$See \ discussions, stats, and author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/267189042$

Classification of complete 5-partite graphs and chromaticity of 5-partite graphs with 5n+2 vertices

Article in Far East Journal of Mathematical Sciences · August 2010

citations	READS
9	96
4 authors, including:	
Roslan Hasni	Yee-Hock Peng
Universiti Malaysia Terengganu	Universiti Putra Malaysia
165 PUBLICATIONS 569 CITATIONS	91 PUBLICATIONS 846 CITATIONS
SEE PROFILE	SEE PROFILE
Some of the authors of this publication are also working on these related projects:	

Topological Indices of Molecular Graphs View project

Atom-Bond Connectivity Index View project

Projec

Far East Journal of Mathematical Sciences (FJMS) Volume 43, Number 1, 2010, Pages 59-72 This paper is available online at http://pphmj.com/journals/fjms.htm © 2010 Pushpa Publishing House

CLASSIFICATION OF COMPLETE 5-PARTITE GRAPHS AND CHROMATICITY OF 5-PARTITE GRAPHS WITH 5n + 2 VERTICES

H. ROSLAN¹, A. SH. AMEEN^a, Y. H. PENG^b and H. X. ZHAO^c

^{1,a}School of Mathematical Sciences Universiti Sains Malaysia 11800 Penang, Malaysia e-mail: hroslan@cs.usm.my

^bDepartment of Mathematics Institute for Mathematical Research University Putra Malaysia 43400 UPM Serdang, Malaysia

^cDepartment of Mathematics Qinghai Normal University Xining, Qinghai 810008, P. R. China

Abstract

Let $P(G, \lambda)$ be the chromatic polynomial of a graph G. Then two graphs G and H are said to be chromatically equivalent, denoted as $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. We write $[G] = \{H \mid H \sim G\}$. If $[G] = \{G\}$, then G is said to be chromatically unique. In this paper, we first characterize certain complete 5-partite graphs with 5n + 2 vertices according to the number of 6-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As

2010 Mathematics Subject Classification: Primary 05C15.

Keywords and phrases: chromatic polynomial, chromatically closed, chromatic uniqueness.

¹Corresponding author

Received May 11, 2010

a by-product, many new families of chromatically unique complete 5-partite graphs with certain star or matching deleted are obtained.

1. Introduction

All graphs considered here are simple and finite. For a graph *G*, let $P(G, \lambda)$ be the chromatic polynomial of *G*. Two graphs *G* and *H* are said to be *chromatically equivalent* (or simply χ -*equivalent*), symbolically, $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. The equivalence class determined by *G* under ~ is denoted by [*G*]. A graph *G* is *chromatically unique* (or simply χ -*unique*) if $H \cong G$ whenever $H \sim G$, i.e., $[G] = \{G\}$ up to isomorphism. For a set \mathcal{G} of graphs, if $[G] \subseteq \mathcal{G}$ for every $G \in \mathcal{G}$, then \mathcal{G} is said to be χ -*closed*. Many families of χ -unique graphs are known (see [5, 6 and 7]).

For a graph G, let V(G), E(G) and t(G) be the vertex set, edge set and number of triangles in G, respectively. Let S be a set of s edges in G. Let G - S (or G - s) be the graph obtained from G by deleting all edges in S, and by $\langle S \rangle$ the graph induced by S. Let $K(n_1, n_2, ..., n_t)$ be a complete t-partite graph. Then we denote by $\mathcal{K}^{-s}(n_1, n_2, ..., n_t)$ the family of graphs which is obtained from $K(n_1, n_2, ..., n_t)$ by deleting a set S of some s edges.

