# On Chromatic Uniqueness of Certain 6-Partite Graphs

### H. Roslan<sup>1</sup>, A. Sh. Ameen

School of Mathematical Sciences University Sains Malaysia, 11800 Penang, Malaysia

#### Y. H. Peng

Department of Mathematics, and Institute for Mathematical Research University Putra Malaysia 43400UPM Serdang, Malaysia

#### Abstract

Let  $P(G, \lambda)$  be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted  $G \sim H$ , if  $P(G, \lambda) = P(H, \lambda)$ . We write  $[G] = \{H|H \sim G\}$ . If  $[G] = \{G\}$ , then G is said to be chromatically unique. In this paper, we first characterize certain complete 6-partite graphs with 6n + 2 vertices according to the number of 7-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 6-partite graphs with certain star or matching deleted.

### Mathematical Subject Classification: 05C15

Keywords: Chromatic Polynomial; Chromatically Closed; Chromatic Unique-

ness

 $<sup>^{1}</sup>hroslan@cs.usm.my$ 

# 1 Introduction

All graphs considered here are simple and finite. For a graph G, let  $P(G, \lambda)$  be the chromatic polynomial of G. Two graphs G and H are said to be chromatically equivalent (or simply  $\chi$ -equivalent), symbolically  $G \sim H$ , if  $P(G, \lambda) = P(H, \lambda)$ . The equivalence class determined by G under  $\sim$  is denoted by [G]. A graph G is chromatically unique (or simply  $\chi$ -unique) if  $H \cong G$  whenever  $H \sim G$ , i.e,  $[G] = \{G\}$  up to isomorphism. For a set  $\mathcal{G}$  of graphs, if  $[G] \subseteq \mathcal{G}$  for every  $G \in \mathcal{G}$ , then  $\mathcal{G}$  is said to be  $\chi$ -closed. Many families of  $\chi$ -unique graphs are known (see [6,7,8]).

For a graph G, let V(G), E(G) and t(G) be the vertex set, edge set and number of triangles in G, respectively. Let S be a set of s edges in G. Let G - S (or G - s) be the graph obtained from G by deleting all edges in S, and by  $\langle S \rangle$ the graph induced by S. Let  $K(n_1, n_2, \dots, n_t)$  be a complete t-partite graph. We denote by  $\mathcal{K}^{-s}(n_1, n_2, \dots, n_t)$  the family of graphs which are obtained from  $K(n_1, n_2, \dots, n_t)$  by deleting a set S of some s edges.

In [4,5,7-10,12,13,14,17,18,19], one can find many results on the chromatic uniqueness of certain families of complete *t*-partite graphs (t = 2, 3, 4, 5). However, there are very few 6-partite graphs known to be  $\chi$ -unique, see [3,15,16].

In [3,15,16], Chen and Roslan et al. have obtained many families of  $\chi$ -unique graphs which are obtained by deleting the edges of a star or matching from a complete 6-partite graph with 6n + i vertices where i = 0, 1, 5. Thus, the aim of this paper is to study the chromaticity of the graphs which are obtained by deleting the edges of a star or matching from a complete 6-partite graph with 6n + 2 vertices.

Let G be a complete 6-partite graph with 6n + 2 vertices. In this paper, we characterize certain complete 6-partite graphs with 6n + 2 vertices according to the number of 7-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 6-partite graphs with certain star or matching deleted are obtained.

# 2 Some lemmas and notations

For a graph G and a positive integer r, a partition  $\{A_1, A_2, \dots, A_r\}$  of V(G), where r is a positive integer, is called an *r*-independent partition of G if every  $A_i$  is independent of G. Let  $\alpha(G, r)$  denote the number of r-independent partitions of G. Then, we have  $P(G, \lambda) = \sum_{r=1}^{p} \alpha(G, r)(\lambda)_r$ , where  $(\lambda)_r = \lambda(\lambda - 1)(\lambda - 2) \cdots (\lambda - r + 1)$  (see [11]). Therefore,  $\alpha(G, r) = \alpha(H, r)$  for each  $r = 1, 2, \cdots$ , if  $G \sim H$ .

For a graph G with p vertices, the polynomial  $\sigma(G, x) = \sum_{r=1}^{p} \alpha(G, r) x^{r}$  is called the  $\sigma$ -polynomial of G (see [2]). Clearly,  $P(G, \lambda) = P(H, \lambda)$  implies that  $\sigma(G, x) = \sigma(H, x)$  for any graphs G and H.

