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Abstract: Voice pathology disorders can be effectively detected using computer-aided voice pathology
classification tools. These tools can diagnose voice pathologies at an early stage and offering
appropriate treatment. This study aims to develop a powerful feature extraction voice pathology
detection tool based on Deep Learning. In this paper, a pre-trained Convolutional Neural Network
(CNN) was applied to a dataset of voice pathology to maximize the classification accuracy. This study
also proposes a distinguished training method combined with various training strategies in order
to generalize the application of the proposed system on a wide range of problems related to voice
disorders. The proposed system has tested using a voice database, namely the Saarbrücken voice
database (SVD). The experimental results show the proposed CNN method for speech pathology
detection achieves accuracy up to 95.41%. It also obtains 94.22% and 96.13% for F1-Score and
Recall. The proposed system shows a high capability of the real-clinical application that offering a
fast-automatic diagnosis and treatment solutions within 3 s to achieve the classification accuracy.

Keywords: voice pathology detection; voice pathology classification; convolutional neural network;
Saarbrücken voice database; the vowel /a/; residual network (ResNet34)

1. Introduction

There are many factors that can caused by voice pathologies. Some of include infections of voice
tissue, tiredness, environmental changes, muscular dystrophy, face soreness and others [1]. The voice
pathology has a negative impact on vibration regularity and voice functionality, which leads to an
increase in vocal noise. The normal voice turned to be tense, weak and hoarse [2] that affects the quality
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of voice [3]. To date, the current vocal pathology detection methods have a biased evaluation based
on subjective matters [4]. An example of the subjective evaluation is auditory-perceptual assessment
in hospitals, which is widely applied by visual laryngostroboscopy assessment [5]. Several clinical
examinations are applied for auditory-perceptual parameters to scale the rate of severity diagnosis [6].
However, those evaluation methods are subject to parameter sensitivity and are also time consuming
and laborious [7]. In addition, these methods require a physical patient examination in the clinic
which could be difficult for patients with severe conditions. An example of objective evaluation is
using a computer-aided tool to identify and analyse vocal signals without any surgical intervention.
The automatic detection can also recognize inaudible sounds [1].

These evaluation methods are not subjective as they do not depend on a human decision. Besides,
they are easy to apply since the voice recordings can be made available remotely via different internet
recoding applications. Therefore, some studies such as [8] have developed vocal processing methods
to determine the vocal pathology aspects can be effectively combined with a machine learning method
to detect the voice pathology automatically in one framework to accurately distinguish healthy people
from people with voice pathologies. In the literature, various voice pathology databases have been
widely applied for the objective evaluation of voice pathology. The most common voice pathology
databases are the Saarbruecken Voice Database (SVD) [9], Arabic Voice Pathology Database (AVPD) [10]
and the Massachusetts Eye and Ear Infirmary Database (MEEI) [11]. The vocalization of the vowel
/a/. [1,11] is available in many language databases [2], therefore, it is commonly analysed by researchers.
Other combinations of vowels are also analyzed by researchers [1,12]. Notably, the majority of the
researchers in the voice pathologies community have limited the datasets to specific pathologies
sets [12].

Usually, the clinical interpretation of vocal features is conducted before the process of pathology
detection [13]. Examples of vocal features are glottal-to-noise excitation ratio (GNE) [14], Mel frequency
cepstral coefficients (MFCC) [15], multidimensional voice program parameters (MDVP) [16] and
many others. See [17] for more details about the settings of speech pathologies. Once the vocal
features are extracted, many conventional classification methods are applied for voice pathology
detection. For detection purposes, most studies have used Random Forests (RF), Artificial Neural
Networks (ANN) [18], Gaussian Mixture Models (GMM), Support Vector Machines (SVM) and other
classifiers [19,20]. It is observed that the study results show notable differences. Because of the different
set selection, a sample of voice pathology, a vocal feature and classification method are applied in the
experiments. This drives us to the following conclusions: most works analyse a single speech task,
mainly the sustained phonation of the vowel /a/ (language-independent speech task)

• The majority of studies focus only on analyzing a single voice segment. In particular the
vocalization of the vowel /a/ in the independent language speech task.

