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I. INTRODUCTIONAND DEFINITIONS  

Let ℑ = {𝑤 ∈ ℂ ∶ |𝑤| < 1} be an open unit disc in 

ℂ. Let 𝐻(ℑ) be the class of analytic functions in ℑ 

and consider ℑ[𝑎, 𝑖] to be a subclass of 𝐻(ℑ)οf the 

form 

ℎ(𝑤)  =  𝑎 + 𝑎𝑖𝑤
𝑖 +  𝑎𝑖+1𝑤𝑖+1  + · · ·  , 

 

where 𝑎 ∈ ℂ and 𝑖 ∈ ℕ = {1,2, … }. Let the class 

of all meromorphic functions be Σ of the form 

ℎ(𝑤) = 𝑤−1 + ∑ 𝑎𝑖 𝑤
𝑖

∞

𝑖=0

,    (𝑤 ∈ ℑ∗)         (1) 

such that 

ℑ∗ = {𝑤 ∶ 𝑤 ∈ ℂ 𝑎𝑛𝑑 0 < |𝑤| < 1} = ℑ\{0}. 
 

The Hadamrd product for two functions in Σ, such 

that 

𝑘(𝑤) = 𝑤−1 + ∑ 𝑐𝑖 𝑤
𝑖

∞

𝑖=0

,   (𝑤 ∈ ℑ∗)         (2) 

is given by 

ℎ(𝑤) ∗ 𝑘(𝑤) = 𝑤−1 + ∑ 𝑎𝑖 𝑐𝑖 𝑤
𝑖

∞

𝑖=0

.   (𝑤 ∈ ℑ∗)(3) 

The subclass 𝛴∗(𝛾) of the class Σare 

meromorphcallystarlike functions of the 𝛾 order. A 

function ℎ ∈ 𝛴∗(𝛾) of the kind (1) if  

 

 

 

ℜ𝑒 {− 
𝑤ℎ′(𝑤)

ℎ(𝑤)
} > 𝛾.            (𝑤 ∈ ℑ∗) 

Pommerenke [29] introduced and researched the 

class 𝛴∗(𝛾)(see also Miller [25]). 

Now, we let  ℎ(𝑤) and 𝑘(𝑤)  be analytic function 

in ℑ.The function ℎ(𝑤)is said to be subordinate to a 

function 𝑘(𝑤) or 𝑘(𝑤) is said to be superordinate 

to ℎ(𝑤), if and only if there exists a Schwarz 

function 𝑧(𝑤) analytic in ℑ, with 𝑧(0) = 0 and 

|𝑧(𝑤)| < 1, (𝑤 ∈ ℑ), such that 

ℎ(𝑤) = 𝑘(𝑧(𝑤)), 

written as 

ℎ ≺ 𝑘 𝑜𝑟 ℎ(𝑤) ≺ 𝑘(𝑤),    (𝑤 ∈ ℑ). 

Furthermore, if the function ℎ is univalent in ℑ, 

then we get the following equivalence ℎ(𝑤) ≺

𝑘(𝑤)if and only ifℎ(0) = 𝑘(0)and ℎ(ℑ) ⊂ 𝑘(ℑ) 

[26]. 

Let ℊ(𝑤) be an analytic function on ℑ that satisfies 

ℊ(0) = 1 and ℊ′(0) > 0, mapping ℑ onto a region 

that is starlike with respect to 1 and symmetric with 

respect to the real axis. Let 𝛴∗(𝛾) be the set of 

functions ℎ ∈ Σ for which 
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− 
𝑤ℎ′(𝑤)

ℎ(𝑤)
≺ ℊ(𝑤). 

Silverman et al. [34] proposed and investigated the 

𝛴∗(ℊ) class (see also [6, 14]). When ℊ(𝑤) =
1+(1−2𝛾)𝑤

1−𝑤
(0 ≤ 𝛾 < 1), the class 𝛴∗(𝛾)  is a 

subclass of 𝛴∗(ℊ). 

Robertson [33] developed the notion of quasi 

subordination in 1970. The function ℎ(𝑤) is quasi-

subordinate to 𝑘(𝑤) for two analytic functions ℎ 

and 𝑘, as written: 

ℎ(𝑤) ≺𝑞 𝑘(𝑤), 

if analytic functions 𝜑 and 𝑧 exist with |𝜑(𝑤)| ≤

1, 𝑧(0) = 0, and |𝑧(𝑤)| < 1, then  

ℎ(𝑤) = 𝜑(𝑤)𝑘(𝑧(𝑤)). 

