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Abstract

Let P (G,λ) be the chromatic polynomial of a graph G. Two graphs

G and H are said to be chromatically equivalent, denoted G ∼ H, if

P (G,λ) = P (H,λ). We write [G] = {H|H ∼ G}. If [G] = {G}, then

G is said to be chromatically unique. In this paper, we first character-

ize certain complete 6-partite graphs with 6n + 2 vertices according to

the number of 7-independent partitions of G. Using these results, we

investigate the chromaticity of G with certain star or matching deleted.

As a by-product, many new families of chromatically unique complete

6-partite graphs with certain star or matching deleted are obtained.
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1 Introduction

All graphs considered here are simple and finite. For a graph G, let P (G, λ)

be the chromatic polynomial of G. Two graphs G and H are said to be

chromatically equivalent (or simply χ−equivalent), symbolically G ∼ H , if

P (G, λ) = P (H, λ). The equivalence class determined by G under ∼ is denoted

by [G]. A graph G is chromatically unique (or simply χ−unique) if H ∼= G

whenever H ∼ G, i.e, [G] = {G} up to isomorphism. For a set G of graphs,

if [G] ⊆ G for every G ∈ G, then G is said to be χ−closed. Many families of

χ-unique graphs are known (see [6,7,8]).

For a graph G, let V (G), E(G) and t(G) be the vertex set, edge set and number

of triangles in G, respectively. Let S be a set of s edges in G. Let G − S (or

G − s) be the graph obtained from G by deleting all edges in S, and by 〈S〉
the graph induced by S. Let K(n1, n2, · · · , nt) be a complete t-partite graph.

We denote by K−s(n1, n2, · · · , nt) the family of graphs which are obtained from

K(n1, n2, · · · , nt) by deleting a set S of some s edges.

In [4,5,7–10,12,13,14,17,18,19], one can find many results on the chromatic

uniqueness of certain families of complete t-partite graphs (t = 2, 3, 4, 5). How-

ever, there are very few 6-partite graphs known to be χ-unique, see [3,15,16].

In [3,15,16], Chen and Roslan et al. have obtained many families of χ-unique

graphs which are obtained by deleting the edges of a star or matching from a

complete 6-partite graph with 6n + i vertices where i = 0, 1, 5. Thus, the aim

of this paper is to study the chromaticity of the graphs which are obtained by

deleting the edges of a star or matching from a complete 6-partite graph with

6n + 2 vertices.

Let G be a complete 6-partite graph with 6n + 2 vertices. In this paper, we

characterize certain complete 6-partite graphs with 6n + 2 vertices according

to the number of 7-independent partitions of G. Using these results, we in-

vestigate the chromaticity of G with certain star or matching deleted. As

a by-product, many new families of chromatically unique complete 6-partite

graphs with certain star or matching deleted are obtained.
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2 Some lemmas and notations

For a graph G and a positive integer r, a partition {A1, A2, · · · , Ar} of V (G),

where r is a positive integer, is called an r-independent partition of G if every

Ai is independent of G. Let α(G, r) denote the number of r-independent

partitions of G. Then, we have P (G, λ) =
∑p

r=1 α(G, r)(λ)r, where (λ)r =

λ(λ− 1)(λ− 2) · · · (λ− r + 1) (see [11]). Therefore, α(G, r) = α(H, r) for each

r = 1, 2, · · · , if G ∼ H .

For a graph G with p vertices, the polynomial σ(G, x) =
∑p

r=1 α(G, r)xr is

called the σ-polynomial of G (see [2]). Clearly, P (G, λ) = P (H, λ) implies

that σ(G, x) = σ(H, x) for any graphs G and H .

For disjoint graphs G and H , G ∪ H denotes the disjoint union of G and H .

The join of G and H denoted by G ∨ H is defined as follows: V (G ∨ H) =

V (G) ∪ V (H); E(G ∨ H) = E(G) ∪ E(H) ∪ {xy | x ∈ V (G), y ∈ V (H)}. For

notations and terminology not defined here, we refer [1].

Lemma 2.1 (Brenti [2], Koh and Teo [7]) Let G and H be two disjoint graphs.

