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Abstract

Let P(G, \) be the chromatic polynomial of a graph G. Two graphs
G and H are said to be chromatically equivalent, denoted G ~ H, if
P(G,\) = P(H,\). We write |G] = {H|H ~ G}. If [G] = {G}, then G
is said to be chromatically unique. In this paper, we first characterize
certain complete 6-partite graphs G with 6n + ¢ vertices for ¢ = 0,1,2
according to the number of 7-independent partitions of GG. Using these
results, we investigate the chromaticity of G with certain star or match-
ing deleted. As a by-product, many new families of chromatically unique
complete 6-partite graphs G with certain star or matching deleted are
obtained.
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1 Introduction

All graphs considered here are simple and finite. For a graph G, let P(G,\)
be the chromatic polynomial of G. Two graphs G and H are said to be
chromatically equivalent (or simply x—equivalent), symbolically G ~ H, if
P(G,\) = P(H, \). The equivalence class determined by G under ~ is denoted
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by [G]. A graph G is chromatically unique (or simply y—unique) if H = G
whenever H ~ G, i.e, [G] = {G} up to isomorphism. For a set G of graphs,
if [G] C G for every G € G, then G is said to be y—closed. Many families of
x-unique graphs are known (see [5,6,7]).

For a graph G, let V(G), E(G), t(G) and x(G) be the vertex set, edge set,
number of triangles and chromatic number of G, respectively. Let O, be
an edgeless graph with n vertices. Let Q(G) and K(G) be the number of
induced subgraph Cj and complete subgraph K, in G. Let S be a set of
s edges in G. By G — S (or G — s) we denote the graph obtained from G
by deleting all edges in S, and (S) the graph induced by S. For ¢ > 2 and
1 <ny <ng <--- < nylet K(ny,ng,---,n;) be a complete t—partite graph
with partition sets V; such that |V;| = n; fori =1,2,---,¢. In [2-4,8,9,12-15,17-
19], the authors proved that certain families of complete t-partite graphs (¢ =
2,3,4,5,6) with a matching or a star deleted are x-unique. In particular, the
authors in [2,13-15] determined the chromaticity of complete 6-partite graphs
with a matching or a star deleted and leaving the general cases undecided.
This paper aims to study the chromaticity of complete 6-partite graphs G
with 6n + ¢ vertices for i = 0,1, 2 and thus generalize some results in [13-15].
We first characterize certain complete 6-partite graphs G with 6n + ¢ vertices
for i = 0, 1, 2 according to the number of 6-independent partitions of GG. Using
these results, we investigate the chromaticity of G with certain star or matching
deleted. As a by-product, many new families of chromatically unique complete
6-partite graphs with certain star or matching deleted are obtained.

2 Some lemmas and notations

Let K~*(ni,ng,---,n;) be the family {K(ni,no,---,ny) — S| S C
E(K(ny,ng,---,n;)) and |S| = s}. For ny > s+ 1, we denote
by KZ:jKl’S(nl, na, -+ +,ng) (respectively, KJKQ (ny,ns,---,ng)) the graph in
K~*(ny,ng,---,ny) where the s edges in S induced a K, with center in V;
and all the end vertices in V; (respectively, a matching with end vertices in V;
and V).

For a graph G and a positive integer r, a partition {A;, As,---, 4.} of V(G),
where 7 is a positive integer, is called an r-independent partition of G if every
A; is independent of G. Let «(G,r) denote the number of r-independent
partitions of G. Then, we have P(G,\) = >'_, a(G,r)(\),, where (\), =
AA=1)(A=2)---(A—=r+1) (see [11]). Therefore, a(G,r) = a(H,r) for each
r=1,2--, if G~ H.
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For a graph G with p vertices, the polynomial o(G,z) = YP_, a(G,r)z" is
called the o-polynomial of G (see [1]). Clearly, P(G,\) = P(H,\) implies
that o(G,z) = o(H, x) for any graphs G and H.

For disjoint graphs G and H, G + H denotes the disjoint union of G and H.
The join of G and H denoted by G V H is defined as follows: V(G V H) =
V(G)UV(H); E(GVH)=FEG)UEH)U{zy |z € V(G),y € V(H)}. For
notations and terminology not defined here, we refer to [16].

Lemma 2.1 (Koh and Teo [6]) Let G and H be two graphs with H ~ G,
then |V(G)| = [V(H)|, |E(G)] = |E(H)|, #(G) = t(H) and X(G) = x(H).
Moreover, a(G,r) = a(H,r) for r = 1,2,3,4,---, and 2K(G) — Q(G) =
2K(H)— Q(H). Note that x(G) = 3 then G ~ H implies that Q(G) = Q(H).

Lemma 2.2 (Brenti [1]) Let G and H be two disjoint graphs. Then
o(GV H,z) =0(G,x)o(H,x).

In particular,

o(K(ny,ng, -, n),x) = Ha(Oni,x)

Lemma 2.3 (Brenti [1]) Let G = K(ny,na,ng,---,n;) and o(G,z) =
Yoes1a(G,r)x". Then ofG,r) = 0 for 1 < r <t -1, a(G,t) = 1 and
a(Git+1) =Yt 2mt — ¢,

Let 27 < 29 < x5 ry < x5 < wg be positive integers and
{Z4i), Tiyy Tig, Tiy, Tis, Tig + {1, 29,23, 24, x5,26}. If there are two ele-
ments z;, and x;, in {xi,xs, 3,4, x5, 26} such that x;, — x;, > 2, then
H = K(x;, + 1,z — 1,24, 24,25, i} 1s called an improvement of H =
K($1,$2,3§'3,$4,$5,$6).

[NV

Lemma 2.4 (Chen [2]) Suppose vy < x93 < 23 < x4 < 25 < x
and H = K(x;, + 1,25, — 1,24, %, iy, Tig b iS an improvement of H =
K(x1, 29, 13,24, 25,76). Then

o

Q(H,7) — a(H',T) = 2722 — 2%a—1 > 9w —1,

Let G = K(nqy,ng, ng, ng,ns,ng). For a graph H = G — S, where S is a set of
some s edges of G, define o/ (H) = a(H,7) — a(G, 7). Clearly, o/(H) > 0.
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Lemma 2.5 (Chen [2]) Let G = K(ny,ng,ng,ng, ns,ng). Suppose that min
{nili =1,2,3,4,5,6} > s+1>1and H=G — S, where S is a set of some s
edges of G. Then

s<d(H)=a(H,T) —a(GT7) <2°—1,

o (H) = s iff the set of end-vertices of any r > 2 edges in S is not independent
in H, and o/'(H) = 2° — 1 iff S induces a star K, 4 and all vertices of K s
other than its center belong to a same A;.