When 𝜑(𝑤) = 1, ℎ(𝑤) = 𝑘(𝑧(𝑤)), indicating that 

ℎ(𝑤) ≺ 𝑘(𝑤) in 𝐷. It's also worth noting that if 

𝑧(𝑤) = 𝑤, then ℎ(𝑤) = 𝜑(𝑤)𝑘(𝑤), and ℎ is 

majorized by 𝑘, as written ℎ(𝑤) ≪ 𝑘(𝑤) in 𝐷.  As 

a result, it is self-evident that quasi-subordination 

is a generalization of both subordination and 

majorization. For works on quasi-subordination, 

see [5, 15, 16, 17, 23, 32]. In this study, ℊ is 

assumed to be analytic in 𝐷, with ℊ(0) = 1. 

 

Definition 1. Let 𝛴𝑞
∗(ℊ)be the class of function 

ℎ(w) ∈ Σ  satisfying the quasi-subordination 

− 
𝑤ℎ′(𝑤)

ℎ(𝑤)
− 1 ≺𝑞 ℊ(𝑤) − 1.              (4) 

Mohd and Darus [27] created and researched the 

class 𝑆𝑞
∗(ℊ), which is the meromorphic analogue of 

the class 𝛴𝑞
∗(ℊ), which is made up of function 

ℎ(𝑤) of the type 𝑤 + ∑ 𝑎𝑖 𝑤
𝑖∞

𝑖=2 , for which 

𝑤ℎ′(𝑤)

ℎ(𝑤)
− 1 ≺𝑞 ℊ(𝑤) − 1.                  (5) 

Now, we define the following class, which is 

inspired by [24, 33]. 

 

Definition 2. For 𝑑 ∈ ℂ∗ = ℂ\{0}and 𝜇 ∈

ℂ\(0,1]. Let the class 𝑁𝑞(𝜇, ℊ), consists of 

function 

ℎ ∈ Σ  satisfying the quasi-subordination 

1

𝑑
[
𝑤ℎ′ + (1 + 2𝜇)𝑤2ℎ′′ + 𝜇𝑤3ℎ′′′

𝑤ℎ′ + 𝜇𝑤2ℎ′′

− 1] ≺𝑞 ℊ(𝑤) − 1.                 (6) 

 

The 𝑖-th coefficient of a meromorphic function ℎ ∈

Σ  is known to be restricted by 𝑖 (see [13]). The 

coefficient bounds provide details about the 

function's geometric features. Many writers have 

looked at the Fekete-Szego coefficient bounds for 

different classes [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 20, 

18, 19, 22, 30, 31]. The coefficient estimates for the 

functions in the above-mentioned class are obtained 

in this study. 

Let℧ be the class of functions of the form 

𝑧(𝑤) = 𝑧1𝑤 + 𝑧2𝑤2 + 𝑧3𝑤3 + ⋯, 

satisfying |𝑧(𝑤)| < 1 for 𝑤 ∈ ℑ. 

We'll need the lemma below to back up our 

findings. 

 

Lemma 3. [21]: If 𝜑 ∈ 𝑃 then |𝑟𝑖| ≤ 2 for each 𝑖, 

where 𝑃 is the family of all functions 𝜑 analytic in 

ℑ for which ℜ{𝜑(𝑤)} > 0, 

𝜑(𝑤) =  𝑟0 + 𝑟1𝑤 + 𝑟2𝑤2 + 𝑟3𝑤3 + ⋯.   (7) 

Lemma 4. [21]: If 𝜑(𝑤) =  𝑟0 + 𝑟1𝑤 + 𝑟2𝑤2 +

𝑟3𝑤3 + ⋯  for 𝑤 ∈ ℑ.  Is function with positive real 

part in ℑ and 𝜏 is complex number, then 

|𝑧2 − 𝜏𝑧1
2| ≤ 2𝑚𝑎𝑥{1; |2𝜏 − 1|}.          (8) 

Lemma 5. [21]: If 𝑧 ∈ ℧, then for any complex 

number 𝜏 

|𝑧2 − 𝜏𝑧1
2| ≤ 𝑚𝑎𝑥{1; |𝜏|}.               (9) 

 

The result is sharp for the functions 𝑧(𝑤) =

𝑤 or 𝑧(𝑤) = 𝑤2. 