Then

(1) |V (G)| = |V (H)|, |E(G)| = |E(H)|, t(G) = t(H) and α(G, r) = α(H, r)

for r = 1, 2, 3, · · · , p, if G ∼ H;

(2) σ(G ∨ H, x) = σ(G, x)σ(H, x).

Lemma 2.2 (Brenti [2]) Let G = K(n1, n2, n3, · · · , nt) and σ(G, x) =
∑

r≥1 α(G, r)xr,

then α(G, r) = 0 for 1 ≤ r ≤ t−1, α(G, t) = 1 and α(G, t+1) =
∑t

i=1 2ni−1−t.

Let x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 ≤ x6 be positive integers and {xi1 , xi2 , xi3 , xi4 , xi5 , xi6} =

{x1, x2, x3, x4, x5, x6}. If there are two elements xi1 and xi2 in {x1, x2, x3, x4, x5, x6}
such that xi2 − xi1 ≥ 2, then H ′ = K(xi1 + 1, xi2 − 1, xi3, xi4 , xi5 , xi6} is called

an improvement of H = K(x1, x2, x3, x4, x5, x6).

Lemma 2.3 (Chen [3]) Suppose x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 ≤ x6 and H ′ =

K(xi1+1, xi2−1, xi3 , xi4 , xi5 , xi6} is an improvement of H = K(x1, x2, x3, x4, x5, x6),

then

α(H, 7) − α(H ′, 7) = 2xi2
−2 − 2xi1

−1 ≥ 2xi1
−1.
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Let G = K(n1, n2, n3, n4, n5, n6). For a graph H = G − S, where S is a set of

some s edges of G, define α′(H) = α(H, 7) − α(G, 7). Clearly, α′(H) ≥ 0.

Lemma 2.4 (Chen [3]) Let G = K(n1, n2, n3, n4, n5, n6). Suppose that min

{ni|i = 1, 2, 3, 4, 5, 6} ≥ s + 1 ≥ 1 and H = G − S, where S is a set of some s

edges of G, then

s ≤ α′(H) = α(H, 7) − α(G, 7) ≤ 2s − 1,

α′(H) = s iff the set of end-vertices of any r ≥ 2 edges in S is not independent

in H, and α′(H) = 2s − 1 iff S induces a star K1,s and all vertices of K1,s

other than its center belong to a same Ai.

Let K(A1, A2) be a complete bipartite graph with partite sets A1 and A2. We

denote by K−K1,s(Ai, Aj) the graph obtained from K(Ai, Aj) by deleting s

edges that induce a star with its center in Ai. Note that K−K1,s(Ai, Aj) �=
K−K1,s(Aj, Ai) if |Ai| �= |Aj| for i �= j (see [5]).

Lemma 2.5 (Dong et al. [4]) Let K(n1, n2) be a complete bipartite graph with

partite sets A1 and A2 such that |Ai| = ni for i = 1, 2. If min {n1, n2} ≥ s+2,

then every K−K1,s(Ai, Aj) is χ-unique, where i �= j and i, j = 1, 2.

Let G = K(n1, n2, n3, n4, n5, n6) be a complete 5-partite graph with partite

sets Ai(i = 1, 2, · · · , 6) such that |Ai| = ni. Let 〈Ai ∪ Aj〉 be the sub-

graph of G induced by Ai ∪ Aj, where i �= j and i, j ∈ {1, 2, 3, 4, 5, 6}. By

K
−K1,s

i,j (n1, n2, n3, n4, n5, n6), we denote the graph obtained from K(n1, n2, n3, n4, n5, n6)

by deleting a set of s edges that induce a K1,s with its center in Ai and all it end

vertices are in Aj . Note that K
−K1,s

i,l (n1, n2, n3, n4, n5, n6) = K
−K1,s

j,l (n1, n2, n3, n4, n5, n6)

and K
−K1,s

l,i (n1, n2, n3, n4, n5, n6) = K
−K1,s

l,j (n1, n2, n3, n4, n5, n6) for ni = nj and

l �= i, j.