In [3, 4, 6, 7, 12], we can find many results on the chromatic uniqueness of certain families of complete *t*-partite graphs (t = 2, 3, 4). In [10, 11], Zhao et al. obtained many families of χ -unique graphs by deleting the edges of a star or matching from a complete 5-partite graph with 5n and 5n + 4 vertices. By using similar approach, Roslan et al. [9] obtained many families of χ -unique graphs by deleting the edges of a star or matching from a complete 5-partite graph with 5n and 5n + 4 vertices. By using similar approach, Roslan et al. [9] obtained many families of χ -unique graphs by deleting the edges of a star or matching from a complete 5-partite graph with 5n + 1 vertices. As a continuation, this paper studies the chromaticity of the graphs which are obtained by deleting the edges of a star or matching from complete 5-partite graphs with 5n + 2 vertices.

Let G be a complete 5-partite graph with 5n + 2 vertices. In this paper, we characterize certain complete 5-partite graphs with 5n + 2 vertices according to the number of 6-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new

families of chromatically unique complete 5-partite graphs with certain star or matching deleted are obtained.

2. Some Lemmas and Notations

For a graph *G* and a positive integer *k*, a partition $\{A_1, A_2, ..., A_r\}$ of V(G), where *r* is a positive integer, is called an *r*-independent partition of *G* if every A_i is independent of *G*. Let $\alpha(G, r)$ denote the number of *r*-independent partitions of *G*. Then we have $P(G, \lambda) = \sum_{r=1}^{p} \alpha(G, r)(\lambda)_r$, where $(\lambda)_r = \lambda(\lambda - 1)(\lambda - 2)\cdots$ $(\lambda - r + 1)$ (see [8]). Therefore, $\alpha(G, k) = \alpha(H, k)$ for each k = 1, 2, ..., if $G \sim H$.

For a graph *G* with *p* vertices, the polynomial $\sigma(G, x) = \sum_{r=1}^{p} \alpha(G, r) x^{r}$ is called the σ -polynomial of *G* (see [2]). Clearly, $P(G, \lambda) = P(H, \lambda)$ implies that $\sigma(G, x) = \sigma(H, x)$ for any graphs *G* and *H*.

For disjoint graphs *G* and *H*, $G \cup H$ denotes the disjoint union of *G* and *H*. The join of *G* and *H* denoted by $G \vee H$ is defined as follows: $V(G \vee H) = V(G)$ $\bigcup V(H)$; $E(G \vee H) = E(G) \bigcup E(H) \bigcup \{xy | x \in V(G), y \in V(H)\}$. For notations and terminology not defined here, we refer to [1].

Lemma 2.1 (Brenti [2], Koh and Teo [6]). *Let G and H be two disjoint graphs. Then*

(1) $|V(G)| = |V(H)|, |E(G)| = |E(H)|, t(G) = t(H) and \alpha(G, r) = \alpha(H, r)$ for r = 1, 2, 3, ..., p if $G \sim H$;

(2) $\sigma(G \lor H, x) = \sigma(G, x)\sigma(H, x)$.

Lemma 2.2 (Brenti [2]). Let $G = K(n_1, n_2, n_3, ..., n_t)$ and $\sigma(G, x) = \sum_{r \ge 1} \alpha(G, r) x^r$. Then $\alpha(G, r) = 0$ for $1 \le r \le t - 1$, $\alpha(G, t) = 1$ and $\alpha(G, t + 1) = \sum_{i=1}^t 2^{n_i - 1} - t$.

Let $n_1 \le n_2 \le n_3 \le n_4 \le n_5$ be positive integers and $H = K(n_1, n_2, n_3, n_4, n_5)$. If there exist *i*, $j \in \{1, 2, 3, 4, 5\}$ such that i < j, $n_j - n_i \ge 2$, let $k_i = n_i + 1$, $k_j = n_j - 1$, $k_l = n_l$, $l \in \{1, 2, 3, 4, 5\} - \{i, j\}$ and $H' = K(k_1, k_2, k_3, k_4, k_5)$, then H' is called an *improvement* of H and H is called the *withdrawing* of H'. Let $G = K(n_1, n_2, n_3, n_4, n_5)$ be a complete 5-partite graph with $n_1 + n_2$ + $n_3 + n_4 + n_5 = 5n + 2$ vertices. Then we define θ -value of G as $\theta(G) = [\alpha(G, 6) - 3 \cdot 2^n - 2^{n-1} + 5]/2^{n-2}$. For a graph H = G - S, where S is a set of some s edges of G, define $\alpha'(H) = \alpha(H, 6) - \alpha(G, 6)$. Clearly, $\alpha'(H) \ge 0$.

