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I. INTRODUCTIONAND DEFINITIONS
Let 3 = {w € C: |w| < 1} be an open unit disc in
C. Let H(3J) be the class of analytic functions in 3
and consider J[a, i] to be a subclass of H(J)of the
form
h(w) = a + a;w' + ag Wt +---,

where a € Candi € N={1,2,...}. Let the class
of all meromorphic functions be X of the form
h(w)=w1+ Z awt, (WweSg D
i=0
such that
I*={w:weCand 0 < |w| < 1} = 3\{0}.

The Hadamrd product for two functions in Z, such
that

kw)=wt+4+ ) w!, WeSI) (2)
2
is given by

h(w) * k(w) = w™ + Z acwt. (weIH3)

The subclass X*(y) “of the class Zare
meromorphcallystarlike functions of the y order. A
function h € X*(y) of the kind (1) if

Re {— Wh’(w)} >y. (w€eJ)

h(w)
Pommerenke [29] introduced and researched the
class 2*(y)(see also Miller [25]).
Now, we let h(w) and k(w) be analytic function
in 3.The function h(w)is said to be subordinate to a
function k(w) or k(w) is said to be superordinate
to h(w), if and only if there exists a Schwarz
function z(w) analytic in J, with z(0) =0 and
lz(w)| < 1, (w € J), such that

h(w) = k(z(w)),
written as
h<korh(w)<k(w), (weSg).

Furthermore, if the function h is univalent in S,
then we get the following equivalence h(w) <
k(w)if and only ifh(0) = k(0)and A(JI) c k(3J)
[26].
Let g(w) be an analytic function on J that satisfies
¢(0) = 1and g'(0) > 0, mapping I onto a region
that is starlike with respect to 1 and symmetric with
respect to the real axis. Let X*(y) be the set of
functions h € X for which
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wh'(w)

how) g(w).
Silverman et al. [34] proposed and investigated the
X*(g) class (see also [6, 14]). When g(w) =

HOION (0 <y < 1), the class £°(y) s a

subclass of 2*(g).
Robertson [33] developed the notion of quasi
subordination in 1970. The function h(w) is quasi-
subordinate to k(w) for two analytic functions h
and k, as written:

h(w) <4 k(w),
if analytic functions ¢ and z exist with |p(w)| <
1, z(0) = 0,and |z(w)| < 1, then

h(w) = p(W)k(z(w)).

When @(w) = 1, h(w) = k(z(w)), indicating that
h(w) < k(w) in D. It's also worth noting that if
z(w) =w, then h(w) = o(w)k(w), and h is
majorized by k, as written h(w) < k(w) in D. As
a result, it is self-evident that quasi-subordination
is a generalization of both subordination and
majorization. For works on quasi-subordination,
see [5, 15, 16, 17, 23, 32]. In this study, g is
assumed to be analytic in D, with g¢(0) = 1.

Definition 1. Let X3(g)be the class of function

h(w) € X satisfying the quasi-subordination
WEW) L gy -1 4
hw) q ¢w) — 1. (4)

Mohd and Darus [27] created and researched the
class Sg(g), which is the meromorphic analogue of
the class X3(g), which is made up of function
h(w) of the type w + X2, a; w', for which
wh'(w)

oy 1<,9w) -1 (5)
Now, we define the following class, which is
inspired by [24, 33].

Definition 2. For deC* =C\{0}andu €
C\(0,1]. Let the class N4(u,g), consists of
function
h € X satisfying the quasi-subordination

1[wh' + (1 + 2)w?h" + uw3h'"

E[ wh' + uw?h"

- 1] <, gw) — 1. (6)

The i-th coefficient of a meromorphic function h €
T is known to be restricted by i (see [13]). The
coefficient bounds provide details about the
function's geometric features. Many writers have
looked at the Fekete-Szego coefficient bounds for
different classes [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 20,
18, 19, 22, 30, 31]. The coefficient estimates for the
functions in the above-mentioned class are obtained
in this study.
LetU be the class of functions of the form

z(W) = Zyw + Z,w? + zgw3 + -,
satisfying |z(w)| < 1 forw € 3.
We'll need the lemma below to back up our
findings.

Lemma 3. [21]: If ¢ € P then |r;| < 2 for each i,
where P is the family of all functions ¢ analytic in
3 for which R{p(w)} > 0,

ow) = rg+nw +nw? +rywd + . (7)

Lemma 4. [21]: IfoW) = o+ w + ,w? +
rsw3 + .-+ forw € 3. Is function with positive real
part in 3 and 7 is complex number, then

|z, — 22| < 2max{1; |27 — 1|} (8)

Lemma 5. [21]: Ifz € U,then for any complex
number T

|z, — 127 | < max{1;|zl}. 9

The result is sharp for the functions z(w) =
wor z(w) = w2,

Il. MAIN RESULTS
Throughout, let g(w) =1+ Ew + E,w? +
Esw3 + -, E; >0and p(w) = rp + nw +
w2 + w3 +

Theorem 1: If h(w) given by (1) belongs to 2;(g),
then
|a0| S El )

E,
Zz + <E_1 - TOE1> le

and 7 is any complex number,

E
la,| S§[1+

| o

E,

E,
FE1— zf|}]. (11)