Lemma 2.6 (Chen [3]) If i, j ∈ {1, 2, 3, · · · , t}, i �= j, ni �= nj, then

P (K
−K1,s

i,j (n1, n2, n3, · · · , nt), λ) �= P (K
−K1,s

j,i (n1, n2, n3, · · · , nt), λ).



On chromatic uniqueness of certain 6-partite graphs 1731

3 Classification

In this section, we shall characterize certain complete 6-partite graph G =

K(n1, n2, n3, n4, n5, n6) according to the number of 7-independent partitions

of G where n1 + n2 + n3 + n4 + n5 + n6 = 6n + 2, n ≥ 1.

Theorem 3.1 Let G = K(n1, n2, n3, n4, n5, n6) be a complete 6-partite graph

such that n1 + n2 + n3 + n4 + n5 + n6 = 6n + 2, n ≥ 1. Define θ(G) =

[α(G, 7) − 2n+2 + 6]/2n−2. Then

(i) θ(G) ≥ 0;

(ii) θ(G) = 0 if and only if G = K(n, n, n, n, n + 1, n + 1);

(iii) θ(G) = 1 if and only if G = K(n − 1, n, n, n + 1, n + 1, n + 1);

(iv) θ(G) = 2 if and only if G = K(n, n, n, n, n, n + 2) or G = K(n − 1, n −
1, n + 1, n + 1, n + 1, n + 1);

(v) θ(G) = 5/2 if and only if G = K(n − 2, n, n + 1, n + 1, n + 1, n + 1);

(vi) θ(G) = 3 if and only if G = K(n − 1, n, n, n, n + 1, n + 2);

(vii) θ(G) = 4 if and only if G = K(n − 1, n − 1, n, n + 1, n + 1, n + 2);

(viii) θ(G) = 17/4 if and only if G = K(n− 3, n +1, n +1, n +1, n + 1, n+ 1);

(ix) θ(G) ≥ 9/2 if and only if G is not a graph appeared in (ii)–(viii).

Proof. For a complete 6-partite graph H1 with 6n + 2 vertices, we can

construct a sequence of complete 6-partite graphs with 6n + 2 vertices, say

H1, H2, · · · , Ht, such that Hi is an improvement of Hi−1 for each i = 2, 3, · · · , t,
and Ht = K(n, n, n, n, n+1, n+1). By Lemma 2.3, α(Hi−1, 7)−α(Hi, 7) > 0.

So θ(Hi−1)−θ(Hi) > 0, which implies that θ(G) ≥ θ(Ht) = θ(K(n, n, n, n, n+

1, n + 1)). From Lemma 2.2 and by a simple calculation, θ(K(n, n, n, n, n +

1, n + 1)) = 0. Thus, (ii) is true.

Since Ht = K(n, n, n, n, n+1, n+1) and Ht is an improvement of Ht−1, it is not

hard to see that Ht−1 ∈ {R, R0, R3}, where R = K(n−1, n, n, n+1, n+1, n+1),
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Ri Graphs Ht−2 θ(Ri)

R1 K(n − 1, n − 1, n + 1, n + 1, n + 1, n + 1) 2

R2 K(n − 2, n, n + 1, n + 1, n + 1, n + 1) 5/2

R3 K(n − 1, n, n, n, n + 1, n + 2) 3

R4 K(n − 1, n − 1, n, n + 1, n + 1, n + 2) 4

R5 K(n − 2, n, n, n + 1, n + 1, n + 2) 9/2

R6 K(n − 1, n − 1, n, n, n + 2, n + 2) 6

R7 K(n − 2, n, n, n, n + 2, n + 2) 13/2

R8 K(n − 1, n, n, n, n, n + 3) 9

R9 K(n − 1, n − 1, n, n, n + 1, n + 3) 10

R10 K(n − 2, n, n, n, n + 1, n + 3) 21/2

Table 1: Ht−2 and its θ-values

R0 = K(n, n, n, n, n, n + 2) and R3 = K(n− 1, n, n, n, n + 1, n + 2). Hence, by

Lemma 2.2, we have θ(R) = 1, θ(R0) = 2 and θ(R3) = 3.

Note that Ht−1 is an improvement of Ht−2 and it is not hard to see that

Ht−2 ∈ {Ri|i = 1, 2, · · · , 10}, where Ri and θ(Ri) are shown in Table 1.