 
II. MAIN RESULTS 

Throughout, let ℊ(𝑤) = 1 + 𝐸1𝑤 + 𝐸2𝑤2 +
𝐸3𝑤3 + ⋯ , 𝐸1 > 0 and 𝜑(𝑤) =  𝑟0 + 𝑟1𝑤 +
𝑟2𝑤2 + 𝑟3𝑤3 + ⋯. 
 

Theorem 1: If ℎ(𝑤) given by (1) belongs to 𝛴𝑞
∗(ℊ), 

then  

|𝑎0| ≤ 𝐸1   ,  

|𝑎1| ≤
𝐸1

2
[1 + |𝑧2 + (

𝐸2

𝐸1

− 𝑟0𝐸1) 𝑧1
2|],   (10) 

and 𝜏 is any complex number, 

|𝑎1−𝜏𝑎0
2| ≤

𝐸1

2
[1 + 𝑚𝑎𝑥 {1, + |

𝐸2

𝐸1

|

+ 𝐸1|1 − 2𝜏|}] .                  (11) 



International Journal of Computational Modeling and 

Physical Sciences,(IJCMPS) 

[Vol-1,Issue-2 , June 2021 ] 

ISSN:2582-7642 

3 

 

 

 

Proof. If ℎ(𝑤) belongs to 𝛴𝑞
∗(ℊ), then there are 

analytic functions 𝑧(𝑤) and 𝜑(𝑤), with 𝑧(0) =

0, |𝑧(𝑤)| < 1 and |𝜑(𝑤)| < 1 such that 

−
𝑤ℎ′(𝑤)

ℎ(𝑤)
− 1 = 𝜑(𝑤)[ℊ(𝑧(𝑤)) − 1]. 

Since  

−
𝑤ℎ′(𝑤)

ℎ(𝑤)
= 1 − 𝑎0𝑤 + (𝑎0

2 − 2𝑎1)𝑤2 + ⋯, 

 

ℊ(𝑧(𝑤)) = 1 + 𝐸1𝑧1𝑤 + (𝐸1𝑧2+𝐸2𝑧1
2)𝑤2

+ (𝐸1𝑧3+2𝐸2𝑧1𝑧2+𝐸3𝑧1
3)𝑤3

+ ⋯, 

and 

𝜑(𝑤)[ℊ(𝑧(𝑤)) − 1] 

= 𝑟0𝐸1𝑧1𝑤 + (𝑟0𝐸1𝑧2+𝑟0𝐸2𝑧1
2

+ 𝑟1𝐸1𝑧1)𝑤2 …,                 (12) 

then 

𝑎0 = −𝑟0𝐸1𝑧1    ,   

𝑎1 = −
𝑟0𝐸1

2
[𝑧2 +

𝑟1

𝑟0

𝑧1 + (
𝐸2

𝐸1

− 𝑟0𝐸1) 𝑧1
2], 

and since 𝜑(𝑤) is analytic and bounded in 𝐷, we 

get [28] 

|𝑟𝑖| ≤ 1 − |𝑟𝑖|2 ≤ 1,   (𝑖 > 0). 

Using this fact, as well as the well-known 

inequality, |𝑧1| < 1, we obtain 

|𝑎0| ≤ 𝐸1  ,  

|𝑎1| ≤
𝐸1

2
[1 + |𝑧2 + (

𝐸2

𝐸1

− 𝑟0𝐸1) 𝑧1
2|]. 

Thus, 

𝑎1−𝜏𝑎0
2 =

𝑟0𝐸1

2
[𝑧2 +

𝑟1

𝑟0

𝑧1

+ (
𝐸2

𝐸1

− 𝑟0𝐸1 + 2𝜏𝑟0𝐸1) 𝑧1
2], 

and 

|𝑎1−𝜏𝑎0
2| ≤

|𝑟0|𝐸1

2
[|

𝑟1

𝑟0

𝑧1|

+ |𝑧2

+ (
𝐸2

𝐸1

− 𝑟0𝐸1 + 2𝜏𝑟0𝐸1) 𝑧1
2|]. 

Since  

|𝑟𝑖| ≤ 1 − |𝑟𝑖|2 ≤ 1,   (𝑖 > 0)and|𝑧1| < 1 

Then, we have 

|𝑎1−𝜏𝑎0
2| ≤

𝐸1

2
[1 + |𝑧2

+ (
𝐸2

𝐸1

− 𝑟0𝐸1 + 2𝜏𝑟0𝐸1) 𝑧1
2|]. 