Lemma 2.6 (Dong et al. [4]) Let ni,ny and s be positive integers with 3 <
n1 < no, then

(1) K;fl’s(nl,ng) is x-unique for 1 < s <mng — 2,
(2) K;lKl’S(nl,ng) is x-unique for 1 < s <mnj; —2, and
(3) K=552(ny, ny) is x-unique for 1 < s <nj — 1.

Lemma 2.7 (Lau and Peng [9]) Let s; (1 < i <t) be positive integers. Then

£)-C) g

=j+1
For a graph G € K~ %(ny,ng, -+, ny), we say an induced Cy subgraph of G is of
Type 1 (respectively Type 2 and Type 3) if the vertices of the induced Cy are
in exactly two (respectively three and four) partite sets of V(G). An example
of induced Cjy of Types 1, 2 and 3 are shown in Figure 1.

FIGURE 1. Three types of induced C4

Suppose G is a graph in K~°(ny,ng,---,ny). Let S;; (1 <i<t,1<j<t)be
a subset of S such that each edge in S;; has an end-vertex in V; and another
end-vertex in V; with |S;;| = s;; > 0.
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Lemma 2.8 (Lau and Peng [10]) For integert > 3, Let F' = K(ny,ng, - -+, mny)
be a complete t-partite graph and let G = F' — S where S is a set of s edges in
F. If S induces a matching in F', then

QAG) = QM= ¥ (-1 Vsg+ (3= T ss-

1<i<j<t 1<i<j<I<t

n
¥ st 3 [ ¥ (3)]4
1<i<j<t 1<i<j<t-  ke{ij}
1<k<i<t

i<k

}: SijSkl,
1<i<j<t
1<i<k<I<t

J ¢ {k 1}
and
K(G) = K(F)— Y, {%j > "H”]+
1<i<j<t 1<k<I<t

{i,j}ﬂ{k,l} =0

E: SijSki-
1<i<j<t
1<i<k<i<t

i ¢k}

By using Lemma 2.8, we obtain the following.

Lemma 2.9 Let F' = K(ny,ng, ng, ng,ns,ng) be a complete 6-partite graph
and let G = F — S where S is a set of s edges in F. If S induces a matching
m F, then

QG) = QF)— > (ni—1)(nj—1)s;; + <;> — S12(813 + S14 + 515 + S16 + S23 +

1<i<j<6

Sos + Sa5 + S26) — S13(S14 + 815 + S16 + S23 + 534 + S35+ S36) — S14(S15 + S16 +
Soa 4 834 + Sa5 + S46) — 515(S16 + S25 + S35 + Sa5 + S56) — S16(526 + S36 + Sa6 +
S56) — S23(S24 + So5 + So6 + S34 + S35 + S36) — S24(S25 + S26 + S34 + Sa5 + Sa6) —
S25(S26 + S35 + S5 + S56) — S26(S36 + Sa6 + S56) — S34(S35 + S36 + Sa6) —

S35(S36 + S45 + S56) — S36(S46 + S56) — Sa5(S46 + S56) —

n
546556 + Z |:8ij Z <2k>:|7
1<i<j<6'  k¢{ij}

and

K(G) = K(F)- Z {Sij Z nknl] + S12(S34 + S35 + S36 + Sas + Sa6 + S56) +
1<i<j<6 1<k<1<6
{5} n{k,1} =0
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S13(S24 + S25 + S26 + Sas + Sa6 + Sz6) + S14(S23 + S25 + S26 + S35 + S36 + Ss6) +
S15(823 + S24 + So6 + S34 + S36 + S46) + S16(S23 + Soq + So5 + S34 + S35+ Su5) +
S23(Sa5 + Sa6 + S56) + S24(S35 + S36 + S56) + S25(S34 + S36 + Sas) +

(

S26(S34 + S35 + Sa5) + S34556 + S35516 + S36545-

3 Characterization

In this section, we shall characterize certain complete 6-partite graph G =
K (ny,ng,n3, ng, ns,ng) according to the number of 7-independent partitions
of G where ng — ny < 4.

Theorem 3.1 Let G = K(ny,ny,ng,ng, ns,ng) be a complete 6-partite graph
such that ny + ny + n3 + ny + ns + ng = 6n and ng —ny < 4. Define (G) =
(G, 7) — 2nt — 27 4 6] /2772, Then

(i) 0(G) =0 if and only if G = K(n,n,n,n,n,n);

(ii) (G

1 if and only if G = K(n — 1,n,n,n,n,n+ 1);

(iii) 0(G) =2 if and only if G = K(n—1,n—1,n,n,n+1,n+1);

(iv) (G

5 if and only if G = K(n—2,n,n,n,n+ 1,n+1);

3ifand only if G=Kn—1,n—1,n—1,n+1,n+1,n+1),

(vi) (G

35 if and only if G = K(n—2,n—1,n,n+1,n+1,n+1);

(vii) 0(G) =4 if and only if G = K(n — 1,n— 1,n,n,n,n + 2);

(viii) (G zfand only if G=K(n—3,n,n,n+1,n+1n+1);

(
(
(
(
(v) 0(G
(
(
(
(

(iz) (G

% if and only if G = K(n —2,n,n,n,n,n+ 2);

)=
)
)
)
)
)
)
)
)
)

(xr) 0(G) =5 if and only if G = K(n—1,n—1,n—1,n,n+ 1,n+ 2) or
G=Kn-2,n—-2n+1n+1,n+1,n+1);

(zi) (G) =57 if and only if G = K(n—3,n,n,n+1,n+1,n+1);

(zit) 0(G) =535 if and only if G = K(n—2,n—1,n,n,n+1,n+ 2);
(ziti) O(G) =65 if and only if G =K(n—2,n—1,n—1,n+1,n+1,n+2);
(ziv) O(G) =T if and only if G = K(n —2,n—2,n,n+ 1,n+1,n+ 2);
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(zv) O(G) =8 if and only if G = K(n—1,n—1,n—1,n—1,n+2,n+2);

(zvi) 0(G

83 if and only if G =K(n—2,n—1,n—1,n,n+2,n+2);

(zvii) O(G

9 if and only if G = K(n—2,n—2,n,n,n+2,n+2);

10 if and only if G=K(n—2,n—2,n—1,n+1,n+2,n+ 2);

(ziz) 0(G) =11 if and only if G = K(n — 1,n—1,n —1,n,n,n+ 3);

(xz) 0(G

12 if and only if G=K(n—1,n—1,n—1,n—1,n+1,n+3);

)
)
)
(zviii) 0(G)
)
)
)

(zzi) 0(G

13% if and only if G=K(n—2,n—2,n—-2n+2n+2n+2).