• The most analysis is conducted on limited acoustic pathologies from the SVD, AVPD and
MEEI databases.

• The conventional dysphonic feature is the feature most extracted to determine the voice aspect for
a particular voice pathology.

• Artificial Neural Network (ANN), Random Forest (RF) and Support Vector Machine (SVM) are
the most conventional machine learning methods employed for vocal-pathologies detection.

In this paper, we attempt to make a comparative analysis with published results on the speech
recordings of the vocalization of the vowel /a/. In spite of other studies, the comparison analysis will
cover a bigger segment of SVD [21]. In order to widen the problem scope and maximize the generality
of application of the proposed method, we will not limit the vocal pathologies in the database to the
popular subtest that is commonly used in the literature. Therefore, a big number of voice pathologies
with minimum voice recordings will be included in our dataset for this study. As far as we are
concerned, no study presented in the literature [22], is based on a deep learning method for detection
of vocal pathologies. In this study, a conventional voice pathology detection method is used and
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combined with a vocal feature selection method. We also will employ a gradient boosting method as
a classifier. An investigation of anomaly detection methods usage is also conducted in this study to
manage the wide distribution of vocal pathologies that are associated with a limited number of voice
phytology recordings. In this study, we propose automatic rapid voice pathology detection based
on a deep learning classifier, namely a DNN system for voice pathology detection. Our proposed
methods are applied through four primary phases, including preparation of dataset following by
learning process phase then a training and validation phase and finally an inference processing phase.

This paper is organized as follows: An overview of currents studies and some related works are
presented in Section 2. In Section 3, we describe our proposed voice pathology detection based on
deep learning. We present the experimental results in Section 4. Finally, we present our conclusions
and directions of future research in Section 5.

2. Related Work

The utilization of machine learning (ML) can be useful in many applications such as
medical diagnosis [23], cancer detection [24], smart building applications [25], and others [1,11,26].
Machine learning methods are valuable for discriminatory detection and classification tasks [27,28].
These methods have been used in diverse speech identification uses, where one of these uses is
pathological voice investigation [29]. The identification and the classification of voice pathology
techniques are still one of the difficult domains within the investigation of speech detection. Besides,
these basic techniques are expensive and need more time and many sorts of gear [30]. Many researchers
focus on the Saarbrücken voice database (SVD) in their studies. The researchers that utilized SVD
extracted different features from voice records prior to pathology identification. The features that are
frequently extracted are entropy, energy, time, contained Mel-frequency cepstral coefficients (MFCC),
cepstral domains, frequency, harmonics-to-noise ratio, short-term cepstral parameters, normalized
noise energy, and others [2,31–33]. After this stage the classification task will begin. Many binary
and multi-classification methods have been used such K-means clustering, Support Vector Machine,
and so on. To our best knowledge, our study is the first study to present voice pathology detection and
classification using a convolutional neural network (CNN).

The outcomes of the published studies vary greatly because of the variances among the datasets
used in the experimental results. According to Martınez et al. [34], the accuracy achieved utilizing
200 records of sustained vowel /a/ represent a high value and it’s very close to our study. Other studies
utilized the combination of vowels /a/, /i/ and /u/ to get high accuracy and do not focus on the pathology
causes. In the studies by Souissi et al. in [35] they achieved high accuracy of 87.82% utilizing subset
involving four kinds of voice pathologies that include 71 types. Also, Al-Nasheri et al. [16,36] achieved
an accuracy of 99.68% due to their use of a subset involving a few of the pathologies to conduct a
test on information that was moreover displayed in other accessible datasets, such as Arabic Voice
Pathology Database (AVPD), and Massachusetts Eye and Ear Infirmary Database (MEEI). Another
study conducted by Muhammad et al. [13] utilized a subset involving three kinds of voice pathologies
that achieved an accuracy of 93.20%. In addition, they utilized a combination of voice records as an
electroglottograph signal to increase the accuracy to 99.98%. However, in another study conducted by
Hemmerling et al. [37] they achieved a high accuracy of 100% in the detection issue by their method to
separate male and female speakers.