After applying Lemma 1.5 to the result (11) for the 

functions, the result is sharp 

−
𝑤ℎ′(𝑤)

ℎ(𝑤)
− 1 = 𝜑(𝑤)[ℊ(2𝑤2) − 1], 

and 

−
𝑤ℎ′(𝑤)

ℎ(𝑤)
− 1 = 𝜑(𝑤)[ℊ(𝑤) − 1]. 

The proof of Theorem 2.1 is now complete. 

 

Remark2: We get the result given by Silverman et 

al.[34] by putting 𝜑(𝑤) = 1 in Theorem 2.1. 

 

Theorem 3: If ℎ(𝑤) belongs to 𝛴 satisfies 

−
𝑤ℎ′(𝑤)

ℎ(𝑤)
− 1 ≪ ℊ(𝑤) − 1, 

if 𝜏 is a complex number, then 

|𝑎1−𝜏𝑎0
2| ≤

𝐸1

2
[1 + |

𝐸2

𝐸1

| + 𝐸1|1 − 2𝜏|] . (13) 

 

Proof. In the proof of Theorem 2.1, we get the 

result by choosing 𝑧(𝑤) = 𝑤. 

 

Theorem 4: If ℎ(𝑤) given by (1) belongs to 

𝑁𝑞(𝜇, ℊ), 𝜇 ∈ ℂ\(0,1], then  

|𝑎0| ≤
𝑑𝐸1

2(1 + 𝜇)
  ,  

|𝑎1| ≤
𝑑

6(1 + 2𝜇)
(𝐸1 + 𝑚𝑎𝑥{𝐸1, 𝐸1

2 + |𝐸2|}), (14) 

and 𝜏 is any complex number, 

|𝑎1−𝜏𝑎0
2| ≤

𝑑

6(1 + 2𝜇)
(𝐸1

+ 𝑚𝑎𝑥 {𝐸1, |1 −
3(1 + 2𝜇)

2(1 + 𝜇)2
𝜏| 𝐸1

2

+ |𝐸2|}).                                  (15) 

 

Proof. If ℎ(𝑤) ∈ 𝑁𝑞(𝜇, ℊ), 𝜇 ∈ ℂ\(0,1], then there 

are analytic functions 𝑧(𝑤) and 𝜑(𝑤), with 𝑧(0) =

0, |𝑧(𝑤)| < 1 and |𝜑(𝑤)| < 1 such that 

 

1

𝑑
[
𝑤ℎ′ + (1 + 2𝜇)𝑤2ℎ′′ + 𝜇𝑤3ℎ′′′

𝑤ℎ′ + 𝜇𝑤2ℎ′′
− 1] 

= 𝜑(𝑤)[ℊ(𝑧(𝑤)) − 1].               (16) 

Since  

𝑤ℎ′ + (1 + 2𝜇)𝑤2ℎ′′ + 𝜇𝑤3ℎ′′′

𝑤ℎ′ + 𝜇𝑤2ℎ′′
− 1 

= 2(1 + 𝜇)𝑎0𝑤 + (−4(1 + 𝜇)2𝑎0
2

+ 6(1 + 2𝜇)𝑎1)𝑤2 + ⋯, 
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ℊ(𝑧(𝑤)) − 1 = 𝐸1𝑧1𝑤 + (𝐸1𝑧2+𝐸2𝑧1
2)𝑤2

+ (𝐸1𝑧3+2𝐸2𝑧1𝑧2+𝐸3𝑧1
3)𝑤3

+ ⋯, 

and 

𝜑(𝑤)[ℊ(𝑤) − 1] = 𝑟0𝐸1𝑧1𝑤

+ (𝑟0𝐸1𝑧2+𝑟0𝐸2𝑧1
2

+ 𝑟1𝐸1𝑧1)𝑤2 …, 

by from (16), we gat 

 

𝑎0 =
𝑑𝑟0𝐸1𝑧1

2(1 + 𝜇)
   ,  

𝑎1 =
𝑑

6(1 + 2𝜇)
(𝑟0𝐸1𝑧2 + 𝑟0(𝐸2 + 𝐸1

2𝑟0)𝑧1
2

+ 𝑟1𝐸1𝑧1), 

and since 𝜑(𝑤) is analytic and bounded in 𝐷, we 

get [28] 

|𝑟𝑖| ≤ 1 − |𝑟𝑖|2 ≤ 1,   (𝑖 > 0). 