For disjoint graphs G and H,  $G \cup H$  denotes the disjoint union of G and H. The join of G and H denoted by  $G \vee H$  is defined as follows:  $V(G \vee H) = V(G) \cup V(H)$ ;  $E(G \vee H) = E(G) \cup E(H) \cup \{xy \mid x \in V(G), y \in V(H)\}$ . For notations and terminology not defined here, we refer [1].

**Lemma 2.1** (Brenti [2], Koh and Teo [7]) Let G and H be two disjoint graphs. Then

(1)  $|V(G)| = |V(H)|, |E(G)| = |E(H)|, t(G) = t(H) and \alpha(G, r) = \alpha(H, r)$ for  $r = 1, 2, 3, \dots, p$ , if  $G \sim H$ ;

(2)  $\sigma(G \lor H, x) = \sigma(G, x)\sigma(H, x).$ 

**Lemma 2.2** (Brenti [2]) Let  $G = K(n_1, n_2, n_3, \dots, n_t)$  and  $\sigma(G, x) = \sum_{r \ge 1} \alpha(G, r) x^r$ , then  $\alpha(G, r) = 0$  for  $1 \le r \le t-1$ ,  $\alpha(G, t) = 1$  and  $\alpha(G, t+1) = \sum_{i=1}^t 2^{n_i-1} - t$ .

Let  $x_1 \leq x_2 \leq x_3 \leq x_4 \leq x_5 \leq x_6$  be positive integers and  $\{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6}\} = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ . If there are two elements  $x_{i_1}$  and  $x_{i_2}$  in  $\{x_1, x_2, x_3, x_4, x_5, x_6\}$  such that  $x_{i_2} - x_{i_1} \geq 2$ , then  $H' = K(x_{i_1} + 1, x_{i_2} - 1, x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6}\}$  is called an *improvement* of  $H = K(x_1, x_2, x_3, x_4, x_5, x_6)$ .

**Lemma 2.3** (Chen [3]) Suppose  $x_1 \le x_2 \le x_3 \le x_4 \le x_5 \le x_6$  and  $H' = K(x_{i_1}+1, x_{i_2}-1, x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6})$  is an improvement of  $H = K(x_1, x_2, x_3, x_4, x_5, x_6)$ , then

$$\alpha(H,7) - \alpha(H',7) = 2^{x_{i_2}-2} - 2^{x_{i_1}-1} \ge 2^{x_{i_1}-1}.$$

Let  $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$ . For a graph H = G - S, where S is a set of some s edges of G, define  $\alpha'(H) = \alpha(H, 7) - \alpha(G, 7)$ . Clearly,  $\alpha'(H) \ge 0$ .

**Lemma 2.4** (Chen [3]) Let  $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$ . Suppose that min  $\{n_i | i = 1, 2, 3, 4, 5, 6\} \ge s + 1 \ge 1$  and H = G - S, where S is a set of some s edges of G, then

$$s \le \alpha'(H) = \alpha(H,7) - \alpha(G,7) \le 2^s - 1,$$

 $\alpha'(H) = s$  iff the set of end-vertices of any  $r \ge 2$  edges in S is not independent in H, and  $\alpha'(H) = 2^s - 1$  iff S induces a star  $K_{1,s}$  and all vertices of  $K_{1,s}$ other than its center belong to a same  $A_i$ .

Let  $K(A_1, A_2)$  be a complete bipartite graph with partite sets  $A_1$  and  $A_2$ . We denote by  $K^{-K_{1,s}}(A_i, A_j)$  the graph obtained from  $K(A_i, A_j)$  by deleting *s* edges that induce a star with its center in  $A_i$ . Note that  $K^{-K_{1,s}}(A_i, A_j) \neq$  $K^{-K_{1,s}}(A_i, A_i)$  if  $|A_i| \neq |A_j|$  for  $i \neq j$  (see [5]).

**Lemma 2.5** (Dong et al. [4]) Let  $K(n_1, n_2)$  be a complete bipartite graph with partite sets  $A_1$  and  $A_2$  such that  $|A_i| = n_i$  for i = 1, 2. If min  $\{n_1, n_2\} \ge s+2$ , then every  $K^{-K_{1,s}}(A_i, A_j)$  is  $\chi$ -unique, where  $i \ne j$  and i, j = 1, 2.

