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Abstract

Let P(G, ) be the chromatic polynomial of a graph G. Then two graphs
G and H are said to be chromatically equivalent, denoted as G ~ H, if
P(G, %)= P(H, ). We write [G] = {H|H ~ G}. If [G] = {G}, then G
is said to be chromatically unique. In this paper, we first characterize
certain complete 5-partite graphs with 5n + 2 vertices according to the

number of 6-independent partitions of G. Using these results, we
investigate the chromaticity of G with certain star or matching deleted. As

2010 Mathematics Subject Classification: Primary 05C15.
Keywords and phrases: chromatic polynomial, chromatically closed, chromatic uniqueness.
1Corresponding author

Received May 11, 2010



60 H. ROSLAN, A. SH. AMEEN, Y. H. PENG and H. X. ZHAO

a by-product, many new families of chromatically unique complete
5-partite graphs with certain star or matching deleted are obtained.

1. Introduction

All graphs considered here are simple and finite. For a graph G, let P(G, 1) be
the chromatic polynomial of G. Two graphs G and H are said to be chromatically
equivalent (or simply x-equivalent), symbolically, G ~ H, if P(G, ) = P(H, 1).
The equivalence class determined by G under ~ is denoted by [G]. A graph G is
chromatically unique (or simply yx-unique) if H = G whenever H ~ G, i.e,
[G] = {G} up to isomorphism. For a set G of graphs, if [G] < G forevery G € G,
then G is said to be y-closed. Many families of y-unique graphs are known (see [5,
6 and 7]).

For agraph G, let V(G), E(G) and t(G) be the vertex set, edge set and number
of triangles in G, respectively. Let S be a set of s edges in G. Let G — S (or G —s)
be the graph obtained from G by deleting all edges in S, and by (S) the graph

induced by S. Let K(ng, ny, ..., n;) be a complete t-partite graph. Then we denote

by K~°(ny, ny, ..., n;) the family of graphs which is obtained from K(ny, ny, ..., n;)

by deleting a set S of some s edges.

In [3, 4, 6, 7, 12], we can find many results on the chromatic uniqueness of
certain families of complete t-partite graphs (t = 2, 3, 4). In [10, 11], Zhao et al.

obtained many families of y-unique graphs by deleting the edges of a star or
matching from a complete 5-partite graph with 5n and 5n + 4 vertices. By using
similar approach, Roslan et al. [9] obtained many families of yx-unique graphs by
deleting the edges of a star or matching from a complete 5-partite graph with 5n +1
vertices. As a continuation, this paper studies the chromaticity of the graphs which
are obtained by deleting the edges of a star or matching from complete 5-partite
graphs with 5n + 2 vertices.

Let G be a complete 5-partite graph with 5n + 2 vertices. In this paper, we
characterize certain complete 5-partite graphs with 5n + 2 vertices according to the
number of 6-independent partitions of G. Using these results, we investigate the
chromaticity of G with certain star or matching deleted. As a by-product, many new
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families of chromatically unique complete 5-partite graphs with certain star or
matching deleted are obtained.

2. Some Lemmas and Notations

For a graph G and a positive integer k, a partition {A;, Ay, ..., A,} of V(G),
where r is a positive integer, is called an r-independent partition of G if every A is
independent of G. Let a(G, r) denote the number of r-independent partitions of
G. Then we have P(G, A) = erzla(G, r)(A),, where (), =AA-1)(A-2)--
(A —r+1) (see [8]). Therefore, (G, k) = a(H, k) foreach k =1, 2, ..., if G ~ H.

For a graph G with p vertices, the polynomial o(G, x) = Zle a(G, r)x" is
called the c-polynomial of G (see [2]). Clearly, P(G, A) = P(H, %) implies that
o(G, x) = o(H, x) for any graphs G and H.

For disjoint graphs G and H, G U H denotes the disjoint union of G and H.
The join of G and H denoted by G v H is defined as follows: V(G v H) =V(G)

UV(H); E(GVvH)=EG)UEMH)U{xy|xeV(G), y eV(H)}. For notations
and terminology not defined here, we refer to [1].

Lemma 2.1 (Brenti [2], Koh and Teo [6]). Let G and H be two disjoint graphs.
Then

@ [V©)|=[V(H)|.[E@G)[=|E(H)] t(G) =t(H) and a(G, r) = a(H, I)
forr=21223 .., pif G~ H;

(2) o(G v H, x) = o(G, x)o(H, x).