Proof. In order to complete the proof of the theorem, we first give two tables

for the 6-value of various complete 6-partite graphs with 6n vertices as shown
in Tables 1 and 2.

G; (1 <i<21) 0(G;) | G; (22 <i<42) 0(G;)
Gy =K(n,n,n,n,n,n) 0 Goo=K(n—-2,n—2,n,n+1,n+1,n+2) 7
Gy =K(n-1,n,n,n,n,n+1) 1 Gogs=K(n-3,n—1,n+1,n+1,n+1,n+1) 51
Gz =K(n—-1,n—1,n,n,n+1,n+1) 2 Goy =K(n—-3,n—1,n,n+1,n+1,n+2) 7%
Gy =Kn-2,n,n,n,n+1,n+1) 2% Gos =K(n—-—2,n—2,n,n,n+2,n+2) 9
Gs =K(n—1,n—1,n,n,n,n+2) 4 Gog=K(n—2,n—2,n,n,n+1,n+ 3) 13
Gg =K(n—-2,n,n,n,n,n+2) 4% Gor=K(n—-3,n—1,n,n,n+2,n+2) 9%
Gr=Kn—-1,n—1,n—1,n+1l,n+1,n+1) 3 Gog =K(n—3,n—1,n,n,n+1,n+ 3) 13%
Gg=K(n-1,n—1,n—1,n,n+1,n+2) 5 Gog=K(n—-4,n,n+1,n+1,n+1,n+1) 6l
Gg=K(n-2,n—1,n,n+1,n+1,n+1) 3% Gzop=K(n—-4,n,n,n+1,n+1,n+2) 8%
Gio=Kn—-2,n—1,n,n,n+1,n+2) 5% G331 =K(n—4,n,n,n,n+2,n+2) 10%
Gi1 =K(n-3,n,n,n+1,n+1,n+1) 4% Gzo = K(n—4,n,n,n,n+1,n+3) 14%
G2 =K(n—-3,n,n,n,n+1,n+2) 6% Gzgz3=K(n—-1,n—1,n—1,n—1,n,n+4) 26
Gizs=K(n-1,n—1,n—1,n,n,n+3) 11 Gzgs=K(n-2,n—1,n—1,n,n,n+4) 26%
Gig=K(n-2,n—1,n,n,n,n+3) 11% G3s = K(n—2,n—2,n,n,n,n+4) 27
Gi5 =K(n—3,n,n,n,n,n+ 3) 12% Gzg =K(n—-3,n—1,n,n,n,n+4) 27%
Gig=K(n-2,n—1,n—1,n+1,n+1,n+2) 6% Gz7 = K(n—4,n,n,n,n+1,n+3) 14%
Gir=Kn—-1,n—1,n—1,n—1,n+1,n+ 3) 8 G3gs = K(n—4,n,n,n,n,n+4) 28%
Gigs=K(n—-1,n—1,n—1,n—1,n+1,n+ 3) 12 Gzg=K(n—-2,n—-2,n—1,n+1,n+2,n+2) 10
Gio=K(n—-2,n—1,n—1,n,n+1,n+3) 124 Guo=K(n-2n-—2n—-1,n+1,n+1,n+3) 14
Gogo=K(n—2,n—1,n—1,n,n+2,n+2) 81 Gy =K(n—-3n—1,n—1,n+1,n+2,n+2) 101
Gy =K(n—-2,n—2,n+1,n+1,n+1,n+1) 5 Ggo=K(n-3,n—1,n—1,n+1,n+1,n+3) 14%

Table 1: Some complete 6-partite graphs with 6n vertices and their #-values.

By the definition of improvement, we have the followings:

(1) Gy is the improvement of Gy and G3 with 0(Gs) = 1;

(2) G;is the improvement of G, G4, G5 and G with 0(G3) = 2, 0(G,) = 2%,

(3) Gj is the improvement of G4, G5, G7, Gg, Gg and Gy with 0(Gy)
0(Gs) =4, 0(G7) = 3, 0(Gs) =5, 0(Gy) = 35 and 6(G1g) = 53;

1
27
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G; (43 <1 < 69) 0(G;) | G; (70 <i<95) 0(G;)
Giz=Kn—-2,n—1,n—1,n—1,n+2,n+3) 151 Gro=K(n—-3,n—3,n+1L,n+1,n+2,n+2) 121
Ggga=K(n-2,n—1,n—1,n—-1,n+1,n+4) 27% Gr1=K(n-3,n—-3,n+1,n+1,n+1,n+3) 16%
Gys =K(n—2,n—2,n—1,n,n+2,n+3) 16 Gro=Kn—-4,n—-2,n+1,n+1,n+2,n+2) 123
Gy =K(n—-2,n—2,n—1,n,n+1,n+4) 28 Grs3=K(n—-4,n—2,n+1,n+1,n+1,n+ 3) 162
Gy =K(n—-3,n—1,n—1,n,n+2,n+3) 161 Gy =Kn—-3,n-3,n,n+2,n+2,n+2) 14i
Gygs =K(n—-3,n—1,n—1,n,n+1,n+4) 28% Grs=K(n—-3,n—3,n,n+1,n+2,n+3) 18%
Giao=Kn—-3,n—-2n+1,n+1,n+1,n+2) 8% Grg=K(n—4,n—2,n,n+2,n+2,n+2) 143
G50 =K(n—-3,n—2,n,n+1,n+2,n+2) 9= Grr=Kn—-4,n—-2,n,n+1,n+2,n+3) 182
Gs1 =K(n—-3,n—2,n,n+1,n+1,n+3) 144% Grgs=Kn—-5n—-1,n+1l,n+1,n+2,n+2) 131i6
Gso =K(n—4,n—1,n+1,n+1,n+1,n+2) 9% Grg=K(n—-5n—1,n+1,n+1,n+1,n+3) 174
Gs3 =K(n—3,n—2,n,n,n+2,n+3) 163 Ggo=K(n—5n—1,n,n+2,n+2,n+2) 15k
Gss =K(n—3,n—2,n,n,n+1,n+4) 175 Gg1 =K(n—5n—1,n,n+1,n+2,n+3) 194
Gss =K(n—4,n—1,n,n+1,n+2,n+2) 11d Ggo=K(n—6,n+1,n+1,n+1,n+1,n+2) 124
Gsg =K(n—4,n—1,n,n,n+2,n+3) 17% Ggs=K(n—6,n,n+1,n+1,n+2,n+2) 1455
Gs7=K(n—-4,n—1,n,n+1,n+1,n+ 3) 15% Ggg =K(n—-6,n,n+1,n+1,n+1,n+3) 16
Gsg =K(n—4,n—1,n,n,n+1,n+4) 294 Ggs = K(n—6,n,n,n+2,n+2,n+2) 165
Gsg =K(n—5,n+1,n+1,n+1,n+1,n+1) 845 Ggg = K(n—6,n,n,n+1,n+2,n+3) 2035
Ggop=K(n—-5nn+1,n+1,n+1,n+2) 10% Ggr=K(n—-3,n—2,n—2,n+2,n+2,n+3) 21%
Ge1 =K(n—5,n,n,n+1,n+2,n+2) 124 Ggg =K(n—4,n—3,n+1,n+2,n+2n+2) 163
Ggo = K(n—5,n,n,n+1,n+1,n+ 3) 16 45 Ggg=K(n—4,n—3,n+1,n+1,n+2,n+3) 208
Ges = K(n —5,n,n,n,n+2,n+ 3) 18k Goop=K(n—5n—2,n+1,n+2,n+2n+2) 162
Gea=K(n—2,n—2,n—2,n+2,n+2,n+2) 131 Ggr=K(n—5n—-2,n+1,n+1,n+2n+3) 20 75
Ges =K(n—2,n—2,n—2,n+1,n+2n+3) 174 Gogo=K(n—6,n—1,n+1,n+2,n+2n+2) 174
Ges =K(n—3,n—2,n—1,n+2,n+2,n+2) 132 Gos=K(n—6,n—1,n+1,n+1,n+2,n+3) 2155
Ggr =K(n—-3,n—2,n—1,n+1,n+2,n+3) 17% Gggs=K(n—-7,n+1,n+1,n+1,n+2,n+2) 16&
Ges =K(n—4,n—1,n—1,n+2,n+2,n+2) 141 Gos =K(n—T,n+1,n+1,n+1,n+1,n+3) 2044
Geo=K(n—4,n—1,n—1,n+1,n+2,n+3) 18%