Let  $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$  be a complete 5-partite graph with partite sets  $A_i(i = 1, 2, \dots, 6)$  such that  $|A_i| = n_i$ . Let  $\langle A_i \cup A_j \rangle$  be the subgraph of G induced by  $A_i \cup A_j$ , where  $i \neq j$  and  $i, j \in \{1, 2, 3, 4, 5, 6\}$ . By  $K_{i,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6)$ , we denote the graph obtained from  $K(n_1, n_2, n_3, n_4, n_5, n_6)$ by deleting a set of s edges that induce a  $K_{1,s}$  with its center in  $A_i$  and all it end vertices are in  $A_j$ . Note that  $K_{i,l}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6) = K_{j,l}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6)$ and  $K_{l,i}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6) = K_{l,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6)$  for  $n_i = n_j$  and  $l \neq i, j$ .

Lemma 2.6 (Chen [3]) If  $i, j \in \{1, 2, 3, \dots, t\}, i \neq j, n_i \neq n_j$ , then  $P(K_{i,j}^{-K_{1,s}}(n_1, n_2, n_3, \dots, n_t), \lambda) \neq P(K_{j,i}^{-K_{1,s}}(n_1, n_2, n_3, \dots, n_t), \lambda).$ 

# **3** Classification

In this section, we shall characterize certain complete 6-partite graph  $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$  according to the number of 7-independent partitions of G where  $n_1 + n_2 + n_3 + n_4 + n_5 + n_6 = 6n + 2, n \ge 1$ .

**Theorem 3.1** Let  $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$  be a complete 6-partite graph such that  $n_1 + n_2 + n_3 + n_4 + n_5 + n_6 = 6n + 2$ ,  $n \ge 1$ . Define  $\theta(G) = [\alpha(G, 7) - 2^{n+2} + 6]/2^{n-2}$ . Then

- (i)  $\theta(G) \ge 0;$
- (*ii*)  $\theta(G) = 0$  *if and only if* G = K(n, n, n, n, n + 1, n + 1);
- (iii)  $\theta(G) = 1$  if and only if G = K(n-1, n, n, n+1, n+1, n+1);
- (iv)  $\theta(G) = 2$  if and only if G = K(n, n, n, n, n, n + 2) or G = K(n 1, n 1, n + 1, n + 1, n + 1, n + 1);
- (v)  $\theta(G) = 5/2$  if and only if G = K(n-2, n, n+1, n+1, n+1, n+1);
- (vi)  $\theta(G) = 3$  if and only if G = K(n-1, n, n, n, n+1, n+2);
- (vii)  $\theta(G) = 4$  if and only if G = K(n-1, n-1, n, n+1, n+1, n+2);
- (viii)  $\theta(G) = 17/4$  if and only if G = K(n-3, n+1, n+1, n+1, n+1, n+1);
- (ix)  $\theta(G) \ge 9/2$  if and only if G is not a graph appeared in (ii)-(viii).

**Proof.** For a complete 6-partite graph  $H_1$  with 6n + 2 vertices, we can construct a sequence of complete 6-partite graphs with 6n + 2 vertices, say  $H_1, H_2, \dots, H_t$ , such that  $H_i$  is an improvement of  $H_{i-1}$  for each  $i = 2, 3, \dots, t$ , and  $H_t = K(n, n, n, n, n + 1, n + 1)$ . By Lemma 2.3,  $\alpha(H_{i-1}, 7) - \alpha(H_i, 7) > 0$ . So  $\theta(H_{i-1}) - \theta(H_i) > 0$ , which implies that  $\theta(G) \ge \theta(H_t) = \theta(K(n, n, n, n, n + 1, n + 1))$ . From Lemma 2.2 and by a simple calculation,  $\theta(K(n, n, n, n, n + 1, n + 1)) = 0$ . Thus, (ii) is true.

Since  $H_t = K(n, n, n, n, n+1, n+1)$  and  $H_t$  is an improvement of  $H_{t-1}$ , it is not hard to see that  $H_{t-1} \in \{R, R_0, R_3\}$ , where R = K(n-1, n, n, n+1, n+1, n+1),