Lemma 2.3. $\alpha(H, 6) - \alpha(H', 6) \ge 2^{n_i - 1}$.

Proof.

$$\alpha(H, 6) - \alpha(H', 6) = 2^{n_i - 1} + 2^{n_j - 1} - 2^{k_i - 1} - 2^{k_j - 1}$$
$$= 2^{n_i - 1} + 2^{n_j - 1} - 2^{n_i} - 2^{n_j - 2}$$
$$\ge 2^{n_i - 1}.$$

Lemma 2.4. $\theta(H) - \theta(H') > 0$.

Proof. It follows directly from Lemma 2.3 and the definition of $\theta(G)$.

Lemma 2.5 (Zhao et al. [10]). Let $G = K(n_1, n_2, n_3, n_4, n_5)$. Suppose that $-\{n_i | i = 1, 2, 3, 4, 5\} \ge s + 1 \ge 1$ and H = G - S, where S is a set of some s edges of G, then

$$s \leq \alpha'(H) = \alpha(H, 6) - \alpha(G, 6) \leq 2^s - 1,$$

 $\alpha'(H) = s$ iff the set of end-vertices of any $r \ge 2$ edges in S is not independent in H, and $\alpha'(H) = 2^s - 1$ iff S induces a star $K_{1,s}$ and all vertices of $K_{1,s}$ other than its center belong to the same A_i .

Let $K(A_1, A_2)$ be a complete bipartite graph with partite sets A_1 and A_2 . Then we denote by $K^{-K_{1,s}}(A_i, A_j)$ the graph obtained from $K(A_i, A_j)$ by deleting *s* edges that induce a star with its center in A_i . Note that $K^{-K_{1,s}}(A_i, A_j) \neq K^{-K_{1,s}}(A_j, A_i)$ if $|A_i| \neq |A_j|$ for $i \neq j$ (see [4]).

Lemma 2.6 (Dong et al. [4]). Let $K(n_1, n_2)$ be a complete bipartite graph with partite sets A_1 and A_2 such that $|A_i| = n_i$ for i = 1, 2. If $\min\{n_1, n_2\} \ge s + 2$, then every $K^{-K_{1,s}}(A_i, A_j)$ is χ -unique, where $i \neq j$ and i, j = 1, 2. Let $G = K(n_1, n_2, n_3, n_4, n_5)$ be a complete 5-partite graph with partite sets A_i (i = 1, 2, ..., 5) such that $|A_i| = n_i$. Let $\langle A_i \cup A_j \rangle$ be the subgraph of *G* induced by $A_i \cup A_j$, where $i \neq j$ and $i, j \in \{1, 2, 3, 4, 5\}$. By $K_{i, j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5)$, we denote the graph obtained from $K(n_1, n_2, n_3, n_4, n_5)$ by deleting a set of *s* edges that induces a $K_{1,s}$ with its center in A_i and all its end-vertices are in A_j . Note that

$$K_{i,l}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5) = K_{j,l}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5)$$

and $K_{l,i}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5) = K_{l,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5)$ for $n_i = n_j$ and $l \neq i, j$.

