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1. Introduction

In engineering and

solving such problems [1-2].

There are many numerical methods to solve such

dimensional
- dimensional integral
equations can be solved by using some of these
methods. For example,method of Degenerate Kernel
Method used to solvethree-dimensionalnon- linear
[13],
differential transform method was used to solve non-
Shifted
Polynomialsmethodare used for solving TDVIE] 16].
In this study, we describe another numerical method
to solve TDVIE by designing a feed forward neural

especially two
[3-12]. Three

equations
equations,

Volterra integral equations

linear TDVIE, and

science
multidimensional integral and differential equations
proved to be an important tool for modeling and

Abstract

The aim of this paper 1is present a new numerical method for

solvingThree Dimensions Volterra Integral Equations using artificial
neural network by design multilayer feed forward Neural Network. A
multi- layers design in our proposed method consist of a hidden layer
having seven hidden units and one linear output unit. Linear Transfer
function used as each unit and wusing Levenberg-
Marquardtalgorithmtraining. Moreover, examples on three- dimensional
Volterra integral equations carried out to illustrate the accuracy and the
efficiency of the presented method. In addition, some comparisons
among proposed method and Shifted Chebyshev Polynomials method
and Reduced Differential Transform Method are presented.

problems, neurons(nodes equivalent to neurons of a human
brain) that are joint together dependent on particular
network -architecture. The goal of the neural network

is to transform the inputs into significativeoutputs .

In another words (ANN) is an interconnected system
of nodes by weighted arrows (equivalent to synapses
between neurons). The outcome of (ANN) altered by
changing of the arrow’s weights. The result of the
network for the data that fed to the input layer
displayed by the output layer. The input nodes
(represent the independent variables)that used for
predicting the dependent variable (i.e. the out
neurons).

n [17], (ANN) characterized by:

1- "Its pattern of connections between the neurons
(called its architecture)".

integral

in [14-15]

Chebyshev

network. Therefore, we consider the following 2- "Methods of determining the weights on the
TDVIE: connections (called its training or learning,
u(x,y,z) = algorithm)".

fx,y,2) + 3- "Its activation—function".

foz foy fOxK(x, y,2,1,5,t) u(r, s, t) drdsdt
(x,v,z) € D =[0,X] x
function to be
f(x,y,2)are

where
u(x,y,z) is the unknown
found,K (x,y, z,1, s, t)and
functions defined, respectively on D.

2. Artificial Neural Network (ANN)

from many

An  (ANN) formed

2.1 Neural Network Structure:

The structure or topology of an artificial neuron
network means the way of regulation of neuronal
computational cell in the network. Particularly how
the information transmitted though the network
Figure 1 and how the nodes are connected. The
architecture can by classified in terms of three aspects

ey
[0,Y] % [0,Z],
given

artificial
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(Number of levels or layers, Connection pattern and
Information flow).

Fliddben
Layer

g
laser

LTI
laxer

Tropani #1

Inpul 42 Chinpi

Fropan W%

Fig. (1): Neural Network Structure

2.2 Linear Transfer Function (purelin)
The output of a linear transfer function is equal to its
input:

a=n

as illustrated in figure 2.

@ = pairadin fwp+ bj

Linzar Transfer Functon Single-Input prirelin Neuron

Fig. (2) Linear Transfer Function

2.3Levenberg Marquardt Algorithm Training
(trainlm)

Training neural network is basically a nonlinear
squares problem, so can be solved by using a several
nonlinear least squares algorithms.One of them is
(LMA).We can consider (LMA) as a combination of
the Gauss — Newton method and steepest descent.

For (LMA), the performance index to be optimized as
F(w) = 5:1[Z£=1(dkp - Okp)2] (2)

Where w=[w; w, ...WN]T consists of all weights of
the network, dy, is the desired value of the k™ output
and the p" pattern, oy, is the actual value of the k"
output and the p™ pattern, N is the number of the
weights, P is the number of pattern, and K is the
number of the network output.

Equation (2) can be written as follows:

Fw)=ETE (3)

Where E = [611 e €1€12 €k e €1y ...ekp]T, expls
the trainingerror atoutput k when applying pattran p
and defind as ey, = dy;, — 0xp

p=1,---,P.E is the cumulative error vector (for all
pattern). From equation (3) the weights are calculated
using the following equation

Wt = we — (U)o + DL E,
and the jacobian matrix is defined as

C)
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deqy Oeyy deq,
Oowy 8wy owy
Bey  Bey dey
8\’? 1 8W2 GWN
BEKI 3em 8eK1
8\’? 1 8W2 GWN
F=1 = : : (5)
aelp 8eIP aelP
8\’? 1 8W2 f}wN
desp  Oeqgp deypp
Owy 8wy owy
degp Oegp degp
| 6wy 8w, Owy |

where Iidentity unit matrix, p the learningparameter
andJjacobian of m out- put error of the neural
network with respect to n weights, respectively. At
each iteration the u parameter automatically adjusted
in order to secure convergence, the calculation of the
jacobian matrix J and the inverse of JTJ square
matrix of order N X N at each iteration step are the
requirement of LMA.