The study of Hammami et al. [38] assessed the execution of the proposed high order statistic
feature highlights extricated from wavelet space to segregate between normal voices and pathological
ones. Traditional features such as Cruel Wavelet Esteem, Cruel Wavelet Vitality and Cruel Wavelet
Entropy were used in the experiments. These highlights, combined with a SVM classifier, reach the
most elevated correctness of 99.26% within the location step and 100% when classifying the information.
In order to include concrete logical included values a clinical evaluation was performed on information
collected from subjects from a healing center in Tunez. The results were acceptable and the precisions
were 94.82% and 94.44% for the location and classification, respectively. Fonseca et al. [39] worked
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on the discovery of co-existent laryngeal issues for which the major phonic side effect is the same,
creating features with noteworthy inter-class coverage. Based on the combination of SE, ZCR and
SH, all utilized for extraction, related with DPM, particularly received for classification, the proposed
approach was effectively concluded, productively dealing within definitions and inconsistencies with
an estimated precision of 95%. The ongoing challenge of dysphonia voice research is the small size of
the database produced by Rueda and Krishnan [40]. It is very complicated to use more advanced deep
learning methods without underfitting or overfitting. They proposed an adaptive method utilized to
break down a signal into its components employing a Fourier-based sychrosqueezing change (FSST)
for information enlargement and change. The 2D TF representation output becomes the input to CNN.

It is clear that each voice disorder produces distinctive frequencies depending on the sort of voice
disorder and its area on the vocal folds, as we observed. Thus, monitoring the frequency groups
is exceptionally vital to evaluate which one contributes more to the discovery and classification of
voice afflictions. For example, Pouchoulin et al. [41] stated that lower frequencies (3000 Hz) are more
reasonable for recognizing dysphonic voices than higher frequencies. Furthermore, Fraile et al. [42]
demonstrated that the control of dysphonic voice flags is altogether less steady within the recurrence
area between 2000 and 6400 Hz than the other recurrence regions. To discuss the outcomes of a
comparative literature review, they analysed voice records of maintained phonation of the vowel /a/

as well. However, in contrast to past studies, we analyze a bigger database collected from SVD [1].
Moreover, to propose systems capable of powerful voice pathology detection and classification, we do
not confine the database as if it were a subset of popular voice pathologies. In this study, the database
includes an expansive number of pathologies with small recordings. As we observed in the related
works, in spite of past work [1], no other studies have utilized deep learning methods for voice
pathology identification. In the following sections we utilize a robust voice pathology identification
model based on the acoustic feature extraction strategy. We use voice pathology detection and
identification utilizing a CNN approach. We utilize the transfer learning method for using the current
powerful CNN models. Particularly, the ResNet34 models were used. To handle the issue of inadequate
distribution of an assortment of voice pathologies with few recordings in the datasets, we also explore
the utilization of abnormality detection methods.

3. Proposed Methodology

3.1. Dataset Used

As already stated, we have opted to use continuous vowel /a/ phonation as the base for our
experiments. A speaker is asked to maintain vowel phoning during this specific speech task, to maintain
the amplitude and frequency at a realistic rate [21]. The benefit of this speech task is that it is free
of articulative and other linguistic confusions compared with other language standard tasks such
as reading or speaking activities. This uniqueness makes it an ideal alternative for this mission for
building the large database required for supervised deep learning models [43]. Thus, the only speech
task used in this process is sustained /a/ vowel phoning.