Lemma 2.7 (Zhao et al. [10]). Suppose that $\min\{n_1, n_2, n_3, n_4, n_5\} \ge s + 2$ and $n_i \ne n_j$ for $i \ne j$, i, j = 1, 2, 3, 4, 5, then

$$P(K_{i,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5), \lambda) \neq P(K_{j,i}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5), \lambda).$$

3. Classification

In this section, we shall characterize certain complete 5-partite graph $G = K(n_1, n_2, n_3, n_4, n_5)$ according to the number of 6-independent partitions of G where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 2$, $n \ge 1$.

Theorem 3.1. Let $G = K(n_1, n_2, n_3, n_4, n_5)$ be a complete 5-partite graph such that $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 2$, $n \ge 1$. Define

$$\theta(G) = [\alpha(G, 6) - 3 \cdot 2^n - 2^{n-1} + 5]/2^{n-2}.$$

Then

- (i) $\theta(G) \ge 0$;
- (ii) $\theta(G) = 0$ if and only if G = K(n, n, n, n + 1, n + 1);
- (iii) $\theta(G) = 1$ if and only if G = K(n-1, n, n+1, n+1, n+1);
- (iv) $\theta(G) = 2$ if and only if G = K(n, n, n, n, n+2);
- (v) $\theta(G) = 5/2$ if and only if G = K(n-2, n+1, n+1, n+1, n+1);

- (vi) $\theta(G) = 3$ if and only if G = K(n-1, n, n, n+1, n+2);
- (vii) $\theta(G) = 4$ if and only if G = K(n-1, n-1, n+1, n+1, n+2);
- (viii) $\theta(G) \ge 9/2$ if and only if G is not a graph appeared in (ii)-(vii).

Proof. We construct a table, namely, Table 1, for the θ -values of various complete 5-partite graphs with 5n + 2 vertices in order to complete the proof of this theorem.

For every complete 5-partite graph *G* with 5n + 2 vertices, if $G \neq K(n, n, n, n + 1, n + 1)$, then we obtain K(n, n, n, n + 1, n + 1) by using several improving operations from *G*. Thus (i) and (ii) are valid from Lemma 2.4 and Table 1.

The withdrawing of G_1 is G_2 , G_3 or G_5 . From Table 1, we know that $\theta(G_2) = 1$, $\theta(G_3) = 2$ and $\theta(G_5) = 3$, so (iii), (iv) and (vi) are valid from Lemma 2.4.

The withdrawing of G_2 is G_4 , G_6 or G_7 and $\theta(G_4) = 5/2$, $\theta(G_6) = 4$, $\theta(G_7) = 9/2$, so (v) and (vii) are valid.

G_i	$\theta(G_i)$
$G_1 = K(n, n, n, n + 1, n + 1)$	0
$G_2 = K(n-1, n, n+1, n+1, n+1)$	1
$G_3 = K(n, n, n, n, n + 2)$	2
$G_4 = K(n-2, n+1, n+1, n+1, n+1)$	5/2
$G_5 = K(n-1, n, n, n+1, n+2)$	3
$G_6 = K(n-1, n-1, n+1, n+1, n+2)$	4
$G_7 = K(n-2, n, n+1, n+1, n+2)$	9/2
$G_8 = K(n-1, n, n, n, n+3)$	9
$G_9 = K(n-3, n+1, n+1, n+1, n+2)$	25/4
$G_{10} = K(n-1, n-1, n, n+2, n+2)$	6

Table 1. G_i and its θ -values

$G_{11} = K(n-2, n, n, n+2, n+2)$	13/2
$G_{12} = K(n-1, n-1, n, n+1, n+3)$	10
$G_{13} = K(n-2, n, n, n+1, n+3)$	21/2
$G_{14} = K(n-2, n-1, n+1, n+2, n+2)$	15/2
$G_{15} = K(n-2, n-1, n+1, n+1, n+3)$	23/2