| $R_i$    | Graphs $H_{t-2}$                | $\theta(R_i)$ |
|----------|---------------------------------|---------------|
|          |                                 |               |
| $R_1$    | K(n-1, n-1, n+1, n+1, n+1, n+1) | 2             |
| $R_2$    | K(n-2, n, n+1, n+1, n+1, n+1)   | 5/2           |
| $R_3$    | K(n-1, n, n, n, n+1, n+2)       | 3             |
| $R_4$    | K(n-1, n-1, n, n+1, n+1, n+2)   | 4             |
| $R_5$    | K(n-2, n, n, n+1, n+1, n+2)     | 9/2           |
| $R_6$    | K(n-1, n-1, n, n, n+2, n+2)     | 6             |
| $R_7$    | K(n-2, n, n, n, n+2, n+2)       | 13/2          |
| $R_8$    | K(n-1, n, n, n, n, n+3)         | 9             |
| $R_9$    | K(n-1, n-1, n, n, n+1, n+3)     | 10            |
| $R_{10}$ | K(n-2, n, n, n, n+1, n+3)       | 21/2          |

Table 1:  $H_{t-2}$  and its  $\theta$ -values

 $R_0 = K(n, n, n, n, n, n+2)$  and  $R_3 = K(n-1, n, n, n, n+1, n+2)$ . Hence, by Lemma 2.2, we have  $\theta(R) = 1$ ,  $\theta(R_0) = 2$  and  $\theta(R_3) = 3$ .

Note that  $H_{t-1}$  is an improvement of  $H_{t-2}$  and it is not hard to see that  $H_{t-2} \in \{R_i | i = 1, 2, \dots, 10\}$ , where  $R_i$  and  $\theta(R_i)$  are shown in Table 1.

To complete the proof of the theorem, we need only determine all complete 6-partite graph G with 6n + 2 vertices such that  $\theta(G) < 9/2$ . By Lemma 2.3,  $\theta(H_{t-3}) > 9/2$  for each  $H_{t-3}$  if  $H_{t-2} \in \{R_i | i = 5, 6, \dots, 10\}$ . All graphs  $H_{t-3}$  and its  $\theta$ -values are listed in Table 2 when  $H_{t-2} \in \{R_i | i = 1, 2, 3, 4\}$ .

By Lemma 2.3,  $\theta(H_{t-4}) > 9/2$  for every  $H_{t-4}$  if  $H_{t-3} \in \{M_i | 2 \le i \le 7\}$ , one can easily obtain the following: If  $H_{t-3} = M_1$ , then  $H_{t-4} \in \{M_8, M_9\}$ , where  $M_8 = K(n-3, n, n+1, n+1, n+1, n+2)$ ,  $M_9 = K(n-4, n+1, n+1, n+1, n+2)$ , and  $\theta(M_8) = 25/4$ ,  $\theta(M_9) = 65/8$ . Hence, by Lemma 2.3, Table 1, Table 2 and the above arguments, we conclude that the theorem holds.

## 4 Chromatically closed 6-partite graphs

In this section, we obtained the  $\chi$ -closed of the families in  $\mathcal{K}^{-s}(n_1, n_2, n_3, n_4, n_5, n_6)$ .

| $M_i$ | Graphs $H_{t-3}$                | $\theta(M_i)$ |
|-------|---------------------------------|---------------|
|       |                                 |               |
| $M_1$ | K(n-3, n+1, n+1, n+1, n+1, n+1) | 17/4          |
| $M_2$ | K(n-2, n-1, n+1, n+1, n+1, n+2) | 11/2          |
| $M_3$ | K(n-3, n, n+1, n+1, n+1, n+2)   | 25/4          |
| $M_4$ | K(n-1, n-1, n-1, n+1, n+2, n+2) | 7             |
| $M_5$ | K(n-2, n-1, n, n+1, n+2, n+2)   | 15/2          |
| $M_6$ | K(n-1, n-1, n-1, n+1, n+1, n+3) | 11            |
| $M_7$ | K(n-2, n-1, n, n+1, n+1, n+3)   | 23/2          |

Table 2:  $H_{t-3}$  and its  $\theta$ -values

**Theorem 4.1** If  $n \ge s+2$ , then the family of graphs  $\mathcal{K}^{-s}(n, n, n, n, n+1, n+1)$  is  $\chi$ -closed.