3. Description of Method

In the current section, we will demonstrate conducing
our approach to be used the approximation solution of
the TDVIE.

u(x,y,z) =

flx,y,2) +

fOZ foy fox K(x,y,z,71,st)u(r,s,t)drdsdt

where (x,y,z) € D = three dimension = [0,X] X
[0,Y] x [0,Z], and u(x,y,z)is unknown function to
be found.Ifu,(x,y,z,p) is a trial solution with
adjustable parameters p, the discretized from

Min ¥y, y,zen f (%0 y:,21) +

JO K O vz, 8,t) ue(r, s, t,p) drdsdt
Where x ,y ,z is variables such that(x,y,z) € D=

three dimension=[0, X] x [0,Y] % [0, Z].

In the our proposed approach, the trial solution

uscorresponds FFNN and the
parameterspemploysbiases and weights of the neural-
architecture, the form for the trial-function u,(x, y, z)
is w, (%, 1,2, 0) = G(x,y,2,N(x,y,2,p))

where N(x,y,z,p)is a single output FFNN with
parameter p and n input unit feed with the input
vectors x,y,z.The term G 1is constructed, since
u(x,y,z) satisfy them. This term can be formed by
using a (ANN) whose biasesand weights are adjusted
in order to deal with the minimization problem. The
Minimized have form

E(p) =

Ve —

S (f (e yiz) +

fOZ‘ foy‘ fox‘ K(x, yi, 2 uc(r, s, 1)) drdsdt)}2
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4.Applications to three dimensions volterra
integral equation

To demonstrate the efficiency of the proposed
method (ANNM), we consider the following
examples and to test the accuracy of solutionsusing
mean square error MSE.All programing written in the
MatLab to computed the results.

Example4.1

Consider the (TDVIE)

u(x:y' Z) = f(x'y,Z) - J‘OZ foy foxu(r. S, t) drdsdt

ISSN: 1813 — 1662 (Print)
E-ISSN: 2415 — 1726 (On Line)

where (x,y,2) € [0,1] x [0,1] x [0,1]
2 2 2

And  f(x,y,2) =x+y+z+w

has analytic function
ulx,y,z) = x+y+z
by applying suggested method Table (1) shows the
exact, neural result, error, and men square error.
Table (2) given the weight, bias, Epoch, time and
performance. of the network.

Table (1): exact, neural and Accuracy of solution example (4.1)

X] Y Z Exact u,(x,y,2z) | Trainlmu,(x,y,2) | Error = |u; — ug|

0.1 0.1 0.1 3.0000e-001 2.9990e-001 9.6546¢-005
0.01 0.1 0.1 2.1000e-001 2.0999¢-001 7.4557e-006
0.01 0.01 0.1 1.2000e-001 1.2000e-001 2.2235e-007
0.01 0.01 0.01 3.0000e-002 3.0000e-002 9.6546e-009
0.001 | 0.01 0.01 2.1000e-002 2.1000e-002 7.4557e-010
0.001 | 0.001 | 0.01 1.2000e-002 1.2000e-002 2.2235e-011
0.001 | 0.001 | 0.001 3.0000e-003 3.0000e-003 9.6546e-013

MSE 1.34¢-009

Table (2): weight, bias, Epoch, time and performance of the network

weight and bias Epoch, time and performance
Net IW[1,1] Net LW[1,2] | Net B[1] | Epoch time performance
0.4177 | 0.6665 | 0.8819 0.8555 0.00
0.9831 | 0.1781 | 0.6692 0.6448 0.00
0.3015 | 0.1280 | 0.1904 0.3763 0.00 9 0.00.02 1.03e-33
0.7011 | 0.9991 | 0.3689 0.1909 0.00
0.6663 | 0.1711 | 0.4607 0.4283 0.00
0.5391 | 0.0326 | 0.9816 0.4820 0.00
0.6981 | 0.5612 | 0.1564 0.1206 0.00
Example 4.2 x%y?z? | x3y’z
Consider the (TDVIE). 8 6 /. .
u(x,y,z) = whichhasanalyticsolution

f(x,y,2) — 24x?%y foz foy foxu(r, s, t) drdsdt
Where (x,y,z) € [0,1] x [0,1] x [0,1].

2,3
fxy,2) = x?y +yz* + xyz + 24x%y (L +

And

u(x,y,z) = x%y + xyz + yz*

by applying suggested method Table (3) shows the
exact, neural result, errorand men square error . Table
(4) given the weight, bias, Epoch, time and
performance of the network.