The Saarbruecken Voice Database (SVD) is built based on 2000 speakers [10] and voice and
electroglottography (EGG) signal sets are included in this dataset. It comprises records of 687 healthy
individuals (259 men and428 women) and 1356 individuals (629 men and 727 women) with different
pathologies. The recording procedure involves: (a) vowels /i, a, u/ formed in normal speech, (b) high
and low pitches; vowels /i, a, u/ with rising-falling pitch; and (c) the German sentence “Guten Morgen,
wiegeht es Ihnen?” (“Good morning, how are you?”). Each recorded SVD voice was sampled with a
resolution of 16-bit at 50 kHz. This dataset is fairly recent and has therefore been used by very few
studies in the field of voice pathology. Following the three diseases criteria, we downloaded files from
the website listed in [44] and selected only the continuous vowel /a/ samples generated at normal pitch.
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3.2. Proposed Method

The key aim of the study is to extract features that enhance the accuracy for detection and
classification of voice pathology and to investigate the impact on the detection and classification
processes of different frequency regions (bands). Before feeding to a convolutionary neural network
(CNN), the voice signals are processed. To use existing stable CNN models, we use a transfer-learning
platform. The paper explores, in particular, the ResNet34 models. The block diagram of the proposed
solution is shown in Figure 1.
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Figure 1. Voice signal processing in the proposed system.

Figure 1 demonstrates the proposed deep learning approach to the detection of voice pathology.
The system is fed a patient’s voice, and the output determines whether the patient’s voice is normal or
pathological. The signal of the voice is 1 s. If an input reaches 1 s, then a signal of 1 s is cut from the
centre. The signal is split in 40 ms frames, of which the gap is 20 ms. The 40 ms frame duration is a
well-equilibrated pitch capture and voice breaks smoothing option. If this is very long, then the voice
breaks or some sounds cause the vocal folds to be irregularly opened and closed. The continuation
effect and pitch duration are lost if the frame length is short. The framed signal is transformed by a
fast Fourier transform to a frequency-domain signal. We get a spectrogram after concatenating all
frequency-domains of the frames. The spectrogram could be viewed as an image. The spectrogram
includes a minimum of 20 filters for the band pass. The filters are based on the octave. In the area
of voice pathology detection, the octave scale typically functions better than the Mel scale [34]. Time
derivatives of the first and second order for the octave spectrum output are used. After this method,
we get three image-like patterns: the octave and its derivatives of first and second order. The input of
the CNN models is made up of three image patterns. We tested ResNet34 in the proposed method.

In this paper, for several reasons the transfer learning strategy for the CNN training is applied:
(i) to overcome the lack of adequate voice pathologic attributes, in particular voice diseases derived
from patients with reported infections, (ii) reducing the learning duration needed to acquire the final
learned typical, and (iii) increasing the classification precision of the voice pathology identification.
The technique of transfer learning is intended to boost neural network output in realistic applications
bypassing learning from another task [45]. For example, the training of a CNN to classify the case
into two groups (e.g., pathological or healthy) may help to classify cases of different disease types.
In this case, we used an effective ResNet34 pertained model. Residual Network (ResNet) is one of the
highest-profile CNNs and the recipient of the 2015 ILSVRC ImageNet classification award [46]. ResNet
is much like the other CNNs, which are sequentially packed with convolutionary, pooling, activation
maps and fully interconnected layers. The only big difference between ResNet and other CNNs is
the connection identity from the input layer to the end of the residual block (as shown in Figure 2b).
The architecture of ResNet34 begins with a convolutionary operation and max-pooling of the use of
size kernels (5*5) pixels and (2*2) pixels, respectively. Thereafter, four stages with a different number
with residual blocks are introduced, using size kernels (2*2) pixels to perform the convolutionary
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operation. When one passes from one point to the next, the depth of the channel is doubled, and the
size of the input sample is halved. In this study the ResNet34 has an average pooling layer with two
neurons (for example, positive pathological and normal case as healthy) followed by a completely
connected layer. Table 1 illustrates the main details of the ResNet34 architecture. Following the
proposed training methodology, experiments were performed using k-folds cross validation samples
of SVD voice pathology as a ResNet34 training sample, although the reset samples were used for the
testing. In the course of the training, 20 percent of the training set was chosen randomly and used as
a validator set to test the model’s general capacity and store the configuration of weights that gave
the validation set the minimum error rate. The best model (based on hyper-parameters) used in the
proposed Voice Pathology Detection System can be found in Table 2. To summarize, the principal steps
in the proposed approach for training are as follows:

(1) Divide the SVD dataset into three separate sets: training, test and validation set.
(2) Select initial hyper parameter values (e.g., learning rate, dynamic, and so on).
(3) Train the ResNet34 utilizing the training group and the hyper-parameters group in step 2.
(4) The validation set is used to evaluate ResNet34 performance during the training phase.
(5) Reiterate phases 3 to 4 for 12 epochs.
(6) Choose the best candidate typical with minimum validation error rate.
(7) Through utilizing the test group, the best-trained model is identified.
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Table 1. The ResNet34 architecture factors.

Layer Name ResNet34

Conv-1 5 × 5, 128 stride 2

Pool-1 2 × 2 Max-Pooling stride 2

Step-1
[

2× 2, 32
2× 2, 32

]
× 2

Step -2
[

2× 2, 64
2× 2, 64

]
× 5

Step -3
[

2× 2, 128
2× 2, 128

]
× 8

Step -4
[

2× 2, 256
2× 2, 256

]
× 2

Poo1-2 Average pooling, stride 1

Fc 2-d, Softmax
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Table 2. The best-trained model parameters utilized in Voice Pathology Detection DeepNet System.

Hyper-Parameters Values

Optimization Method Adam
Momentum 0.93
Weight-Decay 0.0006
Dropout 0.3
Batch Size 90
Learning Rate 0.02
Total No. of Epochs 10

3.3. Training and Validation Stage

To train and validate the deep learning model, the dataset have been split into different sets as
mentioned before. Subsequently, 10-fold cross-validation indices were generated for each set in the
training and validation phases so that for each experiment we can use the same data sets. For the final
evaluation of the models, the test set was left. Next, the testing and validation sets are stratified to
the age and gender classes, by medical status (Healthy—H, Pathology—P). The long recordings were
divided into several chunks which were necessary to prevent leakages into the test or validation set.
These chunks have been carefully removed from the set. The other chunks were included in the training
set. In each point of the validation confusion matrix, we used specific number samples that were taken
from 150 healthy—H, pathological—P samples. To detect a pathology using the CNN model, we used
874 pathological and 200 healthy samples for testing the confusion matrix. We separated all the dataset
into training, validation, and testing sets and made sure that the number of healthy and pathological
samples was equivalent in each of the training and validation sets. The remainder has been added
to the test set. In sum, 960 (480 healthy, 480 pathological) samples have been used for the training,
300 (150 healthy, 150 pathologic) samples have been applied for validation, and 874 (200 healthy and
674 pathological) samples have been used for testing. In the training phase, the distribution of the
samples is unequal. We responded to this by adjusting the weights of samples, which are used for the
minority groups during training to compensate. A 3-part weight product is the weight of the final
sample. The number of subgroups in the group chosen (e.g., ratio of normal as well as pathological) is
quantified by increasing partial weight. To this end, we presented a class weight α, gender weight
β, as well as a group of gender-age weight γ that led to a final sample weightω that is calculated as
ω = α·β·γ. Furthermore, weights can be determined for a given sample in subgroup αi in group α,
βi in group β, and γi in group γ. We have chosen the best hyperparameters for the cross-validation
configuration as an output measurement. After tuning the hyperparameters, we have retrofitted and
then evaluated the deep learning algorithms with the unsurpassed hyper- parameters over the whole
set of training. In terms of a classification report (CR) and a confusion matrix (CM), the final results are
presented. Formulation 1, 2 and 3 define how the CR tables calculate the recall, precision, and F1 score
(weighting the average accuracy and recall). These three measurements are determined as follows:

• The Precision metric is used for measuring the proportion of the subjects that are of great importance.
With this metric, the classifier’s ability to reject unimportant subjects is measured. The following
is an expression of the metric:

Precision =
(TP)

(TP + FP)
(1)

• The F1 score is described as the weighted average of the precision and recall, the best value of F1
score is reached at 1, while the worst score is at 0. The precision and recall make an equal relative
contribution to the F1 score. The F1 formula is given as follows:

F1 Score = 2 ∗
(Precision ∗ Recall)
(Precision + Recall)

(2)
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• The Recall metric is used for the evaluation of the proportion of important subjects that are
identified. With this metric, the classifier’s ability to provide all subjects that are of importance are
measured. The following is an expression of the recall metric

Recall =
(TP)

(TP + FN)
(3)

4. Experimental Results

In this work, we propose a deep learning Convolutional Neural Network (CNN) model to
perform pathology detection based on numerical analysis of voice signals. It is implemented in a
Voice Pathology Detection DeepNet system using Python programming language. It is trained and
tested by using a Google Colaboratory server. The testing computer has a 69 K GPU graphics card
and 8 GB of RAM. It runs the Windows 10.1 operating system. The model architecture includes four
fully connected layers. The CNN model of the Voice Pathology Detection DeepNet system is tested
using the Saarbruecken Voice Database (SVD) dataset [1]. The dataset contains recordings of 71 types
of voice signals in which the signals were split into 64 ms long Hamming windowed segments with
30 ms overlap. It is arranged as a sequence of time-based vectors. Each vector as labelled as healthy or
pathological class. Table 3 presents the training confusion matrix of the SVD dataset. The table shows
that the 300 training samples are divided equally to 150 healthy and 150 pathological classes to ensure
a balanced training process.

Table 3. The confusion matrix of the training phase.

Class True P True H No. of Samples

Pred: pathological 139 11 150

Pred: healthy 9 141 150

The CNN model is able to achieve an average prediction score of 93.72% accuracy, 94.11%
sensitivity or recall and 95.41% specificity. Table 4 shows the results of precision, f1-score and recall for
healthy and pathological classes in the training phase.

Table 4. The classification report of the training phase.

Class Precision f1-Score Recall

Pathological 94.54 93.98 95

Healthy 93.46 92.02 94

Table 5 presents the testing confusion matrix to the SVD dataset. The table shows that the
1074 testing instances are divided into 200 healthy and 874 pathological classes to insure robust
testing process.

Table 5. The confusion matrix of the testing phase.

Class True P True H No. of Samples

Pred: pathological 839 35 874

Pred: healthy 11 189 200

In the testing phase, the CNN model is able to achieve an average prediction score of 96.11%
accuracy, 95.38% sensitivity or recall and 95.97% specificity. Table 6 shows the results of precision,
f1-score and recall for healthy and pathological classes in the testing phase.
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Table 6. The classification report of the testing phase.

Class Precision F1-Score Recall

Pathological 95.41 94.22 96.13

Healthy 94.59 93.78 95.87

Based on the training methodology that is mentioned early, the setting of the prediction model
includes 0.02 learning rate, 2 batch size, 10 number of epochs, and 0.93 momentum as presented in
Table 2. Table 7 shows the training Train Loss and testing Valid Loss for each epoch along with the
accuracy and time per epoch results. From the observation of the results, during the progress of the
Epoch, the Train Loss and testing Valid Loss are slightly increased, the accuracy result is slightly
increased and the time per epoch is almost constant at 02:54 s. This result can be attributed to the
ResNet34 training algorithm’s ability to rapidly adapt to the discriminative features of the SVD dataset
and provide significant generalization.

Table 7. The test results of the Voice Pathology Detection system.