**Proof.** Let G = K(n, n, n, n, n+1, n+1) and  $Z \in \mathcal{K}^{-s}(n, n, n, n, n+1, n+1)$ . The 6-independent partition of G is certainly 6-independent partition of Z. So  $\alpha(Z, 6) \geq \alpha(G, 6) = 1$ . Let  $H \sim Z$ , then  $\alpha(H, 6) = \alpha(Z, 6) \geq \alpha(G, 6) = 1$ . Let  $\{A_1, A_2, A_3, A_4, A_5, A_6\}$  be a 6-independent partition of H,  $|A_i| = t_i$ , i = 1, 2, 3, 4, 5, 6 and  $F = K(t_1, t_2, t_3, t_4, t_5, t_6)$ . Then there exist  $S' \in E(F)$  such that H = F - S'. Let q(G) be the number of edges in graph G. Since q(H) = q(Z), therefore s' = |S'| = q(F) - q(G) + s.

From Lemma 2.4, we have

$$\alpha(Z,7) = \alpha(G,7) + \alpha'(Z), s \le \alpha'(Z) \le 2^s - 1, \quad \text{and} \\ \alpha(H,7) = \alpha(F,7) + \alpha'(H), s' \le \alpha'(H).$$

Thus  $\alpha(H,7) - \alpha(Z,7) = \alpha(F,7) - \alpha(G,7) + \alpha'(H) - \alpha'(Z)$  and  $\alpha(Z,7) = \alpha(H,7)$ , so  $\alpha(H,7) - \alpha(Z,7) = 0$ .

If  $F \neq G$ , from Theorem 3.1, we have  $\theta(F) - \theta(G) \geq 1$ . So

$$\alpha(F,7) - \alpha(G,7) = (\theta(F) - \theta(G)) \cdot 2^{n-2} \ge 2^{n-2}.$$

Hence

$$\alpha(H,7) - \alpha(Z,7) \ge 2^{n-2} + \alpha'(H) - \alpha'(Z) \ge 2^{n-2} + 0 - (2^s - 1) \ge 1.$$

This is a contradiction. So F = G, s = s'. Thus,  $H \in \mathcal{K}^{-s}(n, n, n, n, n+1, n+1)$ . 1). Therefore,  $\mathcal{K}^{-s}(n, n, n, n, n+1, n+1)$  is  $\chi$ -closed if  $n \ge s+2$ . The proof is now completed.

By using the similar proof of Theorem 4.1, we can obtain the following results.

**Theorem 4.2** If  $n \ge s + 5$ , then the family of graphs  $\mathcal{K}^{-s}(n-1, n, n, n + 1, n+1)$  is  $\chi$ -closed.

**Theorem 4.3** If  $n \ge s+3$ , then the families of graphs  $\mathcal{K}^{-s}(n, n, n, n, n, n+2)$ and  $\mathcal{K}^{-s}(n-1, n-1, n+1, n+1, n+1, n+1)$  are  $\chi$ -closed.

**Theorem 4.4** If  $n \ge s+5$ , then the family of graphs  $\mathcal{K}^{-s}(n-2, n, n+1, n+1, n+1, n+1)$  is  $\chi$ -closed.

**Theorem 4.5** If  $n \ge s + 4$ , then the family of graphs  $\mathcal{K}^{-s}(n-1, n, n, n, n + 1, n+2)$  is  $\chi$ -closed.

**Theorem 4.6** If  $n \ge s+4$ , then the family of graphs  $\mathcal{K}^{-s}(n-1, n-1, n, n+1, n+1, n+2)$  is  $\chi$ -closed.

**Theorem 4.7** If  $n \ge s + 7$ , then the family of graphs  $\mathcal{K}^{-s}(n-3, n+1, n+1, n+1, n+1, n+1)$  is  $\chi$ -closed.

# 5 Chromatically unique 6-partite graphs

In this section, we first study the chromatically unique 6-partite graphs with 6n + 2 vertices and a set S of s edges deleted where the deleted edges induce a star  $K_{1,s}$ .

**Theorem 5.1** If  $n \ge s+2$ , then the graphs  $K_{i,j}^{-K_{1,s}}(n, n, n, n, n+1, n+1)$  are  $\chi$ -unique for  $(i, j) \in \{(1, 2), (1, 5), (5, 1), (5, 6)\}.$ 