Table 2: Some complete 6-partite graphs with 6n vertices and their #-values.

(4)

()

(10)

Gy is the improvement of Gg, Gy, G1o, G11 and Gio with 0(Gg) = 42
Q(Gg) = 3%, Q(Glo) = 5%, Q(GH) = 4% and 9(012) = 6%,
G5 is the improvement of GG; Gg, G107 G13 and G14 with Q(GG) = 41
Q(Gg) = 5, Q(Glo) = 5%, Q(Glg) =11 and 9(G14) = 11%,

Gg is the improvement of Gig, Gi2, G4 and G5 with 6(Gyy) = 5%7
0(G12) = 61, 0(Gr4) = 112 and 0(G15) = 123;

G+~ is the improvement of Gg, Gg and G with 0(Gs) = 5, 0(Gy) = 3
and Q(Gm) = 6%

1
2

Gs is the improvement of Gio, Gz, Gis, Gir, Gis, Gig and G with
0(Gho) = 53, 0(Gr3) = 11, 6(Gie) = 63, 0(Gi7) = 8, 0(Grs) = 12,
0(Ghg) = 125 and 6(Ga) = 83;

Gg is the improvement of GlO, GH, Glﬁ, Ggl, GQQ, G23 and G24 with
0(Go) = 5%, 0(Gy1) = 4%, 0(G) = 6%, 0(Ga1) = 5, 0(Gaa) = 7,
Q(Ggg) = 5% and 0(G24) = 7%,

G is the improvement of Gia, G4, Gis, Gig, G, G22, Ga4, Gas, Gag,
G27 and GQS with Q(Glg) = 6%, ‘9(G14) = 11%, Q(Gm) = 6%, Q(Glg) = 12%,
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Q(GQ()) = %7 Q(GQZ) = 7, 9(024) = 13i’ 9(025) — 9’ 0(G26) _ 13’

0(Gar) = 9% and 0(Gas) = 134,

(11) Ghi is the improvement of G1a, Gas, Gaa, G2 and G5y with 0(G12) = 6
0(Gas) = 5%, 0(Gay) = T3, 0(Gag) = 6% and 0(Gy) = 8%;

1
47

(12) G12 is the improvement of G15, G24, G27, GQS, Ggo, G31 and G32 with
0(Grs) = 121, 0(Ga) = 71, 0(Gar) = 9%, 0(Gas) = 131, 0(G3p) = 81,

0(G31) = 105 and 0(G32) = 14%;

(13) Gi3is the improvement of G4, Gis, Gig, G33 and G4 with 6(G14) = 11
0(Gis) = 12, 0(G19) = 123, 0(G33) = 26 and 6(G34) = 263;

1
27

(14) Gi4 is the improvement of Gis, Gig, Gag, Gas, Gsa, G35 and Gsg with
0(Gi5) = 121, 0(Gr9) = 121, 6(Ga6) = 13, 0(Gas) = 131, 0(Gs4) = 261,

(15) Gy5 is the improvement of Gag, Gsg, Gsr and G with 0(Gag) = 13%,
0(G36) = 27%, 9(037) = 14% and 9(G38> = 28%,

(16) Gig is the improvement of Ghg, Gay, Gaz, Gas, Gs9, Gao, G4 and Gy
with Q(Glg) = 12%7 Q(GQO) = 8%, 9(@22) = 7, 9(@’24) — 7%) O(Ggg) _ 107
0(Gao) = 14, 0(G41) = 101 and 0(G o) = 14%;

4

(17) Gy7 is the improvement of G1g, G and Gy3 with 6(Ghg) = 12, 0(Gag) =
83 and 0(Gy3) = 153;

(18) Gg is the improvement of Gig, Gz, Gag and Gy with 0(Gr9) = 12%,
Q(Gg,g) = 26, Q(G43) = 15% and Q(G44) = 27%,

(19) Glg is the improvement of GQG, GQg, G40, G42, G43, G44, G45, G46, G47
and G48 with Q(GQG) = ]_3, Q(GQS) = 13%, Q(G40) = ]_4, Q(G42) = 14%,
0(Gas) = 151, 0(Gas) = 273, 0(Gas) = 16, 6(Gus) = 28, 6(Gy7) = 167
and 0(Gus) = 28%;

(20) Gy is the improvement of Gig, Gas, Gar, Gsg, Ga1, Gus, Gas and Gz
with 0(G1g) = 12%, 0(Gas) =9, 0(Gar) = 9%) 0(Gs9) = 10, 0(Gyy) = 10%7
0(Gas) = 153, 6(Gys5) = 16 and 0(Gur) = 167;