To complete the proof of the theorem, we need only determine all complete

6-partite graph G with 6n + 2 vertices such that θ(G) < 9/2. By Lemma 2.3,

θ(Ht−3) > 9/2 for each Ht−3 if Ht−2 ∈ {Ri|i = 5, 6, · · · , 10}. All graphs Ht−3

and its θ-values are listed in Table 2 when Ht−2 ∈ {Ri|i = 1, 2, 3, 4}.
By Lemma 2.3, θ(Ht−4) > 9/2 for every Ht−4 if Ht−3 ∈ {Mi|2 ≤ i ≤ 7}, one can

easily obtain the following: If Ht−3 = M1, then Ht−4 ∈ {M8, M9}, where M8 =

K(n−3, n, n+1, n+1, n+1, n+2), M9 = K(n−4, n+1, n+1, n+1, n+1, n+2),

and θ(M8) = 25/4, θ(M9) = 65/8. Hence, by Lemma 2.3, Table 1, Table 2

and the above arguments, we conclude that the theorem holds.

4 Chromatically closed 6-partite graphs

In this section, we obtained the χ−closed of the families in K−s(n1, n2, n3, n4, n5, n6).
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Mi Graphs Ht−3 θ(Mi)

M1 K(n − 3, n + 1, n + 1, n + 1, n + 1, n + 1) 17/4

M2 K(n − 2, n − 1, n + 1, n + 1, n + 1, n + 2) 11/2

M3 K(n − 3, n, n + 1, n + 1, n + 1, n + 2) 25/4

M4 K(n − 1, n − 1, n − 1, n + 1, n + 2, n + 2) 7

M5 K(n − 2, n − 1, n, n + 1, n + 2, n + 2) 15/2

M6 K(n − 1, n − 1, n − 1, n + 1, n + 1, n + 3) 11

M7 K(n − 2, n − 1, n, n + 1, n + 1, n + 3) 23/2

Table 2: Ht−3 and its θ-values

Theorem 4.1 If n ≥ s+2, then the family of graphs K−s(n, n, n, n, n+1, n+1)

is χ-closed.

Proof. Let G = K(n, n, n, n, n+1, n+1) and Z ∈ K−s(n, n, n, n, n+1, n+1).

The 6-independent partition of G is certainly 6-independent partition of Z. So

α(Z, 6) ≥ α(G, 6) = 1. Let H ∼ Z, then α(H, 6) = α(Z, 6) ≥ α(G, 6) =

1. Let {A1, A2, A3, A4, A5, A6} be a 6-independent partition of H , |Ai| = ti,

i = 1, 2, 3, 4, 5, 6 and F = K(t1, t2, t3, t4, t5, t6). Then there exist S ′ ∈ E(F )

such that H = F − S ′. Let q(G) be the number of edges in graph G. Since

q(H) = q(Z), therefore s′ = |S ′| = q(F ) − q(G) + s.

From Lemma 2.4, we have

α(Z, 7) = α(G, 7) + α′(Z), s ≤ α′(Z) ≤ 2s − 1, and

α(H, 7) = α(F, 7) + α′(H), s′ ≤ α′(H).

Thus α(H, 7) − α(Z, 7) = α(F, 7) − α(G, 7) + α′(H) − α′(Z) and α(Z, 7) =

α(H, 7), so α(H, 7) − α(Z, 7) = 0.

If F �= G, from Theorem 3.1, we have θ(F ) − θ(G) ≥ 1. So

α(F, 7) − α(G, 7) = (θ(F ) − θ(G)) · 2n−2 ≥ 2n−2.

Hence

α(H, 7) − α(Z, 7) ≥ 2n−2 + α′(H) − α′(Z) ≥ 2n−2 + 0 − (2s − 1) ≥ 1.
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This is a contradiction. So F = G, s = s′. Thus, H ∈ K−s(n, n, n, n, n+1, n+

1). Therefore, K−s(n, n, n, n, n + 1, n + 1) is χ-closed if n ≥ s + 2. The proof

is now completed.

By using the similar proof of Theorem 4.1, we can obtain the following results.