**Proof.** From Lemma 2.4 and Theorem 4.1, we know that  $K_{i,j}^{-K_{1,s}}(n, n, n, n, n + 1, n + 1) = \{K_{i,j}^{-K_{1,s}}(n, n, n, n, n + 1, n + 1) | (i, j) \in \{(1, 2), (1, 5), (5, 1), (5, 6)\}$  is  $\chi$ -closed if  $n \geq s + 2$ . Note that

$$\begin{split} t(K_{1,2}^{-K_{1,s}}(n,n,n,n,n+1,n+1)) &= t(K(n,n,n,n,n+1,n+1)) - s(4n+2);\\ t(K_{i,j}^{-K_{1,s}}(n,n,n,n,n+1,n+1)) &= t(K(n,n,n,n,n+1,n+1)) - s(4n+1) \text{ for } (i,j) \in \{(1,5),(5,1)\};\\ t(K_{5,6}^{-K_{1,s}}(n,n,n,n,n+1,n+1)) &= t(K(n,n,n,n,n+1,n+1)) - 4sn.\\ By Lemmas 2.1 and 2.6, we conclude that  $\sigma(K_{1,5}^{-K_{1,s}}(n,n,n,n+1,n+1)) \neq \sigma(K_{5,1}^{-K_{1,s}}(n,n,n,n+1,n+1)). \text{ Hence, by Lemma 2.1, the graphs } K_{i,j}^{-K_{1,s}}(n,n,n,n,n,n+1,n+1)).\\ 1, n+1) \text{ are } \chi\text{-unique where } n \geq s+2 \text{ for } (i,j) \in \{(1,2),(1,5),(5,1),(5,6)\}. \end{split}$$$

The proof is now completed.  $\Box$ 

Similarly to the proof of Theorem 5.1, we can prove Theorems 5.2–5.5.

**Theorem 5.2** If  $n \ge s+3$ , then the graphs  $K_{i,j}^{-K_{1,s}}(n, n, n, n, n, n+2)$  are  $\chi$ -unique for  $(i, j) \in \{(1, 2), (1, 6), (6, 1)\}.$ 

**Theorem 5.3** If  $n \ge s+3$ , then the graphs  $K_{i,j}^{-K_{1,s}}(n-1, n-1, n+1, n+1, n+1, n+1)$  are  $\chi$ -unique for  $(i, j) \in \{(1, 2), (1, 3), (3, 1), (3, 4)\}$ .

**Theorem 5.4** If  $n \ge s+5$ , then the graphs  $K_{i,j}^{-K_{1,s}}(n-2, n, n+1, n+1, n+1, n+1, n+1)$  are  $\chi$ -unique for  $(i, j) \in \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (3, 4)\}$ .

**Theorem 5.5** If  $n \ge s+7$ , then the graphs  $K_{i,j}^{-K_{1,s}}(n-3, n+1, n+1, n+1, n+1, n+1, n+1)$  are  $\chi$ -unique for  $(i, j) \in \{(1, 2), (2, 1), (2, 3)\}$ .

**Theorem 5.6** If  $n \ge s+5$ , then the graphs  $K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+1, n+1)$  are  $\chi$ -unique for  $(i, j) \in \{(1, 2), (2, 1), (2, 4), (4, 2), (4, 5)\}.$ 

**Proof.** Let  $F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+1, n+1) | (i, j) \in \{(1, 2), (2, 1), (2, 4), (4, 2), (4, 5)\}\}$ and  $H \sim F$ . By Theorem 4.2,  $H \in \mathcal{K}^{-s}(n-1, n, n, n+1, n+1)$ . Since

$$\alpha(H,7) = \alpha(F,7) = \alpha(K(n-1,n,n,n+1,n+1,n+1),7) + 2^s - 1,$$

$$1, n+1)|i \neq j, \ i, j = 1, 2, 3, 4, 5, 6\} = \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+1, n+1)|(i, j) \in \{(1, 2), (2, 1), (1, 4), (4, 1), (2, 3), (2, 4), (4, 2), (4, 5)\}\}.$$

Now let's determine the number of triangles in H and F. Then we obtain that

$$\begin{split} t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+1)) &= t(K(n-1,n,n,n+1,n+1,n+1)) - s(4n+3) \text{ for } (i,j) \in \{(1,2),(2,1)\}, \\ t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+1)) &= t(K(n-1,n,n,n+1,n+1,n+1)) - s(4n+2) \text{ for } (i,j) \in \{(1,4),(4,1),(2,3)\}, \\ t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+1)) &= t(K(n-1,n,n,n+1,n+1,n+1)) - s(4n+1) \text{ for } (i,j) \in \{(2,4),(4,2)\}, \\ t(K_{4,5}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+1)) &= t(K(n-1,n,n,n+1,n+1,n+1)) - 4sn. \\ \text{Recalling} \end{split}$$

$$F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+1, n+1) | (i, j) \in \{(1, 2), (2, 1), (2, 4), (4, 2), (4, 5)\}\}$$

and t(H) = t(F), thus we have

$$H, F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+1, n+1) | (i,j) \in \{(1,2), (2,1)\}\}$$

or

$$H, F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+1, n+1) | (i,j) \in \{(2,4), (4,2)\}\}.$$