Lemma 2.2 (Brenti [2]). Let G =K(n, ny, n3, .., ny) and o(G, x) =
D5 G, )X Then oG, r) =0 for 1< r<t-1 aG,t)=1and aG,t+1)

_ Nt ooni-1
=Y.t

Let n; <n, <ng <ny <ng be positive integers and H = K(ny, ny, n3, Ny, ng).
If there exist i, j € {1, 2,3, 4,5} such that i <j, nj—-n >2 let kj =n; +1,
k] = nj -1, k| =N, | e {1, 2,3, 4, 5}—{|, j} and H' = K(kl, kz, k3, k4, k5), then

H' is called an improvement of H and H is called the withdrawing of H'.
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Let G = K(ng, ny, n3, Ny, N5) be a complete 5-partite graph with n; +n,

+ N3 + N4 +Ng =5n+ 2 vertices. Then we define 0-value of G as 0(G) = [a(G, 6)

-3.2" - 2"1 1 5]/2"2 For a graph H =G —S, where S is a set of some s
edges of G, define a'(H) = a(H, 6) — a(G, 6). Clearly, o/(H) > 0.

Lemma 2.3. a(H, 6)— a(H’, 6) > 2",
Proof.

a(H, 6)— a(H’, 6) = 2" 4 oM™ _pkiL_ okt

N L L e

> oML O
Lemma2.4. 6(H)-06(H") > 0.
Proof. It follows directly from Lemma 2.3 and the definition of 6(G). O

Lemma 2.5 (Zhao et al. [10]). Let G = K(ny, ny, N3, N4, Ng). Suppose that
—{nj|i=123 4,5 >s+1>1and H =G — S, where S is a set of some s edges
of G, then

s<a'(H)=a(H, 6)-aG, 6)<2° -1,
o'(H) = s iff the set of end-vertices of any r > 2 edges in S is not independent in
H, and a'(H) = 2° -1 iff S induces a star K; ¢ and all vertices of K;  other than
its center belong to the same A.

Let K(A;, A)) be a complete bipartite graph with partite sets A and A,. Then
we denote by KN (A, Aj) the graph obtained from K(A;, Aj) by deleting s edges
that induce a star with its center in A. Note that K_Kl'S(Ai, Aj) # K_Kl'S(Aj, A)
if|A~|¢|Aj| for i = j (see [4]).

Lemma 2.6 (Dong et al. [4]). Let K(ny, ny) be a complete bipartite graph with
partite sets A, and A, suchthat | A | =n; for i =1, 2. If min{ny, np} > s + 2, then

every KiKl's(Aﬁ, A;) is y-unique, where i = j and i, j =1 2.
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Let G = K(ng, ny, N3, ng, N5) be a complete 5-partite graph with partite sets
A(i=12 .. 5)suchthat | A |=n;. Let (A UA;) bethe subgraph of G induced

by A UA;j, where i = j and i, j e {l, 2 3, 4,5}. By Ki_’:-(l's(nl, Ny, Ng, Ny, Ng),
we denote the graph obtained from K(ny, n,, ns, ng, ng) by deleting a set of s edges

that induces a Ky s with its center in A and all its end-vertices are in A;. Note that
-Ky, Ky
Ki ° (g, ng, N3, ng, n5) = K; (N, ng, N, ng, ns)

-K K .
and K, 7 (ng, ng, ng, ng, n) = K| 57 (ng, g, g, ny, ng) for ny =njand | =i, j.

Lemma 2.7 (Zhao et al. [10]). Suppose that min{n;, ny, N3, N4, N5} > s + 2
and n; = n; fori=j i, j=123 4,5 then

K K
P(K; ;" (n, n, ng, ng, ng), &) = P(K; 3% (ny, Ny, N3, ng, ns), A).

3. Classification

In this section, we shall characterize certain complete 5-partite graph G =
K(ng, ny, N3, ng, ns) according to the number of 6-independent partitions of G

where iy +ny, + N3 +n4 +Ng =50+ 2, n>1.

Theorem 3.1. Let G = K(ng, ny, N3, N4, N5) be a complete 5-partite graph

suchthat m +n, + ng+ny +ng =5n+ 2, n > 1. Define

0(G) = [a(G, 6) - 3-2" - 2"1 1 5]/2"2,
Then
(i) 6G)=0;
(i) 6(G)=0 ifandonlyif G = K(n,n,n,n+1, n+1);
(iii) 6(G)=1ifandonlyif G=K(n-1,n,n+1 n+1 n+1);
(iv) 6(G) =2 ifandonlyif G = K(n, n, n, n, n + 2);

(v) 6(G)=5/2 ifandonlyif G=K(n-2,n+L n+1 n+1 n+1)
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(vi) 8(G) =3 ifandonlyif G =K(n-1,n,n,n+1 n+2);

(vii) 6(G)=4 ifandonlyif G=K(n-L,n-L, n+1n+1 n+2);

(viii) 6(G) = 9/2 if and only if G is not a graph appeared in (ii)-(vii).