(21) Gy is the improvement of Gag, Goz and Gyg With 6(G) = 7, 0(Gas) =5
and 0(Gag) = 83;

1
4

(22) GQQ is the improvement of G24, G25, G26, G39, G40, G49, G50 and G51
with 0(G24) = 7%, Q(Ggg,) = 9, 9(026) = 13, Q(Ggg) = 10, 0(G40) = 14,

0(Gao) = 82, 0(G5o) = 93 and 6(Gsy) = 142;
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(23) Gag is the improvement of Goy, Gag, Gy9 and Gsy with 0(Gay) = 7%7
0(Ga9) = 63, 0(Ga) = 82 and 0(G5,) = 95;

(24) Gay is the improvement of Gay, Gag, Ga1, Ga2, Gag, G50 and G5 with
0(Gar) = 9%, 0(Gas) = 133, 8(Gn) = 10}, 6(Gun) = 145, 6(Gio) = 85,
0(Gs0) = 92 and 0(Gs51) = 143;

(25) Gas is the improvement of Gag, Gsg, Gus5, G0 and Gs3 with 0(Gag) = 13,
0(Gao) = 10, 0(G15) = 16, 0(G5o) = 97 and 0(Gs3) = 163;

(26) Gag is the improvement of Gis, Gao, Gas, Gass Gz, Gz and Gsy with
0(Gss) = 27, 0(Ga) = 14, 0(Gys5) = 16, 0(Gys) = 28, 0(G51) = 143,
0(Gs3) = 162 and 0(G54) = 175;

(27) Goy is the improvement of Gag, Gs1, Ga1, Gur, G0, Gs3, G5 and Gsg with
0(Gos) = 134, 6(Gy) = 104, 6(Ga) = 10}, 0(Gur) = 163, 0(Gisn) = 93,
0(Gs3) = 163, 0(Gss5) = 112 and 0(Gsg) = 172;

(28) Gag is the improvement of Gsg, Gar, Gaa, Gur, Gas, Gs1, Gss, Gsa, G,
G and Gss with 0(Gag) = 275, 0(Gsr) = 143, 0(Guz) = 143, 0(Gur) =
167, 0(Gas) = 28, 0(Gs1) = 143, 0(Gs3) = 163, 0(Gsa) = 173, 0(Gs) =

171, 0(Gs7) = 152 and 0(Gss) = 294;

(29) Gag is the improvement of Gsg, G52, Gsg and Ggo with 0(G3o) = 8%,
0(Gs2) = 9%, 0(Gso) = 87 and 0(Geo) = 104+;

(30) G30 is the improvement of G31, Ggg, G52, G55, G57, GGO; G61 and G62 with
0(G31) = 103, 0(Gs) = 142, 0(G52) = 93, 0(Gss) = 115, 0(Gs7) = 153,
0(G60) =10 L 9(061) = 12%6 and 0(G62) = 16L

167 167

(31) G31 is the improvement of G32, G55, G56, G61 and G63 with Q(Ggg) = 14%,
0(G55) = 11%, 9(056) = 17%, 9(061) = 12%6 and 0(G63) = 18L

167

(32) Gsg is the improvement of Gug, Gus, Gso, Ges, Ges, Ges and Ggr with
0(Gao) = 14, 0(Gy5) = 16, 8(Gso) = 95, 0(Ges) = 133, 0(Ges) = 173,
0(Ges) = 132 and 6(Ger) = 172;

(33) G41 is the improvement of G42, G47, G50, G55, G667 G67, G68 and G69 with
0(G42) - 14%, 0(G47) - 16%, 9(050) == 9%, 0(G55) - 11%, 9(066) == 13%,
0(G67) = 17%, H(Gﬁg) = 14% and 9(069) = 1817

8

(34) Gy is the improvement of Gsg, Gs1, Gs2, Gro, Gr1, Gr2 and Grg with
0(Gso) = 9%7 0(Gs1) = 14%7 0(Gs) = 9%, 0(Gro) = 12%, 0(Gr) = 16%,
0(Gr2) = 122 and 6(Gr3) = 162;
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(35) G is the improvement of Gs1, Gss, G55, Ges, Ger, Gro, G2, G14, G735,
Gre and Gr; with 0(Gs;) = 142, 0(Gs3) = 163, 6(G55) = 112, 0(Geg) =
13, 0(Ger) = 173, 6(Gro) = 121, 0(Gna) = 123, 0(Gra) = 141, 6(Gs) =
181, 0(Grg) = 145 and 0(Grr) = 183;

(36) Gsg is the improvement of Gss, Gsr, Geo, Gra, Grs, Grs and G with
0(G55) == 11%, 9(057) == 15%, 9(060) - 10%, 9(072) - 12%, 0(G73) -
162, 0(Grs) = 1315 and 0(Gro) = 1715;

(37) G5 is the improvement of Gsg, Gs7, Ger, Ges, Geg, Gz, Grg, Gr7, Grs,
Ggo and Ggl with 0(G56) = 17%, 0(G57) = 15%, 0(G61) = 12%6’ H(Gﬁg) =
141, 0(Glo) = 181, 6(Gry) = 123, 6(Grg) = 141, 8(Glrr) = 182, 6(Grg) =
134, 0(Gso) = 157z and 0(Gs1) = 1955;

(38) Gisg is the improvement of Ggy and Ggy with 0(Geo) = 10%6 and 0(Gga) =
123%;

(39) GGO is the improvement of Gﬁl, G62, G78, GSO, Ggg, Ggg and G84 with
0(Ge1) = 12, 0(Ggy) = 165, 0(Grs) = 135, 0(Ggo) = 15, 0(Ggy) =

1 16° . 16° 6 5
1255, 0(Gys) = 1455 and 0(Ggy) = 16;

(40) G61 is the improvement of G62, G63, G78, Ggo, Ggl, G83, G85 and G86

Wlth Q(GGQ) - 161_167 9(G63) — 18%, Q(G'yg) — 13%, Q(GSO) - 15%,
Q(Ggl) = 19%6’ ‘9(G83) = 143—12, 9(G85) = 16?%2 and Q(GSG) = 203—12,

(41) Gey is the improvement of Ggs, G and Ggy with 0(Ges) = 17%, 0(Ges) =
132 and 6(Gsy) = 217;

(42) G70 is the improvement of G71, G72, G74, G75, Ggg and Ggg with Q(Gn) =
16%, 0(G72) = 12%, 9(074) = 14%, 0(G75) = 18%, H(Ggg) = 16% and

(43) Grg is the improvement of Gr3, Grg, Gr7, Grs, Gss, Gso, Gog and Gg; with
0(Grs) = 162, 0(Grs) = 14L, 0(Grr) = 182, 6(Gis) = 134, 0(Gis) =
162, 0(Gso) = 202, 0(Gyp) = 162 and 0(Gy1) = 20+x;

(44) G78 is the improvement of G79, Ggo, Ggl, Ggg, Ggl, G92 and Ggg with
0(G79) - 17%, Q(Ggg) - 15%, Q(Ggl) - 19%, 9(G83) - 14%, Q(Ggl) -

202, 0(Goz) = 172 and 0(Goz) = 215;

(45) Ggo is the improvement of Ggs, G4, Goy and Gos with 0(Gs3) = 14%,
Q(G84) = ]_67 Q(Gg4) = 16& and 9(G95) = 206L

4
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Hence, by Lemma 2.4 and the above arguments, we know (i) to (xxi) holds.
Thus the proof is completed.