Table (3): exact, neural and Accuracy of solution example (4.2)

X\ Y V4 Exact u,(x,y,2) | Trainlmu,(x,y,z) | Error = |u; — u,|

0.1 0.1 0.1 3.0000e-003 2.9601e-003 3.9873e-005
0.01 0.1 0.1 1.1100e-003 1.1100e-003 3.8101e-008
0.01 0.01 0.1 1.1100e-004 1.1100e-004 3.6387e-010
0.01 0.01 0.01 3.0000e-006 3.0000e-006 3.4274e-011
0.001 | 0.01 0.01 1.1100e-006 1.1100e-006 3.4096e-014
0.001 | 0.001 | 0.01 1.1100e-007 1.1100e-007 3.3924e-016
0.001 | 0.001 | 0.001 3.0000e-009 3.0000e-009 3.3713e-017

MSE 2.27e-010

Table (4): weight, bias, Epoch, time and performance of the network

weight and bias Epoch, time and performance
Net ITW[1,1] Net LWJ[1,2] | Net B[1] | Epoch time performance
0.4401 | 0.9577 | 0.2548 0.0067 0.4609
0.5271 | 0.2407 | 0.2240 0.6022 0.7702
0.4547 | 0.6761 | 0.6678 0.3868 0.3225 10 0.00.01 9.67e-10
0.8754 | 0.2891 | 0.8444 0.9160 0.7847
0.5181 | 0.6718 | 0.3445 0.0012 0.4714
0.9436 | 0.6951 | 0.7805 0.4624 0.0358
0.6377 | 0.0680 | 0.6753 0.4243 0.1759
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Example 4.3:
Let the following (TDVIE)[15]

u(x:y' Z) = f(x!y:Z) + foz foy fOXU(T, S, t) drdsdt
where (x,y,2) € [0,1] x [0,1] x [0,1].
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hasanalyticsolution

u(x’ y, Z) — ex+y+z

by applying suggested method Table (5) shows the
exact, neural result, error,and men square error. Table

and  f(x,y,2z) = XtV + e*t7 4 eVt — X — ¥ — (6) given the weight, bias, Epoch, time and
e? + 1. performance of the network.
Table (5): Exact, neural and Accuracy of solution example (4.3)
X| Y V4 Exact u,(x,y,2) | Trainlmu,(x,y,z) | Error = |u, — u,|
0.1 0.1 0.1 1.3499¢+000 1.3507e+000 1.8419¢-004
0.01 0.1 0.1 1.2337e+000 1.2338e+000 8.5500e-005
0.01 | 0.01 0.1 1.1275e+000 1.1275e+000 8.3164e-006
0.01 | 0.01 | 0.01 1.0305e+000 1.0305e+000 1.6259¢-007
0.001 | 0.01 | 0.01 1.0212e+000 1.0212e+000 7.8907e-008
0.001 | 0.001 | 0.01 1.0121e+000 1.0121e+000 7.8634e-009
0.001 | 0.001 | 0.001 1.0030e+000 1.0030e+000 1.6224e-010
MSE 1.13 e-007
Table (6): weight, bias, Epoch, time and performance of the network
weight and bias Epoch, time and performance
Net IW[1,1] Net LW[1,2] | Net B[1] | Epoch | Time | performance
0.9138 | 0.1704 | 0.4022 0.3508 0.2992
0.7067 | 0.2578 | 0.6207 0.6855 0.4526
0.5578 | 0.3968 | 0.1544 0.2941 0.4226 8 0.00.02 5.63e-07
0.3134 | 0.0740 | 0.3813 0.5306 0.3596
0.1662 | 0.6841 | 0.1611 0.8324 0.5583
0.6225 | 0.4024 | 0.7581 0.5975 0.7425
0.9879 | 0.9828 | 0.8711 0.3353 0.4243

To study accurate and efficient. Know comparison
amongsuggest method (ANNM) with Shifted
Chebyshev Polynomial method (SCPM) [16] and

Reduced differential Transform method (RDTM)

[14]. depended on absolute error.

Table (7): Absolute error of (SCPM), (RDTM) and (ANNM).

X| v 7 Exactu(x,y,z) | SCP RDT ANN
Method Methodu, method
0.1 0.1 0.1 1.3499¢+000 3.3089¢-002 | 2.0875e-004 | 1.8419e-004
0.01 | 0.1 0.1 1.2337e+000 2.1664e-002 | 1.9079¢-004 | 8.5500e-005
0.01 |0.01 | 0.1 1.1275e+000 1.1933e-002 | 1.7437¢-004 | 8.3164e-006
0.01 [0.01 | 0.0l | 1.0305e+000 3.6683¢-003 | 1.7045e-007 | 1.6259e-007
0.001 | 0.01 | 0.01 | 1.0212e+000 2.5502e-003 | 1.6893e-007 | 7.8907e-008
0.001 | 0.001 | 0.01 | 1.0121e+000 1.4508e-003 | 1.6741e-007 | 7.8634e-009
0.001 | 0.001 | 0.001 | 1.0030e+000 3.6986¢-004 | 1.6704-0010 | 1.6224e-010
Conclusion some examples that solved by other methods

Analytic solution of (TDVIE) are usually difficult,
many cases required numerical solutions. In this
paper, we introduced a new numerical method to
solve TDVIE. The results indicate minimal mean
square errorandwerecompared with the solution for
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