It follows from Lemmas 2.1 and 2.6 that

$$P(K_{1,2}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+1),\lambda) \neq P(K_{2,1}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+1),\lambda);$$

$$P(K_{2,4}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+1),\lambda) \neq P(K_{4,2}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+1),\lambda).$$

Hence, by Lemma 2.1, we conclude that the graphs  $K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+1, n+1)$  are  $\chi$ -unique where  $n \ge s+5$  for each  $(i, j) \in \{(1, 2), (2, 1), (2, 4), (4, 2), (4, 5)\}$ .

Similarly to the proof of Theorem 5.6, we can prove Theorems 5.7 and 5.8.

**Theorem 5.7** If  $n \ge s+4$ , then the graphs  $K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1,n+2)$  are  $\chi$ -unique for  $(i,j) \in \{(1,2), (2,1), (2,6), (6,2), (5,6), (6,5)\}.$ 

**Theorem 5.8** If  $n \ge s+4$ , then the graphs  $K_{i,j}^{-K_{1,s}}(n-1, n-1, n, n+1, n+1, n+2)$  are  $\chi$ -unique for  $(i, j) \in \{(1, 2), (1, 3), (3, 1), (1, 4), (4, 1), (4, 5)\}$ .

Let  $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$  be a complete 6-partite graph with partite sets  $A_i(i = 1, 2, \dots, 6)$  such that  $|A_i| = n_i$ . Denote  $\langle A_i \cup A_j \rangle$  be the subgraph of G induced by  $A_i \cup A_j$ , where  $i \neq j$  and  $i, j \in \{1, 2, 3, 4, 5, 6\}$ . Let  $K_{i,j}^{-sK_2}(n_1, n_2, n_3, n_4, n_5, n_6)$  denotes the graph obtained from  $K(n_1, n_2, n_3, n_4, n_5, n_6)$ by deleting a set of s edges that forms a matching in  $\langle A_i \cup A_j \rangle$ .

We now investigate the chromatically unique 6-partite graphs with 6n + 2 vertices and a set S of s edges deleted where the deleted edges induce a matching  $sK_2$ .

**Theorem 5.9** If  $n \ge s+3$ , then the graphs  $K_{1,2}^{-sK_2}(n-1, n-1, n+1, n+1, n+1, n+1)$  are  $\chi$ -unique.

**Proof.** Let  $F \sim K_{1,2}^{-sK_2}(n-1, n-1, n+1, n+1, n+1, n+1)$ . It is sufficient to prove that  $F = K_{1,2}^{-sK_2}(n-1, n-1, n+1, n+1, n+1, n+1)$ . By Theorem 4.3 and Lemma 2.4, we have  $F \in \mathcal{K}^{-s}(n-1, n-1, n+1, n+1, n+1, n+1)$  and  $\alpha'(F) = s$ . Let F = G - S where G = K(n-1, n-1, n+1, n+1, n+1, n+1). Next we consider the number of triangles in F. Let  $e \in S$  and t(e) be the number of triangles in G containing the edge e. It is easy to see that  $t(e) \leq 4n + 4$ . As  $n-1 \leq n-1 < n+1 \leq n+1 \leq n+1 \leq n+1$ , we know that t(e) = 4n+4 if and only if e is an edge in the subgraph  $\langle A_1 \cup A_2 \rangle$  in G. So we have

$$t(F) \ge t(G) - \sum_{i=1}^{s} t(e) \ge t(G) - s(4n+4);$$

and the equality holds if and only if each e edge in S is an edge of the subgraph  $\langle A_1 \cup A_2 \rangle$  in G.

Note that t(F) = t(G) - s(4n + 4) and  $\alpha'(F) = s$ . By Lemma 2.4, we know that  $F = K_{1,2}^{-sK_2}(n - 1, n - 1, n + 1, n + 1, n + 1)$ . This completes the proof.  $\Box$ 

Similarly to the proof of Theorem 5.9, we can prove Theorems 5.10 and 5.11.