Proof. We construct a table, namely, Table 1, for the ©-values of various
complete 5-partite graphs with 5n + 2 vertices in order to complete the proof of this
theorem.

For every complete 5-partite graph G with 5n + 2 vertices, if G = K(n, n, n,
n+1 n+1), then we obtain K(n,n,n,n+1 n+1) by using several improving
operations from G. Thus (i) and (ii) are valid from Lemma 2.4 and Table 1.

The withdrawing of G; is G,, Gz or Gs. From Table 1, we know that
0(Gy) =1, 6(G3) =2 and 06(Gs) = 3, so (iii), (iv) and (vi) are valid from Lemma
2.4.

The withdrawing of G, is G4, Gg or G; and 6(G4) =5/2, 6(Gg) = 4,
0(G7) = 9/2, so (v) and (vii) are valid.

Table 1. G; and its 6-values

Gi 0(Gi)
G =K nnn+1n+1) 0
G, =K(nh-L,nn+lLn+1n+1) 1
Gz = K(n,n, n, n, n+2) 2
Gy=KMn-2,n+1Ln+Ln+1n+1) 5/2
Gs=K(h-L,n,nn+1n+2) 3
Ge=K(h-L,n-1Ln+Ln+1Ln+2) 4
G;=KMh-2,n,n+1n+1n+2) 9/2
Gg =K(h-Ln,n,nn+3) 9
Gg=K(h-3n+Ln+Ln+1n+2) 25/4
Gpop=KMh-L,n-1L,nn+2n+2) 6
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Gy =Knh-2,n,nn+2n+2) 13/2
Gp=Km-Ln-1L,nn+1n+3) 10

Giz=K(M-2,nnn+1n+3) 21/2
Gu=Kh-2,n-L,n+Ln+2n+2) 15/2
Gs=Knh-2,n-L,n+Ln+1n+3) 23/2

The withdrawing of Gz, G4, Gs, Gg are Gg or Gg; G; or Gg; Gg, G7,
G10: G11, Gpo 0r Gys; Gy, Gy, Gip, Gia Or Gys, respectively, and the 6-values of
Gs, Gg, Gy, Gg, Gg, Gyg, G11, G2, Gig, Gig, G5 are 3, 4,9/2, 9, 25/4, 6,13/2,
10, 21/2, 15/2 and 23/2, respectively, so (viii) is valid. This completes the proof. [J

4. Chromatically Closed 5-partite Graphs

In this section, we obtain several y-closed families of graphs in K~°(ny, ny,
N3, Ng, Ng).

Theorem 4.1. If n > s+ 2, then the family of graphs £°(n, n, n, n+1, n +1)

is x-closed.

Proof. Let G=K(n,n,n,n+1n+1) and ZeK>(n,n,n,n+1 n+1).
Then the 5-independent partition of G is certainly 5-independent partition of Z. So
a(Z,5)> a(G,5)=1. Let H ~Z. Then o(H, 5)=0a(Z, 5) > a(G, 5)=1. Let

{A, Ay, As, Ay, A5} be 5-independent partition of H, | A | =t, i =1, 2, 3, 4, 5 and
F = K(ty, ty, t3, t4, t5). Then there exists S’ € E(F) such that H = F — S'. Let
a(G) be the number of edges in graph G. Since q(H) = q(Z), therefore s' =|S’|
=q(F)-aG)+s.
From Lemma 2.5, we have
a(Z,6)=a(G, 6)+a'(Z), s<al(Z)<2® -1
and
a(H, 6) = a(F, 6)+ o'(H), s <o/(H)<2% -1,
Thus a(H, 6)-a(Z, 6) = a(F, 6)—a(G, 6)+a'(H)-a'(Z) and a(Z, 6) = a(H, 6),
so a(H, 6)—a(Z,6)=0.
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If F = G, from Theorem 3.1, then we have 6(F) - 6(G) > 1. So
o(F, 6)— oG, 6) = (8(F) - 6(G))- 2"2 > 2"2,

Hence
a(H, 6)—a(Z, 6) > 2" 2 + o/(H)-a/(Z) 2 2" 2 +0- (25 1) > 1.

This is a contradiction. So F =G, s=s" Thus, H e K°(n,n,n,n+1 n+1).

Therefore, X£~°(n, n, n,n+1,n+1) is y-closed if n>s+2. The proof is now
completed. 0

By using the similar proof of Theorem 4.1, we can obtain the following results.