Theorem 4.2 If n ≥ s + 5, then the family of graphs K−s(n − 1, n, n, n +

1, n + 1, n + 1) is χ-closed.

Theorem 4.3 If n ≥ s+3, then the families of graphs K−s(n, n, n, n, n, n+2)

and K−s(n − 1, n − 1, n + 1, n + 1, n + 1, n + 1) are χ-closed.

Theorem 4.4 If n ≥ s + 5, then the family of graphs K−s(n− 2, n, n + 1, n +

1, n + 1, n + 1) is χ-closed.

Theorem 4.5 If n ≥ s + 4, then the family of graphs K−s(n − 1, n, n, n, n +

1, n + 2) is χ-closed.

Theorem 4.6 If n ≥ s + 4, then the family of graphs K−s(n− 1, n− 1, n, n +

1, n + 1, n + 2) is χ-closed.

Theorem 4.7 If n ≥ s + 7, then the family of graphs K−s(n − 3, n + 1, n +

1, n + 1, n + 1, n + 1) is χ-closed.

5 Chromatically unique 6-partite graphs

In this section, we first study the chromatically unique 6-partite graphs with

6n + 2 vertices and a set S of s edges deleted where the deleted edges induce

a star K1,s.

Theorem 5.1 If n ≥ s+2, then the graphs K
−K1,s

i,j (n, n, n, n, n+1, n+1) are

χ-unique for (i, j) ∈ {(1, 2), (1, 5), (5, 1), (5, 6)}.
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Proof. From Lemma 2.4 and Theorem 4.1, we know that K
−K1,s

i,j (n, n, n, n, n+

1, n + 1) = {K−K1,s

i,j (n, n, n, n, n + 1, n + 1)|(i, j) ∈ {(1, 2), (1, 5), (5, 1), (5, 6)}
is χ-closed if n ≥ s + 2. Note that

t(K
−K1,s

1,2 (n, n, n, n, n + 1, n + 1)) = t(K(n, n, n, n, n + 1, n + 1)) − s(4n + 2);

t(K
−K1,s

i,j (n, n, n, n, n + 1, n + 1)) = t(K(n, n, n, n, n + 1, n + 1)) − s(4n +

1) for (i, j) ∈ {(1, 5), (5, 1)};
t(K

−K1,s

5,6 (n, n, n, n, n + 1, n + 1)) = t(K(n, n, n, n, n + 1, n + 1)) − 4sn.

By Lemmas 2.1 and 2.6, we conclude that σ(K
−K1,s

1,5 (n, n, n, n, n + 1, n + 1)) �=
σ(K

−K1,s

5,1 (n, n, n, n, n+1, n+1)). Hence, by Lemma 2.1, the graphs K
−K1,s

i,j (n, n, n, n, n+

1, n + 1) are χ-unique where n ≥ s + 2 for (i, j) ∈ {(1, 2), (1, 5), (5, 1), (5, 6)}.
The proof is now completed.

Similarly to the proof of Theorem 5.1, we can prove Theorems 5.2–5.5.

Theorem 5.2 If n ≥ s + 3, then the graphs K
−K1,s

i,j (n, n, n, n, n, n + 2) are

χ-unique for (i, j) ∈ {(1, 2), (1, 6), (6, 1)}.

Theorem 5.3 If n ≥ s + 3, then the graphs K
−K1,s

i,j (n − 1, n − 1, n + 1, n +

1, n + 1, n + 1) are χ-unique for (i, j) ∈ {(1, 2), (1, 3), (3, 1), (3, 4)}.

Theorem 5.4 If n ≥ s + 5, then the graphs K
−K1,s

i,j (n − 2, n, n + 1, n + 1, n +

1, n+1) are χ-unique for (i, j) ∈ {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (3, 4)}.

Theorem 5.5 If n ≥ s + 7, then the graphs K
−K1,s

i,j (n − 3, n + 1, n + 1, n +

1, n + 1, n + 1) are χ-unique for (i, j) ∈ {(1, 2), (2, 1), (2, 3)}.