2 Ey
la,_tag| < > [1 + max {1, +
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Proof. If h(w) belongs to 23(g), then there are
analytic functions z(w) and ¢@(w),with z(0) =
0,]z(w)| < 1and |@(w)| < 1 such that

hl
) 1 = W) — 11
Since
—%V(:;) =1—agw+ (ai — 2a)w? + -,

g(zw)) =1+ E;zyw + (E 2, +E,z2)w?
+ (E1z3+2E,2, 2, +E3z3)w3

+ e
and
pW)g(z(w)) — 1]
=1,E 2w + (9B 12,41 E, 22
+rEz)w? ..., (12)
then
ag = —19E1z; ,
a, = _rozi z, +:—:Zl + (g—j - roEl)le],

and since ¢@(w) is analytic and bounded in D, we
get [28]

Inl<1—-In2<1, (i >0).
Using this fact, as well as the well-known
inequality, |z;| < 1, we obtain
lag| < E; ,

El EZ 2
la,| S; 1+ |z, + E—l—roE1 zE|.
Thus,
1 E r
2 ot1 1
a_tay =—— |z, + —z
1 0 2 2 7o 1
+ E——r0E1 + 2tryEy | z1 |,
1
and
7ol Eq |71
la,_ta| < —[ —z
1 0 2 TO 1
+ |z,
E;
+ (— - 1B, + 2TT0E1)212 ]
Ey
Since

Il <1—In?<1, (i >0)and|z]|<1
Then, we have

E
la,_ta3| < ?1 [1 +

Zy

E,
+ (— - 1E; + ZTTOEl) z2
E,

|

After applying Lemma 1.5 to the result (11) for the
functions, the result is sharp

h!
)1 = pnlgawt) ~ 1),
and
h’
) 1 = g — 11,

The proof of Theorem 2.1 is now complete.

Remark2: We get the result given by Silverman et
al.[34] by putting @ (w) = 1 in Theorem 2.1.

Theorem 3: If h(w) belongs to X satisfies
wh'(w)

"~ h(w)
if T is a complex number, then

-1<Kgw) -1,

E, E,
_taf| S = |1+ |+
la,-ta5 2[ E;

+E - 21|] .(13)

Proof. In the proof of Theorem 2.1, we get the
result by choosing z(w) = w.

Theorem 4: If h(w) given by (1) belongs to
Nq(u, ¢), 1 € C\(0,1], then
dE;

< -
9ol <531

d
la;| < m(lﬂ + max{E;, Ef + |E;[}), (14)

and 7 is any complex number,

| 5l < d E
=Tl =gy 2\ ™
3(1 + 2u)
B, |1 — o | 2
+max{ 1 2(1+/J)2T :

+ |Ez|})- (15)

Proof. If h(w) € Ny (u,¢), u € C\(0,1], then there
are analytic functions z(w) and ¢ (w), with z(0) =
0,|z(w)| < 1and |p(w)| < 1 such that

1[wh' + (1 + 2)wW2h"” + uw3n'”’
E[ wh' + uw?h" -1

= pwW)[g(z(w)) —1]. (16)
Since

wh' + (1 + 2w?h"” + uw3h'"
wh' + uw?h" -1
=2(1+ waew + (—4(1 + p)?aj
+6(1+2wWa)w? + -,
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g(z(W)) — 1 = E;zyw + (E 2, +E, 20 )w?
+ (E1z3+2E,2,2,+E3 23 )w?
+ e
and
pw)lgw) — 1] =rpEyzyw
+ (roE1 2y +1E, 22
+nEz)w? ...,
by from (16), we gat

_ drgEyzy
R T
a = m(roEﬂz +19(Ey + Efrp)zi
+ 1 E121),
and since ¢ (w) is analytic and bounded in D, we

get [28]
Inl<1-—In?<1, (i>0).
Using this fact, as well as the well-known
inequality, |z;| < 1, we obtain
dE;

<—
ol <21

<——(E E,, E? + |E,|D.
la, | _6(1+2,u)( 1 + max{Ey, E{ + |E;|})

Thus,
) d
a;_tay = m T‘1E121
+ 1 (Elzz
+ (Ez + 1yE?
3(1+ 2w 5\ s
- mlﬂ’oﬂ zi |}
and

d
la;_tag| < m(hﬁzﬂ

roEq <Zz

3(1 + 2u)
- (WWOEl —1oky

Again applying
Il <1—|n1?<1, (i >0)and|z]|<1
Then, we have

+

h-Thl =51 20

+ |z,

31+ 2w)
_ (— <1 — 72(1 FRY u) 1 E;

After applying Lemma 1.5 to

3(1 + 2p) E,
Zy — (— (1 —m/l)TOEl _E_1 Zf

yields

2 <—1 1
lar-taol < 2= 5 (

+max{1,|—(1
3(1+ 2w) E,

- T |nE, —
2(1 + w)?

Take note of this

3(1+2 E.
_<1 (—M))rogl 2

T2 +p? ) TE,
3(1 + 2u)
< E/ll———
|T0| 1 2(1+H)2T
E,
+E—1,
as a result, we can deduce that
jay_radl < 2 (E
h-Thl =gy 2\
3(1+2uw)
Ey, |1 — ——S1|E?
+max{ 15 2(1+M)2T 1

+151})

Remark 5: By putting ¢(w) =1 and d =1, The
above will be reduced to a |a, | estimate.

Theorem 6: If h(w) belongs to X satisfies
1[wh' + (1 + 2)w?h" + uw3h'"’
E[ wh' + uw?h" -1
Lgw) -1, 17
the following inequalities arise as a result of this:

dE
lagl < =——,
21+
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d
la;| < m(EpEf + |Ez)),

and t is any complex number,
5 d

|a1_ra0| < m(El

—%T E? + |E2|).

Proof. In the proof of Theorem 1, we get the result

by choosing z(w) = w.
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