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1. Introduction and Definitions
Assume J = {t € C: |t| < 1} be an open unit
disc in C. And assume X (J) be the class of

G =u + wt/ + wjpy U 4,
where u € Cand j € N. Assume X be the class of all analytic functions of

GO =t1+ ) ut) (1D

in the punctured unit disk
J={t:teCand0 < |t] < 1} = J\{0}.

S alludes to the all functions is univalent in /J. Assume

tg'(t) S 0},

S*= { is univalent, Re
g A0

alludes to the class of starlike functions in 7 and
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K = {g is univalent, Re +1> 0},

alludes to the class of convex functions in /J.
Assume that and P are members of K (7). If there exists a Schwarz function V analyticin [J, with V(0) =
0 and |V(t)| < 1, such that G(t) = P(V(t)), the function is said to be subordinate to P or P is said to be
superordinate to The term subordination is used to describe this relationship

Gt)<P(t)org < P.

In addition, if P is univalent in J, we get the following equivalence [7, 14]
G(t) < P(t) ifand only if G(0) = P(0), where G(J) € P(J).

Bulboca [6] considered various kinds of first-order differential superordinations, as well as
superordination preserving integral operators, based on Millir and Mocanu's [16] conclusions. Using
the results of Bulboca [7], Ali [1] has found adequate requirements for certain normalized analytic
functions G to satisfy:

tg'(t)
Li(t) < —=—=< L,(1),
' G
where £L;, L, are univalent functions, such that £,(0) = £,(0) = 1. Tuniski [27] obtained sandwich
results for particular classes of analytic functions in order to satisfy the following conditions:

G(t)
Ly(t) < tG'(0) < L,(1),
Shanmogam et al. [24] recently published sandwich results for analytic functions [2, 3, 4, 5, 8, 12, 15,
19, 20, 23, 26].
We'll look at some differential subordination and superordination results involving the operator
Ng%(u, e; t) in this paper.
Now we'll go over the definitions and lemmas we'll require in this work.

Definition 1.1.([21]) For functionsG € X, such that a >t >0and m € N = {1, 2,3, ...}, consider the
following operator:

OG(t) =t + Z}[(a, )™y t), (teJ), (2)
=0
where !
H,t,j))=[+2Dat+a—-1]G+1)+1
and

Dg,‘rg(t) = g(t)

D%(,Tg(t) = Na,rg(t)
OIG(t) = O (DB G®),  (£€ID.
We get the differential operator given in [11] for « = 1,7 = 0. Using the operator D7, G(t) to its full
potential.

The linear operator N3 (u, e; t) on 2 is now defined as follows:

where
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> W
1 J i * -1 —

w(u,e;t) =t~ +JZO (e)]+1 , u€ecCeeC\{0,-1,-2,..}

then
m DN e C m (u)j+1 ;
N (u,e;t) =t 1 + ;}[(a, 7,M) (e)—jﬂuj t/. (3)

The fact that (3) is easily verifiable is obvious

H(V (w6 )G(8) = uNgi(u+ 1,e;)G(E) — (u+ DN, e; )G (D), (4)
and

H(VI (w6 )G(0) = aV(w, e )G () — (a + DNZE (u, e; )G (0. (5)

Lemma 1.2. ([25]) Assume y, f € C such that f§ # 0 and assume w be a convex function in J with

tw'' (z) _ I
Re {1 + w2 } > max {O, —Re <E>}, (z € ). (6)
If p is analytic in (J and
up(t) + Btp'(6) < uw (o) + ptw' (o), (7)

then p(t) < w(t),w is the best dominant of the subordination (7).

Lemma 1.3. ([17]) Assume w be univalent in J

141t
w(t) = 7= with L € (=1,0) U (O,1), (8)

such that
2ul +1 ﬁ1+l

01—l+ 1-1

>0, (6 €(01],u,B>0).

If p univalent in J and p(0) = w(0) =1,

208) + B (6) + ot (6) < (1 + lt)2 (1 + lt) L, 2l 9
up Bp atp T T~ teaor 9
then
p(t) < w(t).
Lemma 1.4. ([22]) If
w(t) = (1 - t)2be
is univalent in J if and only if |2bc — 1| < 1 or |2bc + 1| < 1.
2. Main results
Theorem 2.1. If p be univalent and p(0) = 1 such that
tp"' (t 1
Re {1 + Zé))} > max {O; —avRe (,1_1)}' 0<v<1la=1,uecC\{0} (10)

and G € X, tN7+ 1 (u, e; £)G(t) # 0, if the following differential subordination
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() (vt e e 060) T+ (Wi 0G0 (N (w06 (0))
<p( -2 4y

then
(N (e 06 < p(o),

Proof. Assume

(W e 060) = g(o),

we obtain
(a ;— #) (t]\faﬂﬂ(u, e; t)g(t))V—l " %‘ (J\fa’?}(u, e; t)g(t)) (tNaT,r‘tﬁl(u‘ e t)g(t))v ) t,ugv(t)'
Hence, by (11) gives
90 = tﬂgv © - —Wv(t).