Theorem 5.6 If n ≥ s+5, then the graphs K
−K1,s

i,j (n−1, n, n, n+1, n+1, n+1)

are χ-unique for (i, j) ∈ {(1, 2), (2, 1), (2, 4), (4, 2), (4, 5)}.

Proof. Let F ∈ {K−K1,s

i,j (n−1, n, n, n+1, n+1, n+1)|(i, j) ∈ {(1, 2), (2, 1), (2, 4), (4, 2), (4, 5)}}
and H ∼ F . By Theorem 4.2, H ∈ K−s(n − 1, n, n, n + 1, n + 1, n + 1). Since

α(H, 7) = α(F, 7) = α(K(n − 1, n, n, n + 1, n + 1, n + 1), 7) + 2s − 1,

from Lemma 2.4, we know that H ∈ {K−K1,s

i,j (n−1, n, n, n+1, n+1, n+1)|i �=
j, i, j = 1, 2, 3, 4, 5, 6}. It easy to see that H ∈ {K−K1,s

i,j (n − 1, n, n, n + 1, n +
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1, n + 1)|i �= j, i, j = 1, 2, 3, 4, 5, 6} = {K−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n +

1)|(i, j) ∈ {(1, 2), (2, 1), (1, 4), (4, 1), (2, 3), (2, 4), (4, 2), (4, 5)}}.
Now let’s determine the number of triangles in H and F . Then we obtain that

t(K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n + 1)) = t(K(n − 1, n, n, n + 1, n + 1, n +

1)) − s(4n + 3) for (i, j) ∈ {(1, 2), (2, 1)},
t(K

−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n + 1)) = t(K(n − 1, n, n, n + 1, n + 1, n +

1)) − s(4n + 2) for (i, j) ∈ {(1, 4), (4, 1), (2, 3)},
t(K

−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n + 1)) = t(K(n − 1, n, n, n + 1, n + 1, n +

1)) − s(4n + 1) for (i, j) ∈ {(2, 4), (4, 2)},
t(K

−K1,s

4,5 (n−1, n, n, n+1, n+1, n+1)) = t(K(n−1, n, n, n+1, n+1, n+1))−4sn.

Recalling

F ∈ {K−K1,s

i,j (n−1, n, n, n+1, n+1, n+1)|(i, j) ∈ {(1, 2), (2, 1), (2, 4), (4, 2), (4, 5)}}

and t(H) = t(F ), thus we have

H, F ∈ {K−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n + 1)|(i, j) ∈ {(1, 2), (2, 1)}}

or

H, F ∈ {K−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n + 1)|(i, j) ∈ {(2, 4), (4, 2)}}.

It follows from Lemmas 2.1 and 2.6 that

P (K
−K1,s

1,2 (n − 1, n, n, n + 1, n + 1, n + 1), λ) �= P (K
−K1,s

2,1 (n − 1, n, n, n + 1, n + 1, n + 1), λ);

P (K
−K1,s

2,4 (n − 1, n, n, n + 1, n + 1, n + 1), λ) �= P (K
−K1,s

4,2 (n − 1, n, n, n + 1, n + 1, n + 1), λ).

Hence, by Lemma 2.1, we conclude that the graphs K
−K1,s

i,j (n−1, n, n, n+1, n+

1, n+1) are χ-unique where n ≥ s+5 for each (i, j) ∈ {(1, 2), (2, 1), (2, 4), (4, 2), (4, 5)}.

Similarly to the proof of Theorem 5.6, we can prove Theorems 5.7 and 5.8.

Theorem 5.7 If n ≥ s+4, then the graphs K
−K1,s

i,j (n− 1, n, n, n, n+1, n+2)

are χ-unique for (i, j) ∈ {(1, 2), (2, 1), (2, 6), (6, 2), (5, 6), (6, 5)}.
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Theorem 5.8 If n ≥ s + 4, then the graphs K
−K1,s

i,j (n− 1, n− 1, n, n + 1, n +

1, n + 2) are χ-unique for (i, j) ∈ {(1, 2), (1, 3), (3, 1), (1, 4), (4, 1), (4, 5)}.