Similarly to the proof of Theorem 3.1, we can obtain Theorems 3.2 and 3.3.

Theorem 3.2 Let G = K(ny,ny,ng,ng, ns,ng) be a complete 6-partite graph
such that ny +ngs +n3 +ng +n5 +ng = 6n+ 1 and ng —ny < 4. Define
0(G) = [a(G,T) =5 .27t — 2" 4 6]/2"2. Then

(i) 0(G) =0 if and only if G = K(n,n,n,n,n,n + 1);

(1)) 0(G) =1 if and only if G = K(n — 1,n,n,n,n+ 1,n+1);

(iii) 0(G) =2 if and only if G = K(n—1,n—1,n,n+1,n+1,n+1);
(v) (G) =25 if and only if G = K(n—2,n,n,n+1,n+1,n+1);

(v) 0(G) =3 if and only if G = K(n —1,n,n,n,n,n+ 2);

(vi) 0(G) =35 if and only if G =K(n—2,n—1,n+1,n+1,n+1n+1);
(vii) 0(G) =4 if and only if G = K(n —1,n—1,n,n,n+1,n+2);

(viti) O(G) =41 if and only if G = K(n —3,n,n+1,n+1,n+1,n+1);
(iz) O(G) =41 if and only if G = K(n —2,n,n,n,n+ 1,n+ 2);

(x) 0(G) =5 if and only if G = K(n—1,n—1,n—1,n+1,n+ 1,n+2);
(zi) O(G) =51 if and only if G = K(n—2,n—1,n,n+1,n+1,n+2);
(zii) O(G) = 7 if and only if G = K(n—1,n—1,n—1,n,n+2,n+ 2) or

G=Kn-2,n—-2n+1,n+1,n+1,n+2);

(ziii) 0(G) =75 if and only if G = K(n—2,n—1,n,n,n+ 2,n+ 2);

(ziv) 6(G) =83 if and only if G = K(n—2,n—1,n,n+1,n+1,n+2);
(zv) O(G) =9 if and only if G = K(n —2,n—2,n,n+1,n+2,n+2);
(zvi) O(G) =10 if and only if G = K(n —1,n — 1,n,n,n,n + 3);

(zvii) 0(G) = 11 if and only if G = K(n —1,n — —1,n,n+1,n+3);

(zviii) O(G) =12 if and only if G = K(n —2,n — —1Ln+2,n+2,n+2);
(ziz) 0(G) =14 if and only if G = K(n—1,n—1,n—1,n—1,n+2,n+ 3).
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Theorem 3.3 Let G = K(ny,ng, ng,ny, ns,ng) be a complete 6-partite graph
such that ny +ny +n3 +ng +n5 + ng = 6n 4+ 2 and ng — ny < 4. Define
0(G) = [a(G,6) — 272 4+ 6]/2" 1. Then

(i) 0(G) =0 if and only if G = K(n,n,n,n,n+ 1,n+ 1);
(i) 0(G) =1 if and only if G = K(n — 1,n,n,n+1,n+1,n+1);

(iii) 0(G) = 2 if and only if G = K(n,n,n,n,n,n+2) or G=K(n—1,n—
Ln+1ln+1ln+1,n+1);

(w) O(G) =2% if and only if G = K(n—2,n,n+1,n+1,n+1,n+1);
(v) 0(G) =3 if and only if G = K(n — 1,n,n,n,n+ 1,n+ 2);
(vi) (G) =4 if and only if G=K(n—1,n—1L,n,n+1,n+1,n+2);
(vii) 6(G) :4i if and only if G = K(n—=3,n+1,n+1,n+1,n+1,n+1);
(viti) 0(G) =43 if and only if G = K(n —2,n,n,n+ 1,n+1,n+2);
(ix) (G) =5 if and only if G=K(n—1,n—1,n—1,n—1,n+3,n+3);
(x) 6(G) :5% if and only if G = K(n—2,n—1,n+1n+1n+1n+2);
(i) 0(G) =6 if and only if G = K(n —1,n—1,n,n,n+2,n+2);
(zii) O(G) = 63 if and only if G = K(n — 2,n,n,n,n+ 2,n+ 2);
(ziii) 0(G) =7 if and only if G =K(n—1,n—1,n—1,n+1,n+2,n+2);
(ziv) (G) =75 if and only if G = K(n—2,n—1,n,n+ 1,n+2,n+2);

(zv) O(G) = 9 if and only if G = K(n — 1,n,n,n,n,n+ 3) or G = K(n —
2n—2n+1n+1,n+2n+2);

(zvi) O(G) =10 if and only if G = K(n —1,n— 1,n,n,n+ 1,n+ 3);
(zvii) O(G) =105 if and only if G = K(n—2,n—1,n—1,n+2,n+2,n+2);

(zviii) O(G) = 11 if and only if G = K(n—1,n—1,n—1,n+1,n+1,n+3)
orG=Kn—-2n—-2nn+2n+2n+2);

(ziz) 0(G) =13 if and only if G = K(n—1,n—1,n—1,n,n+2,n+ 3).
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4 Chromatically closed 6-partite graphs

In this section, we obtained several y-closed families of graphs from the graphs
in Theorem 3.1 to 3.3 with a set S of s edges deleted.

Theorem 4.1 The family of graphs KK~*(nqy, ng, ng, ng, ns, ng) where nq +ng +
ng +ng +ns =6m, ng —ny <4 and ny > s+ 10 is x-closed except the graphs
{K#(n—-1,n=1,n—1,n,n+1,n+2),K*(n—2,n—2,n+1,n+1,n+1,n+1)}.