**Theorem 5.10** If  $n \ge s+5$ , then the graphs  $K_{1,2}^{-sK_2}(n-2, n, n+1, n+1, n+1, n+1)$  are  $\chi$ -unique.

**Theorem 5.11** If  $n \ge s+4$ , then the graphs  $K_{1,2}^{-sK_2}(n-1, n-1, n, n+1, n+1, n+2)$  are  $\chi$ -unique.

We end this paper with the following problems:

 $\begin{aligned} \textbf{[1.]} & \text{Study the chromaticity of the following graphs: (i) } K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1) \text{ where } n \geq s+5 \text{ for each } (i,j) \in \{(1,4),(4,1),(2,3)\}, \text{ (ii)} \\ K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1,n+2) \text{ where } n \geq s+4 \text{ for each} \\ (i,j) \in \{(1,5),(5,1),(1,6),(6,1),(2,3),(2,5),(5,2)\} \text{ and (iii) } K_{i,j}^{-K_{1,s}}(n-1,n-1,n,n+1,n+1,n+2) \text{ where } n \geq s+4 \text{ for each} \\ (i,j) \in \{(1,6),(6,1),(3,4),(4,3),(3,6),(6,3),(4,6),(6,4)\}. \\ \end{aligned}$ 

#### References

- J.A. Bondy and U.S.R. Murty, Graph Theory with Application, London: Macmillan, 1976.
- F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc. 332(2) (1992), 729-756.
- 3. X.E. Chen, Chromaticity on 6-partite graphs with 6n+5 vertices, Pure and Applied Math. 21(2) (2005), 134–141.
- G.L. Chia, B.H. Goh and K.M. Koh, The chromaticity of some families of complete tripartite graphs, Scientia, Series A: Math.Sci. 2 (1988), 27–37.
- F.M. Dong, K.M. Koh and K.L. Teo, Sharp bounds for the number of 3-independent partition and chromaticity of bipartite graphs, J. Graph Theory 37 (2001), 48–77.
- F.M. Dong, K.M. Koh and K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs, Word Scientific, 2005.

- K.M. Koh and K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990), 259–285.
- K.M. Koh and K.L. Teo, The search for chromatically unique graphs II, Discrete Math. 172 (1997), 59–78.
- 9. G.C. Lau and Y.H. Peng, Chromaticity of complete tripartite graphs with certain star and matching deleted, Ars Comb., accepted.
- G.C. Lau and Y.H. Peng, Chromaticity of complete 4-partite graphs with certain star and matching deleted, Appl. Anal. Discrete Math. 4 (2010), 253–268.
- R.C. Read and W.T. Tutte, Chromatic Polynomials, In: L.W. Beineke and R.J. Wilson, eds. Selected Topics in Graph Theory (II), New York: Academic Press, (1988),15-42.
- 12. H. Roslan, A. Sh. Ameen, Y. H. Peng and H.X. Zhao, Chromaticity of complete 5-partite graphs with certain star and matching deleted, submitted.
- H. Roslan, A. Sh. Ameen, Y. H. Peng and H.X. Zhao, Classification of complete 5-partite graphs and chromaticity of 5-partite graphs with 5n+2 vertices, Far East Journal of Mathematical Sciences, Vol. 42, No. 1 (2010), 59–72.
- H. Roslan, A. Sh. Ameen, Y. H. Peng and H.X. Zhao, Chromaticity of complete 5-partite graphs with certain edges deleted, Journal of Applied Mathematics and Computing 35 (2011), 507-516.
- H. Roslan, A. Sh. Ameen, Y. H. Peng and H.X. Zhao, Chromaticity of complete 6-partite graphs with certain star and matching deleted deleted, Bulletin of Malaysian Math. Society, accepted.
- H. Roslan, A. Sh. Ameen, Y. H. Peng and H.X. Zhao, Chromaticity of complete 6-partite graphs with certain star and matching deleted deleted II, Acta Mathematicae Appl. Sinica (English Series), accepted.

- H.X. Zhao, R.Y. Liu and S.G. Zhang, Classification of Complete 5-Partite Graphs and Chromaticity of 5-Partite Graphs With 5n Vertices, Appl. Math. J.Chinese Univ. Ser. B. 19(1) (2004), 116–124.
- H.X. Zhao, On the chromaticity of 5-partite graphs with 5n+4 vertices,
   J. of Lanzhou Univ. (Natural Sciences), 40(3) (2004), 12–16 (in Chinese).
- 19. H.X. Zhao, Chromaticity and adjoint polynomials of graphs, Ph.D. Thesis University of Twente, (2005) Netherland.

Received: October, 2011