Epoch Train Loss Valid Loss Accuracy Time (s) Per Epoch

0 0.44897 0.21589 0.9514 02:54
1 0.42963 0.198756 0.9510 02:55
2 0.30987 0.15890 0.9631 02:54
3 0.24964 0.136987 0.9601 02:54
4 0.243253 0.129874 0.9628 02:54
5 0.19250 0.112589 0.9536 02:55
6 0.20147 0.023698 0.9574 02:55
7 0.12369 0.029647 0.9611 02:55
8 0.024898 0.002369 0.9594 02:54
9 0.025369 0.004782 0.95.47 02:54

To further analyze the behaviour of the model, we investigated the relationship between the loss
and learning rate. The analysis result shows that the best order of magnetite falls in the middle of
the learning rate when the loss have values between 0.46 and 0.48 (i.e., between log scales le-04 and
le-03) as shown in Figure 3. Hence, the centroid of this area is selected to set the learning rate of the
ResNet34 algorithm.
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Some of the SVD voice pathology features can clinically identify pathological cases without the
need for advanced analytical systems. However, voice pathology features changes with the changes
in the stages of the disease development which affects the accuracy of the voice pathology detection
results. In the early stages of the disease, the voice of the patient will not be significantly affected while
when the disease becomes severe there will be a high irregularity in the voice of the patient. Hence,
this work proposes a Voice Pathology Detection system that integrates a CNN model to perform voice
pathology detection. The deep learning CNN of the Voice Pathology Detection system achieves high
prediction accuracy results of up to 96.28% in distinguishing healthy from pathological cases. The main
contribution of this work lays on modelling and tuning a deep learning CNN with ResNet34 layers to
provide accurate voice pathology detection. Additionally, most of the related works use conventional
dysphonic voice pattern analysis features which are easy to predict and even clinically interpretable
while this dataset considered complex and challenging [1,12]. On the other hand, the limitations of
this work are mainly due to the SVD testing dataset used and can be summarized as: (i) the small size
of the tested cases, (ii) the absence of gender separation in the cases and (iii) ignoring the severity of
the pathology in the features.

5. Conclusions

This work investigates the possibility of improving the accuracy of voice pathology detection in a
search for robust solutions. The main problem hindering progress in this research field is the limited
availability of reliable testing samples. Most of the related studies use conventional dysphonic voice
features which are easy to predict and clinically interpretable. The Saarbruecken Voice Database (SVD)
dataset was selected for this work because it has complex and challenging dysphonic voice pattern
analysis features. Subsequently, this paper introduces a novel and real-time system for voice pathology
detection using a deep learning Convolutional Neural Network (CNN) model. The model has been
implemented in a Voice Pathology Detection system. The development methodology of the Voice
Pathology Detection system comprises dataset preparation, learning process, training and validation,
and inference process stages. Initially, we apply the SVD dataset in a pre-trained CNN model to set
the relative prediction accuracy of the proposed model. This paper aimed to carry out a preliminary
study which would clarify whether the use of the deep learning CNN in voice pathology detection,
would prove worthy of further exploration. The main contribution of this work is modelling and
tuning a deep learning CNN and ResNet34 layers to provide accurate voice pathology detection results.
The deep learning CNN of the Voice Pathology Detection system achieves high prediction accuracy
results of up to 94.54% accuracy on training data and 95.41% accuracy on testing data. The limited
number of samples in general, the limited number of healthy persons compared with the pathology
patient and the availability of unique cases in the SVD are the main reasons preventing further
improvement of the results. Future work should consider extracting enhanced dataset dimensions and
features quality including a new combination of vowels and separating genders. Furthermore, testing
different types of CNN and training models might further improve the voice pathology detection
approach. Future work could include the application of this method to esophageal voices [46–48]
as patients that had a larynx cancer often have a low intelligibility voice and this reduces a lot their
social communication skills. Any contribution to this topic of the esophageal speech will be very
helpful for patients with a laryngectomy. Finally, utilization of the proposed system in the real-clinical
application is promising through providing a fast-automatic diagnosis and treatment solutions within
3 s to achieve the classification accuracy.
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