Proof. By Theorem 3.1, there are 21 cases to consider. Denote each graph
in Theorem 3.1 (i), (i), - - -, (xxi) by Gy, Ga, -+, Ga, respectively. Suppose
H ~ G;—S. Tt suffices to show that H € {G;—S}. Let { By, By, B3, By, Bs, Bg}
be 6-independent partition of H, |B;| = P, i = 1,2,3,4,5,6, F;, =
(p1, P2, P3, P4, P5,P6)- Then there exists S’ C e(F) such that H = F — 5’
with |S'| =¢ =e(F) —e(G) +s > 0.

Case (i). Let G = Gy with n > s+ 2. In this case, H ~ FF — S €
K=*(n,n,n,n,n,n). By Lemma 2.5, we have

(G —S,7) = a(G,7) + /(G — S) with s < /(G — §) < 2° — 1,
a(F =S 7)=a(F,7)+d(F—5)with0 < s <do(F—-9").

Hence,
a(F =587 —a(G—-5,7)=a(F,7) —a(G,7) + ' (F - 5') — (G- 9).

By the definition, «(F,7) — «(G,7) = 2" 2(0(F) — 6(G)). By Theorem 3.1,
G(F) > 0. Suppose 0(F) > 0, then

a(F -8, 7)—a(G-5,7) > 2" 24+ (F-5)—d(G-29)
>2°+d(F-8")—-2°+1,
> 1,
contradicting a(F — S",7) = a(G — S, 7). Hence, (F) = 0 and so F' = G and
s = . Therefore, H € K~*(n,n,n,n,n,n).

Case (ii). Let G = Gy with n > s+ 3. In this case, H ~ F — S € K~*(n —
1,n,n,n,n,n+1). By Lemma 2.5, we have

(G —8,7) = a(@,7) + /(G — §) with s < /(G — §) < 2° — 1,
a(F =S 7)=a(F, 1)+ (F—-5)with0 < s <d(F-9").
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Hence,
a(F =587 —a(G—-5,7)=a(F,7) —a(G,7) + ' (F - 5") — (G- 9).

By the definition, a(F, 7)—a(G, 7) = 2" 2(0(F)—0(G)). Suppose 0(F) # 0(G).
Then, we consider two subcases.

Subcase (a). (F) < 6(G). By Theorem 3.1, F = G, and H = G; — S’ €
{Gy — 5'}. However, G — S ¢ {G1 — S’} since by Case (i) above, {G1 — S'} is

x-closed, a contradiction.

Subcase (b). 0(F) > 6(G). By Theorem 3.1, o(F,7) — a(G,7) > 2"72. So,

alF=S8' T —a(G-=S7) > 2"24+d(F-5)—-d(G-S
( ,7) = af ,7)
>2°+a(F-5)—2"+1,
> 1,

contradicting a(F — S',7) = a(G — S,7). Hence, (F) — 6(G) = 0 and so
F =G and s = §'. Therefore, H € K~ *(n — 1,n,n,n,n,n+ 1).

Using Table 1, we can prove (iii) to (xxi) except (x) in a similar way. This
completes the proof.

Similarly, we can prove Theorems 4.2 and 4.3.

Theorem 4.2 The family of graphs KK=*(ny, ng, ng, ng, ns, ng) where nq +ng +
ng+ng+ns+ng = 6n+1, ng—ny < 4 andny > s+7 is x-closed except the graphs
{K#(n—1,n—=1,n—1,n,n+2,n+2), K *(n—2,n—2,n+1,n+1,n+1,n+2)}.

Theorem 4.3 The family of graphs KK~*(ny, ng, ng, ng, ns, ng) where ny +ng +
ng+ng+ns+ng=6n+2, ng—ny <4 andny > s+ 7 is x-closed except the
graphs {K=*(n,n,n,n,n,n+2),K*n—1,n—1,n+1,n+1,n+1,n+ 1)},
{K*(n—-1,n,n,n,nn+3),K*(n—-2,n—2,n+1,n+1,n+2,n+2)} and
{K#(n—1,n=1,n—1,n+1,n+1,n+3), K 5(n—2,n—2,n,n+2,n+2,n+2)}.

9 Chromatically unique 6-partite graphs

The following results give several families of chromatically unique complete
6-partite graphs having 6n vertices with a set S of s edges deleted where the
deleted edges induce a star K, ; and a matching sk, respectively.
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Theorem 5.1 The graphs K;JKI"‘(nl,ng,ng, N4, Ny, Ng) where ny + ng + ng +
ng+ns+ng =6m, ng—ny <4 andny > s+ 10 are x-unique for 1 <i# j <6
except the graphs {IK*(n—1,n—1,n—1,n,n+1,n+2),K5(n—2,n—2,n+
Ln+1,n+1,n+1)}.

Proof. By Theorem 3.1, there are 21 cases to consider. Denote each graph in
Theorem 3.1 (i), (i), - - -, (xiv) by Gy, Ga, - - -, Gay, respectively. The proof for
each graph obtained from G; (i = 1,2,---,21) is similar, so we only give the
detail proof for the graphs obtained from G, below.

By Lemma 25 and Case 2 of Theorem 4.1, we know
that K K“(n— L,n,n,n,n,n+ (K, (n—1,n,n,n,n,n+1)|(i,5) €

) i,
{(1,2), (2 1),(1,6),(6,1),(2,3),(2,6),(6,2)} is x-closed for n > s + 3. Note that
t(KZjK”( —1,n,n,n,n,n+1)) =t(Ge) —s(4n+1) for (4,5) € {(1,2),(2,1)},

t(K_Kl (n—1,n,n,n,n,n+1)) =t(Gy) — 4sn for (i,75) € {(1,6), (6,1)},

2¥)

t(Ky3 K, ‘(n—1,n,n,n,n,n+1)) =t(Gy) — 4sn,
HE T (n=1,n,n,n,n,n+1)) = t(G3) — s(4n—1) for (i, j) € {(2,6), (6,2)}.

irj
By Lemmas 2.2 and 2.6, we conclude that U(K_K1 ‘(n—1,n,n,n,n,n+1)) #

O'(Kj’l-Kl ‘(n—1,n,n,n,n,n+1)) for each (i, 5) € {(1,2),(1,6),(2,6)}. We now
show that K;fl’s(n —1,n,n,n,n,n+1) and KZ-:jKl’S(n —1,n,n,n,n,n+1) for

(i,7) € {(1,6),(6,1)} are not x-equivalent. We have

Q(K;’;{l’s(nf1,n,n,n,n,n+1)) = Q(Gg)s(n1)2+(;)+s[(n21)+
n n n-+1
GRIGRGSI!
QUE [ (n—Lnnmnn+1) = Q(Ga)—sn(n—2)+ (;) +4s(§) for (i,7) € {(1,6), (6,1)};
with