Then
(N e 06() < p(D).

Corollary 2.2.1f G € X and

() (e 06@) ™+ (M e 06(0) (W2 (w e 06(0))

2t(tu + t%p)
“-—mad-o02

(12)

Then
1+t

(t]\far"}+1(u' e; t)g(t))v < 1-¢

Theorem 2.3.1f G € X and p is univalent such that p(0) = 1, p(t) # 0,m,p € C,7,a € C\{0},m+ p # 0.
Suppose that G and p satisfy the following conditions:

t{a N (u, e; £)G () + pN 2 (u, e; £)G(t
{ {mVgert( )G (@) + pNg=( )G( )}} 40, (13)
p—T
with
tp"(t) tp'(¥)
Re {1 + - } > 0. 14
PO p® (1
If
mt (N (w5 0G(0) — pt (Vnw e 06®) | o) as)
a— < ,
m (NI (w03 0G(0) — p (Wr(w e 0G(®) | PO
then
(TN (u, €5 )G (1) — ptNFE(u, e, DG ()
<p(®).
p—T
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Proof. Assume

(16)

tNZE (u, €, )G (1) — ptNE(u, e )G ()
P =g(0),

By (16), we obtain , ,
mt (Vg (e 0G(0) = pt (MR e 06®) | g/
/[ (Narﬁ“(u, e; t)g(t)) —p (]\fa’,’;(u, e; t)g(t)) g

a —

If w is analytic in C with n(u) # 0,n(uw) = iis analytic in C*. Suppose that

w(e) =tp'®n(p(®)) = t;—g),

since W (0) = 0 and W'(0) # 0,then (14) would yield that W is a starlike function in J. From (14), we

have
th'(t) { tp" (t) tp'(t)}
Re =Redl+ _ > 0’
w® p'(t)  p(t)
we get,
g@®) < p().
Corollary 2.4.IfGe€ Y, and assumet =0,p=7=1, — 1< A<B < 1,p(t) = 11-:_:;;:,—1 <<
1, such that
V- < '
(Na’ﬁ(u, e; t)g(t)) (1 - At)(1 - Bt)
then
v 1+ At
m .
(tNa,T(u: €, t)g(t)) < 1 + dqt

Theorem 2.5.If G € X and p is univalent such that p(0) = 1, p(t) # 0,m,p € C,7,a € C\{0},m + p # 0.
Suppose that G and p satisfy the following conditions:

(N e D6®) € Glp(0), 11 nW.

a+u v-1 tu v
(E5) (v e 06®) + 2 (Wrw e 06(0)) (175 (w060
is univalent in 7, and
tup'(¢)
p() ——
a+u v-1 tu 1%
< () (vt e ng©)  + L (M e 06®) (N (e 060),(18)
then
v
p(t) < (V2w €;)G(D) ) -
Proof. Let
v
(tVin(w e;06(0) = g(®),
we obtain
tug'(t)  (a+u v-1lootu v
g(t) - = () (v w eng®) + 2 (M e 06(0) (M (e, 06®)
v a
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Theorem 2.6. If p is convex in J such that p(0) = 1,G € X, v,t € C\{0}, suppose §,m,p €EC, m+ p #

0,Re (6) > 0. Assume G satisfy the following conditions:

T

and

If

then

{t{ﬂNa’,’%ﬂ(u, e;)G(t) + pNgz(u, e; )G (t)}} 40

p—T

{t{ﬂNOZ?Ll (u,e; )G(t) + pN2(u, €; t)g(t)}

p—T

} € G[p(0),1] N W.

Sw(t) + ttw'(t) < ¢(t), (19)

p(t) <{

NI (w, e; )G (L) + pNV (w, e; t)g(t)}}v

Theorem 2.7. Assume p;, p, be two convex in J with p;(0) = p,(0) = 1,8,m,p € C,v,t € C\{O}and 7 +
p # 0 with Re (6) > 0. Assume G € X and § satisfy the following conditions:

T

{t{ﬂNaT,’%“(u, e;)G() + pNgz(u, e;1)G (t)}} 40

} € G[p(0),1] nW.

6p1(t) + 1tpy (1) < P(t) < 6p, (L) + 1tp, (1), (20)

} < p2(2).

p—T
and
N (w, e; )G () + pNT(w, ;)G (6)}
{
If
then
N (u, ;)G (1) + p N7k (u, ;)G (1))
p1(t) < { —
p—T
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