Theorem 4.2. If n > s + 3, then the family of graphs X™°(n -1, n,n+1, n +1,
n +1) is x-closed.

Theorem 4.3. If n > s + 2, then the family of graphs K~°(n, n, n, n, n + 2) is

x-closed.

Theorem 4.4. If n > s + 4, then the family of graphs X °(n -2, n+1, n+1,
n+1 n+1) isy-closed.

Theorem 4.5. If n > s+ 3, then the family of graphs X°(n-1,n,n, n+1,
n+ 2) is y-closed.

Theorem 4.6. If n > s + 4, then the family of graphs £ °(n -1, n-1,n +1,
n+1 n+2) isx-closed.

5. Chromatically Unique 5-partite Graphs

In this section, we first study the chromatically unique 5-partite graphs with
5n + 2 vertices and a set S of s edges deleted where the deleted edges induce a star
Ky s

Theorem 5.1. If n > s+ 2, then the graphs Ki_’lfl's(n, n,n n+1n+1) are

y-unique for each (i, j) € {1, 2), @, 4), (4, 1), (4, 5)}.
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Proof. From Theorem 4.1, we know that K‘s(n, n, N, n+1 n+1) is y-closed

if n> s+ 2. Comparing the number of 6-independent partitions of the graphs in

K™(n,n, n, n+1, n+1) and by using Lemma 2.5, we have that Kijlfl's(n, n, n,

n+Ln+1)= {Ki_’}jq’s(n, n,n n+1n+1)3, j)e{@ 2), @ 4) (4,1), (4 5)}} is

x-closed.

Note that

t(Kl_’El's(n, nnn+1 n+1)=t(KM n nn+1 n+1))—s(3n+2),
t(K;P;l'S(n, n,n,n+1 n+1)=t(K(n, nn, n+1 n+1))-3sn,

t(Kle'S(n, n,nn+1n+1)=tK(n, nnn+1 n+1)-s3n+1) for

(i, j) e {Q 4), (4 D).

From Lemma 2.7, we have

P(Kifl’s(n, nnn+1n+1), )= P(K;Tl's(n, n,nn+1n+1), 1)

-K
Hence, by Lemma 2.1, we conclude that the graphs K; ; L, n,n,n+1 n+1) are

y-unique where n > s + 2 foreach (i, j) € {1, 2), (4 4), (4, 1), (4, 5)}. O

Theorem 5.2. If n > s+ 3, then the graphs Kflj(l's(n -1, nnn+1n+2)
are y-unique for each (i, j) € {1, 2), (2, 1), (2, 5), (5, 2), (4, 5), (5, 4)}.

Proof. Let
Fe {Kij:-(l's(n -1, nnn+1n+2)](G j)
=1{1 2).(2,1), (2, 5). (5 2), (4 5), (5 4)}
and H ~ F. Thenby Theorem4.5, H € K°(n—1,n, n, n+1, n+ 2). Since

a(H,6)=a(F, 6)=a(K(n=1,n,n,n+1 n+2),6)+2° -1
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from Lemma 4.1, we know that

Ky s

HelKij (h-Lnnn+ln+2)]i=ji j=123 45}

It is easy to see that
Hoe K S =L, nn+ln+2)i= i j=123 45

Ky s

={Ki; (=L nnn+1n+2)( j)

{1 2) (2,1). (1 4),(41),L5),51),
(2,3),(2,4), (4, 2),(2,5), (5. 2), (4,5), (5, 4)}}-
Now let us determine the numbers of triangles in H and F. Then we obtain that

t(Kile(l’s(n -Lnnn+1n+2)=t(KMnh-1nnn+1 n+2))-s(3n+3) for
(i, 1) e { 2), (2 D},

-Kqs
i, j

(i, ) e i@ 4). (4 1) (2 3)},

t(K (n-L,nnn+Ln+2)=t(KMnh-1,nnn+1 n+2))—s(3n+2) for

-Ky,s
i j

(i, 1) € {® 5). (5, 1), (2, 4), (4 2)},

t(K (n-L,nnn+14n+2)=t(KM-1,nnn+1 n+2)-s(3n+1) for

t(K[lj(l*S(n -1, nnn+1n+2)=t(Knh-1n,n,n+1 n+2))-3sn for (i, j)
€ {(2,5). (5 2)},

t(K;Tl'S(n—l, nnn+lLn+2)=t(Kn-4,nnn+1Ln+2)-s(3n-1) for

(i, J) €{(4,5), (5 4)}.
Recalling

Fe {Kij};l's(n -5 nnn+1n+2)G, j)

€t 2),(21),(25), 5 2),(45), 5 4
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and t(H) = t(F), thus we have

Ky, s

H,Fe{Kj (-1 nnn+Ln+2)(i ) el 2) (2}

or

H,F e (K {**(-1n,nn+1n+2)( j)ei25) 6 2}

or

Ky s

H,Fe {Ki’J (n=Lnnn+1 n+2)(, j)e {4 5) 5 4)}.