Q(Kz Kls( — 1,n,n,n,n,n+1)) —Q(K-_Kl’s(n— 1,n,n,n,n,n+1)) =0

Z?]

and that

K(KQ K1, e( —1,n,n,n,n,n+ 1)) = K(Gg) — S(6n2 _ 1)3
K(K " (n=Lnnnnn+1)) = K(G,) - 6sn’
for (i,7) € {(1,6),(6,1)};
with

K(KQ:?“( —l,n,n,n,n,n—i-l)) —K(KiKI’S(n—1,n,n,n,n,n+1)) =5

Z?]
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This means that 2K (K, Kls(n — Ln,n,n,n,n + 1)) — Q(K K“( -
Ln,nnmnn+ 1)) # 2K(K,, 21— 1,n,n,n,n,n + 1)) — Q(K2 21 (n —
1,n,n,n,n,n+1)) for (i, j) € {(1,6), (6,1)}, contradicting Lemma 2.1. Hence,

_Kl,s . . . .
K;;""(n—1,n,n,n,n,n+1)is x-unique where n > s +3 for 1 <7 # j <6.

The proof is thus complete.

Theorem 5.2 The graphs Ki;KQ(nl, Ng, N3, N4, N5, Ng) where ny + ny + nz +
ng+ns+ng =6n, ng—ny <4 andny > s+ 10 are y-unique except the graphs
{K#(n—1,n=1,n—1,n,n+1,n+2), K *(n—2,n—2,n+1,n+1,n+1,n+1)}.

Proof. By Theorem 3.1, there are 21 cases to consider. Denote each graph
in Theorem 3.1 (7),(i7),---, (zxi) by Gi,Ga,---,Ga, respectively. For a
graph K(p1, p2, P3, Pa, P5,D6), let S = {eq,ea,--+,es} be the set of s edges
in E(K(p1,p2,ps, P4, D5, p6)) and let t(e;) denote the number of triangles con-
taining e; in K (p1, p2, p3, P4, D5, Ps)- The proofs for each graph obtained from
G; (i=1,2,---,21) are similar, so we only give the proof of the graph obtained
from G5 as follows.

Suppose H ~ G = K. 552 (n—1,n,n,n,n,n+1) for n > s+3. By Theorem 4.1
and Lemma 2.1, H € K~*(n— 1,n,n,n,n,n+1) and o/(H) = o/(G) = s. Let
H=F — S where F = K(n—1,n,n,n,n,n+ 1). Clearly, t(e;) < 4n + 1 for
each e; € S. So,

t(H) > t(F) — s(4n + 1),

with equality holds only if t(e;) = 4n + 1 for all e; € S. Since t(H) = t(G) =
t(F) — s(4n + 1), the equality above holds with t(e;) = 4n + 1 for all ¢; € S.
Therefore each edge in S has an end-vertex in V; and another end-vertex in
V; (2 <5 <5). Moreover, S must induce a matching in F'. Otherwise, equality
does not hold or o/(H) > s. By Lemma 2.8, we obtain

Q(H) - 2K(G) = Q(F) —s(n—2)(n—1)+ @ n

) () () (15)] -2l s

> Q(H) — 2K(H);

the equality holds if and only if s = s;; for 2 < 5 < 5. Therefore, we have
(S) = sK, with H ¥ G.

Thus the proof is complete.

Similarly to the proofs of Theorems 5.1 and 5.2, we can prove Theorems 5.3
to 5.6.
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Theorem 5.3 The graphs K;J-Kl"‘(nl,ng,ng, N4, Ny, Ng) where ny + ng + ng +
ng+ns+ng =6n+1, ng—ny <4 andny > s+7 are xy-unique for 1 <i # j <6
except the graphs {K&Kl’s(n —1,n—1,n—1,nn+2,n+2), KiTjKl’S(n -2, n—
2n+1l,n+1,n+1,n+2)}.

Theorem 5.4 The graphs K;J-Kl"‘(nl,ng,ng, N4, Ny, Ng) where ny + ng + ng +
ng+ns+ng =6n+2, ng—ny; <4 andny > s+7 are x-unique for 1 <i # j <6
except the graphs {K;J-KI’S(n, n,n,n,n,n + 2), K;,J-KI’S(n —1,n—1,n+1,n-+
ILn+1,n+1)}, {K&Kl’s(n—1,n,n,n,n,n+3),KiTjKl’S(n—Q,n—Q,n—l—l,n%—
I,n+2,n+2)} and {KZjKl’S(n— Ln—1,n—1,n+1,n+1,n+3), KZjKl’S(n—
2n—2nn+2,n+2n+2)}.

Theorem 5.5 The graphs Ki;KQ(nl, Ng, N3, N4, N5, Ng) where ny + ny + nz +
ng+ns+ng=6m+1, ng—ny <4 andny > s+ 7 are x-unique except the
graphs {KESKQ(H—1,n—1,n—1,n,n+2,n+2),K1_7§K2(n—2,n—2,n+ I,n+

Ln+1,n+2)}.

Theorem 5.6 The graphs KiSKQ(nl,ng,ng,n4,n5,n6) where ny + ng + N3 +
ng+ns+ng=6m+2, ng—ny <4 andny > s+ 7 are x-unique except the
graphs {Ki;KQ(n,n,n,n,n,n+2),Ki§K2(n—1,n—1,n+1,n+1,n+1,n+1)},
{K5%(n—Lin,n,n,n,n+3), K13 (n—2,n—2,n+1n+1,n+2n+2)}
and {KijQ(n—1,n—1,n—1,n+1,n+1,n+3),Ki§K2(n—2,n—2,n,n+
2n+2n+2)}.

Remark: This paper generalized some results in papers [13,14,15].

Problems: (1) Study the chromaticity of the graphs K*(n — 1,n — 1,n —
Lnn+1ln+2)and K*(n—-2,n—2,n+1,n+1,n+1,n+1).

(2) Study the chromaticity of the graphs K*(n—1,n—1,n—1,n,n+2,n+2)
and K*(n—2n—-2n+1n+1,n+1,n+2).

(3) Study the chromaticity of the graphs K~*(n,n,n,n,n,n + 2), K *(n —
Ln—1,n+1,n+1,n+1,n+1), K*(n—1,n,n,n,nn+3), K 5(n—2n—
2n+Ln+1ln+2n+2), K*n—1n—-1,n—1n+1,n+1,n+3) and
K>*n—-2n—-2nn+2n+2n+2).
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