Using this fact, as well as the well-known 

inequality, |𝑧1| < 1, we obtain 

|𝑎0| ≤
𝑑𝐸1

2(1 + 𝜇)
  , 

|𝑎1| ≤
𝑑

6(1 + 2𝜇)
(𝐸1 + 𝑚𝑎𝑥{𝐸1, 𝐸1

2 + |𝐸2|}). 

Thus, 

𝑎1−𝜏𝑎0
2 =

𝑑

6(1 + 2𝜇)
(𝑟1𝐸1𝑧1

+ 𝑟0 (𝐸1𝑧2

+ (𝐸2 + 𝑟0𝐸1
2

−
3(1 + 2𝜇)

2(1 + 𝜇)2
𝜇𝑟0𝐸1

2) 𝑧1
2)), 

and 

|𝑎1−𝜏𝑎0
2| ≤

𝑑

6(1 + 2𝜇)
(|𝑟1𝐸1𝑧1|

+ |𝑟0𝐸1 (𝑧2

− (
3(1 + 2𝜇)

2(1 + 𝜇)2
𝜇𝑟0𝐸1 − 𝑟0𝐸1

−
𝐸2

𝐸1

) 𝑧1
2)|). 

 

Again applying  

|𝑟𝑖| ≤ 1 − |𝑟𝑖|2 ≤ 1,   (𝑖 > 0)and|𝑧1| < 1 

Then, we have 

|𝑎1−𝜏𝑎0
2| ≤

𝑑𝐸1

6(1 + 2𝜇)
(1

+ |𝑧2

− (− (1 −
3(1 + 2𝜇)

2(1 + 𝜇)2
𝜇) 𝑟0𝐸1

−
𝐸2

𝐸1

) 𝑧1
2|). 

 

After applying Lemma 1.5 to 

|𝑧2 − (− (1 −
3(1 + 2𝜇)

2(1 + 𝜇)2
𝜇) 𝑟0𝐸1 −

𝐸2

𝐸1

) 𝑧1
2| 

yields 

|𝑎1−𝜏𝑎0
2| ≤

𝑑𝐸1

6(1 + 2𝜇)
(1

+ 𝑚𝑎𝑥 {1, |− (1

−
3(1 + 2𝜇)

2(1 + 𝜇)2
𝜏) 𝑟0𝐸1 −

𝐸2

𝐸1

|}). 

Take note of this 

|− (1 −
3(1 + 2𝜇)

2(1 + 𝜇)2
𝜏) 𝑟0𝐸1 −

𝐸2

𝐸1

|

≤ |𝑟0|𝐸1 |1 −
3(1 + 2𝜇)

2(1 + 𝜇)2
𝜏|

+ |
𝐸2

𝐸1

|, 

as a result, we can deduce that 

|𝑎1−𝜏𝑎0
2| ≤

𝑑

6(1 + 2𝜇)
(𝐸1

+ 𝑚𝑎𝑥 {𝐸1, |1 −
3(1 + 2𝜇)

2(1 + 𝜇)2
𝜏| 𝐸1

2

+ |𝐸2|}). 

 

Remark 5: By putting 𝜑(𝑤) = 1 and 𝑑 = 1, The 

above will be reduced to a |𝑎1| estimate. 

 

Theorem 6: If ℎ(𝑤) belongs to 𝛴 satisfies 

1

𝑑
[
𝑤ℎ′ + (1 + 2𝜇)𝑤2ℎ′′ + 𝜇𝑤3ℎ′′′

𝑤ℎ′ + 𝜇𝑤2ℎ′′
− 1]

≪ ℊ(𝑤) − 1,                            (17) 

the following inequalities arise as a result of this: 

 

|𝑎0| ≤
𝑑𝐸1

2(1 + 𝜇)
  ,  
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|𝑎1| ≤
𝑑

6(1 + 2𝜇)
(𝐸1, 𝐸1

2 + |𝐸2|), 

and 𝜏 is any complex number, 

|𝑎1−𝜏𝑎0
2| ≤

𝑑

6(1 + 2𝜇)
(𝐸1

+ |1 −
3(1 + 2𝜇)

2(1 + 𝜇)2
𝜏| 𝐸1

2 + |𝐸2|). 

Proof. In the proof of Theorem 1, we get the result 

by choosing 𝑧(𝑤) = 𝑤. 
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