Let G = K(n1, n2, n3, n4, n5, n6) be a complete 6-partite graph with partite

sets Ai(i = 1, 2, · · · , 6) such that |Ai| = ni. Denote 〈Ai ∪ Aj〉 be the sub-

graph of G induced by Ai ∪ Aj, where i �= j and i, j ∈ {1, 2, 3, 4, 5, 6}. Let

K−sK2
i,j (n1, n2, n3, n4, n5, n6) denotes the graph obtained from K(n1, n2, n3, n4, n5, n6)

by deleting a set of s edges that forms a matching in 〈Ai ∪ Aj〉.
We now investigate the chromatically unique 6-partite graphs with 6n+2 ver-

tices and a set S of s edges deleted where the deleted edges induce a matching

sK2.

Theorem 5.9 If n ≥ s + 3, then the graphs K−sK2
1,2 (n − 1, n − 1, n + 1, n +

1, n + 1, n + 1) are χ-unique.

Proof. Let F ∼ K−sK2
1,2 (n−1, n−1, n+1, n+1, n+1, n+1). It is sufficient to

prove that F = K−sK2
1,2 (n−1, n−1, n+1, n+1, n+1, n+1). By Theorem 4.3 and

Lemma 2.4, we have F ∈ K−s(n−1, n−1, n+1, n+1, n+1, n+1) and α′(F ) = s.

Let F = G− S where G = K(n− 1, n− 1, n + 1, n + 1, n + 1, n + 1). Next we

consider the number of triangles in F . Let e ∈ S and t(e) be the number of

triangles in G containing the edge e. It is easy to see that t(e) ≤ 4n + 4. As

n− 1 ≤ n− 1 < n + 1 ≤ n + 1 ≤ n + 1 ≤ n + 1, we know that t(e) = 4n + 4 if

and only if e is an edge in the subgraph 〈A1 ∪ A2〉 in G. So we have

t(F ) ≥ t(G) −
s∑

i=1

t(e) ≥ t(G) − s(4n + 4);

and the equality holds if and only if each e edge in S is an edge of the subgraph

〈A1 ∪ A2〉 in G.

Note that t(F ) = t(G) − s(4n + 4) and α′(F ) = s. By Lemma 2.4, we know

that F = K−sK2
1,2 (n − 1, n − 1, n + 1, n + 1, n + 1, n + 1). This completes the

proof.

Similarly to the proof of Theorem 5.9, we can prove Theorems 5.10 and 5.11.

Theorem 5.10 If n ≥ s + 5, then the graphs K−sK2
1,2 (n− 2, n, n + 1, n+ 1, n+

1, n + 1) are χ-unique.
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Theorem 5.11 If n ≥ s +4, then the graphs K−sK2
1,2 (n− 1, n− 1, n, n+ 1, n+

1, n + 2) are χ-unique.

We end this paper with the following problems:

[1.] Study the chromaticity of the following graphs: (i) K
−K1,s

i,j (n−1, n, n, n+

1, n + 1, n + 1) where n ≥ s + 5 for each (i, j) ∈ {(1, 4), (4, 1), (2, 3)}, (ii)

K
−K1,s

i,j (n − 1, n, n, n, n + 1, n + 2) where n ≥ s + 4 for each

(i, j) ∈ {(1, 5), (5, 1), (1, 6), (6, 1), (2, 3), (2, 5), (5, 2)} and (iii) K
−K1,s

i,j (n−1, n−
1, n, n + 1, n + 1, n + 2) where n ≥ s + 4 for each

(i, j) ∈ {(1, 6), (6, 1), (3, 4), (4, 3), (3, 6), (6, 3), (4, 6), (6, 4)}.
[2.] Study the chromaticity of the following graphs: (i) K−sK2

1,2 (n, n, n, n, n +

1, n+1) where n ≥ s+2, (ii) K−sK2
1,2 (n−1, n, n, n+1, n+1, n+1) where n ≥ s+5,

(iii) K−sK2
1,2 (n, n, n, n, n, n + 2) where n ≥ s + 3, (iv) K−sK2

1,2 (n − 1, n, n, n, n +

1, n + 2) where n ≥ s + 4 and (v) K−sK2
1,2 (n− 3, n + 1, n + 1, n + 1, n + 1, n + 1)

where n ≥ s + 7.
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