It follows from Lemma 2.7 that

Py (=1, 0, n+1n+2), ) = P(Kyy " (N =1 0, n, n+1, n+2), A);

P(K;;l's(n —L,nnn+1n+2)1) = P(K;’};l's(n -1, n,nn+1n+2)2%);
P(K:él's(n —Lnnn+ln+2),1)# P(Ks_lzl*s(n—l, n,nn+1n+2) ).

Hence, by Lemma 2.1, we conclude that the graphs Kijqu's (n-L,n,nn+1n+2)
are -unique, where n > s + 3 for each (i, j) € {1, 2), (2, 1), (2, 5), (5, 2), (4, 5),
(5, 4)}. O
Similar to the proofs of Theorems 5.1 and 5.2, we can prove Theorems 5.3, 5.4,
5.5and 5.6.
Theorem 5.3. If n > s+ 3, then the graphs K;Tl's(n -Ln,n+Ln+1n+1)

are y-unique for each (i, j) € {(, 2), (2, 1), @, 3), (3, 1), (2, 3), (3, 2), (3, 4)}.

Theorem 5.4. If n>s+2, then the graphs Kflj(l's(n, n,n,n, n+2) are

x-unique for each (i, j) € {1, 2), @, 5), (5, 1)}.
Theorem 5.5. If n > s + 4, then the graphs

-K
K' A 1,5

L j (n=-2,n+Ln+Ln+Ln+1)

are y-unique for each (i, j) € {(1, 2), (2, 1), (2, 3)}.
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Theorem 5.6. If n > s + 3, then the graphs

-K
K‘ A 1,5

ij (h=-Ln-Ln+ln+ln+2)

are y-unique for each
(i, ))e{®2). 1 3), 31, (5),(51) 3 4),35) 65 3

Let KiTSjKZ (n, Ny, N3, N4, N5) denote the graph obtained from K(ny, n,, n3,
Ny, ng) by deleting a set of s edges that forms a matching in (A U Aj). We now

investigate the chromatically unique 5-partite graphs with 5n + 2 vertices and a set
S of s edges deleted where the deleted edges induce a matching sKs.

Theorem 5.7. If n > s + 3, then the graphs Kl_’SZKZ(n -Lnn+Ln+1n+1)
are y-unique.

Proof. Let F ~ Kl”ZKZ (n—=1,n,n+1 n+1 n+1). Then it is sufficient to prove

that
F=K y2(M-Lnn+ln+1n+l).

By Theorem 4.2 and Lemma 2.5,
FeK®h-1Lnn+Ln+Ln+1)

and o/(F)=s. Let F=G-S, where G=K(n-1,n,n+1 n+1 n+1). Next
we consider the number of triangles in F. Let ¢ € S and t(e;) be the number of
triangles in G containing the edge e; for each i =1, 2, ..., s. Then it is easy to see
that t(g;)<3n+3. As n-l<n<n+1< n+1- we know that t(g)=
3n+ 3 if and only if e; is an edge in the subgraph (A, U Ay) in G. So we have

t(F)>t —Zslt(ei) >t—s(3n+3);
i=1

and the equality holds if and only if each edge in S is an edge of the subgraph
(AL U Ay) in G. It follows from Lemmas 2.1 and 2.5 that

a(F,6)=a(K(n=-1,n,n+L,n+1n+1),6)+s
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and the set of end-vertices of any r > 2 edges in S is not independent in F.
Therefore, S induces a matching of s edges in (A U Ay) and
F=K32(-Lnn+Ln+1n+l).
This completes the proof. O
Similar to the proof of Theorem 5.7, we can prove Theorem 5.8.
Theorem 5.8. If n > s + 4, then the graphs
KLZKZ(n -Ln-L,n+Ln+14n+2)
are x-unique.
We end this paper with the following two problems:

1. Study the chromaticity of the graphs Ki_’}j(l's(n -1, n,nn+1 n+2) for
each
(i, j) e{® 4), (4 1), (2 3), (L 5). (5 1), (2 4) (4, 2)}.

2. Study the chromaticity of the graphs

Ki32(nnonn+ln+1), K320 nnnn+2),

K£§K2(n—2, n+Ln+Ln+1n+1)
and

K 52(-1n,n,n+1n+2)
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