes using a polynomial of degree 3 suggest-
ing that diabetes re-admission cases do not have a lin-
ear relationship with the predictors. As an inference,
the polynomial relationship illustrated by the kernel
and degree of the SVM indicates higher re-admission
rates among patients discharged without any significant
changes (Fig. 4). Naïve Bayes classifier yields two classes
using the Laplace approach. The classification from the
model depicts a reduced likelihood of re-admission in
cases where the patients undergo a series of laboratory
tests, rigorous diagnosis, proper medication, and dis-
charge after confirmation of improvement. The density
distributions in Figs. 5 and 6 compliments the findings
of the model. In specific, the distributions of the num-
ber of medications and lab procedures show a noticeable
difference in the distribution when considering insulin
administration as part of treatment. Regarding aggrega-
tion of the distribution of the number of medications
and lab procedures by status at discharge (change), the

distribution curves suggest that patients are more likely
to feel better at time of discharge provided that the
lab services and medications are of superior quality. It
is important to reiterate that Naves Bayes’ model has
true positive and false negative rates showing that it had
13.78% accuracy and 13.78% sensitivity. Finally, random
forest classified diabetic patients using linear approaches
with re-admission as the control. Figures 7 and 8 demon-
strate that the smoothen linear of the paired predictors
shows that re-admissions taking more than 30 days is
reduced by increasing the number of medical diagnoses.
Further, the HbA1c results increase with increasing num-
ber of diagnoses. However, it is important to note that
the association between the number of lab procedures and
medications tends to be non-linear while that between
the number of diagnoses and medication is linear regard-
less of the grouping variable. The J48 based tree shown in
Fig. 9 does not consider the linear relationships and omits
diabetic patients who were never re-admitted. The resul-
tant tree included a number of inpatient treatment days,
number of emergencies, number of medications, lab pro-
cedures, and diagnoses in the model. The model suggests
that diabetic patients admitted as in-patients tend not
to be re-admitted. Similarly, the tree demonstrates that
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Fig. 8 Smooth Linear Fits with re-admission and HbA1c as Facets

several diagnoses improve health outcomes and reduce
re-admission.

Best fit model
The best fitting model is based on the performance mea-
sures summarized in Table 2. The key decision relies
on the efficiency of the model in predicting the re-
admission rates and the area under the curve (AUC)
and precision/recall curve are the best measures for such
a task.

Table 2 illustrates that Naïve Bayes is the most sensitive
and efficient model for learning, classifying and predicting
re-admission rates using mHealth data. It has an efficiency

Table 1 True Positive Rate Comparison Table

Model <30 days >30 days No

Random Forest 21.0% 42.8% 60.5%

kNN 17.8% 40.3% 59.6%

Naïve Bayes 23.6% 46.6% 61.2%

SVM 12.2% 48.3% 55.9%

J48 17.3% 40.4% 60.3%

of 64% and a sensitivity of 52.4%. The ROC curves asso-
ciated with the predictions of re-admission that exceeded
30 days are displayed in the figures below.

The larger the area covered the more efficient the model
is, and this principle Fig. 10 depicts that Naïve Bayes is the
most efficient.

Naïve bayes analysis
The model focused on the top 5 best factors (exposures)
that contributed to re-admission for less and more than 30
days. The association between the exposures and outcome
(re-admission instances) are given as log odds ratio in the
nomograms illustrated in Fig. 11. The three classes model
are Class 0 (No re-admission), Class 1 (re-admission for
less than 30 days), and Class 3 (re-admission for more than
30 days).

Figure 11 depicts the exposure factors with absolute
importance on Class 0 including number of emergencies,
number of patients, discharge disposition ID, admission
source ID, and number of diagnoses. The log odds ratios
illustrate the association between these exposure factors.
The conditional probability for re-admission after dis-
charge based on these exposure factors is 0.5.
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Fig. 9 Plot of two linear discriminants obtained from LDA learner

Figure 12 depicts the exposure factors with absolute
importance on Class 1 including the number of emer-
gencies, the number of patients, discharge disposition
ID, time in hospital ID, and number of diagnoses. The
log odds ratios display the association between these
exposure factors to lack of re-admission after discharge.
The conditional probability for re-admission after dis-
charge based on these exposure factors is 14%. In specific,
there is a 48% chance of re-admission for patients with
a number of diagnoses between 8.5 and 9.5, and a 52%
chance for those with diagnoses between 5.5 and 8.5.
Similarly, those spending between 2.5 to 3.5 days in the
hospital is more likely to be readmitted (59%) for less
than 30 days than their counterparts with 41% chance
of re-admission. Finally, those with fewer emergency
admission history stand higher chances of re-admission
(80%) than those with sufficient emergency admission
history.

Figure 13 depicts the exposure factors with absolute
importance on Class 2 including the number of emer-
gencies, the number of patients, discharge disposition ID,
admission source ID, and number of diagnoses. The log

Table 2 Comparison of model efficiency and sensitivity

Model AUC CA F1 Precision Recall

kNN 0.575 0.499 0.489 0.482 0.499

J48 0.578 0.490 0.487 0.485 0.490

SVM 0.547 0.475 0.421 0.483 0.475

Random Forest 0.602 0.529 0.509 0.499 0.529

Naïve Bayes 0.640 0.566 0.524 0.519 0.566

odds ratios illustrate the association between these expo-
sure factors to lack of re-admission after discharge. The
conditional probability for re-admission after discharge
based on these exposure factors is 0.42. The number
of emergency admission increases re-admission chances
by 80% for those with least history. Further, those with
higher inpatient admission history have 65% chance of
re-admission for more than 30 days. Most importantly,
patients who undergo more than 9.5 diagnoses tests have
70% chance of re-admission for more than 30 days after
discharge.

Conclusion
The size of the health data and the amount of informa-
tion contained exemplifies the importance of machine
learning in the health sector. Developing the profiles
for the patients can help in understanding the factors
that help reduce the burden of the disease while at the
same time improve outcomes. Diabetes is a major prob-
lem given that over 78% of the patients admitted across
the 130 hospitals were treated for the condition. Of the
total number of diabetic patients who participated in the
study, over 47% were readmitted with over 36% percent
staying in the hospital for over 30 days. This study has
also established that women and Caucasians are more
vulnerable to hospital re-admissions [5, 33–39]. Each
of the machine learning models has established differ-
ent combinations of features influencing the admission
rates. For instance, LDA proposes a linear combination
while the SVM suggests a third-degree polynomial degree
of association between re-admission and its predictors.
Further, J48 models the relationship as non-linear with
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Fig. 10 ROC curves illustrating the Areas Under Curve for the models

Fig. 11 Nomogram visualization of Naïve Bayes classifier on target class 0
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Fig. 12 Nomogram visualization of Naïve Bayes classifier on target class 1

emphasis on the importance of emergency admission and
in-patient treatment on re-admission rates. kNN models
lead to the conclusion that fewer number of lab pro-
cedures, diagnoses, and medications lead to increased
higher re-admission rates. Diabetic patients who do not

undergo vigorous lab assessments, diagnosis, medica-
tions are more likely to be readmitted when discharged
without improvements and without receiving insulin
administration, especially if they are women, Caucasians,
or both.

Fig. 13 Nomogram visualization of Naïve Bayes classifier on target class 2
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