The withdrawing of G_3 , G_4 , G_5 , G_6 are G_5 or G_8 ; G_7 or G_9 ; G_6 , G_7 , G_{10} , G_{11} , G_{12} or G_{13} ; G_7 , G_{10} , G_{12} , G_{14} or G_{15} , respectively, and the θ -values of G_5 , G_6 , G_7 , G_8 , G_9 , G_{10} , G_{11} , G_{12} , G_{13} , G_{14} , G_{15} are 3, 4, 9/2, 9, 25/4, 6, 13/2, 10, 21/2, 15/2 and 23/2, respectively, so (viii) is valid. This completes the proof. \Box

4. Chromatically Closed 5-partite Graphs

In this section, we obtain several χ -closed families of graphs in $\mathcal{K}^{-s}(n_1, n_2, n_3, n_4, n_5)$.

Theorem 4.1. If $n \ge s + 2$, then the family of graphs $\mathcal{K}^{-s}(n, n, n, n + 1, n + 1)$ is χ -closed.

Proof. Let G = K(n, n, n, n + 1, n + 1) and $Z \in \mathcal{K}^{-s}(n, n, n, n + 1, n + 1)$. Then the 5-independent partition of *G* is certainly 5-independent partition of *Z*. So $\alpha(Z, 5) \ge \alpha(G, 5) = 1$. Let $H \sim Z$. Then $\alpha(H, 5) = \alpha(Z, 5) \ge \alpha(G, 5) = 1$. Let $\{A_1, A_2, A_3, A_4, A_5\}$ be 5-independent partition of H, $|A_i| = t_i$, i = 1, 2, 3, 4, 5 and $F = K(t_1, t_2, t_3, t_4, t_5)$. Then there exists $S' \in E(F)$ such that H = F - S'. Let q(G) be the number of edges in graph *G*. Since q(H) = q(Z), therefore s' = |S'| = q(F) - q(G) + s.

From Lemma 2.5, we have

$$\alpha(Z, 6) = \alpha(G, 6) + \alpha'(Z), \quad s \le \alpha'(Z) \le 2^{s} - 1,$$

and

$$\alpha(H, 6) = \alpha(F, 6) + \alpha'(H), \quad s' \le \alpha'(H) \le 2^{s'} - 1.$$

Thus $\alpha(H, 6) - \alpha(Z, 6) = \alpha(F, 6) - \alpha(G, 6) + \alpha'(H) - \alpha'(Z)$ and $\alpha(Z, 6) = \alpha(H, 6)$, so $\alpha(H, 6) - \alpha(Z, 6) = 0$. If $F \neq G$, from Theorem 3.1, then we have $\theta(F) - \theta(G) \ge 1$. So

$$\alpha(F, 6) - \alpha(G, 6) = (\theta(F) - \theta(G)) \cdot 2^{n-2} \ge 2^{n-2}.$$

Hence

66

$$\alpha(H, 6) - \alpha(Z, 6) \ge 2^{n-2} + \alpha'(H) - \alpha'(Z) \ge 2^{n-2} + 0 - (2^s - 1) \ge 1.$$

This is a contradiction. So F = G, s = s'. Thus, $H \in \mathcal{K}^{-s}(n, n, n, n+1, n+1)$. Therefore, $\mathcal{K}^{-s}(n, n, n, n+1, n+1)$ is χ -closed if $n \ge s+2$. The proof is now completed.

By using the similar proof of Theorem 4.1, we can obtain the following results.

Theorem 4.2. If $n \ge s + 3$, then the family of graphs $\mathcal{K}^{-s}(n-1, n, n+1, n+1, n+1)$ is χ -closed.

Theorem 4.3. If $n \ge s + 2$, then the family of graphs $\mathcal{K}^{-s}(n, n, n, n, n + 2)$ is χ -closed.

Theorem 4.4. If $n \ge s + 4$, then the family of graphs $\mathcal{K}^{-s}(n-2, n+1, n+1, n+1, n+1, n+1)$ is χ -closed.

Theorem 4.5. If $n \ge s+3$, then the family of graphs $\mathcal{K}^{-s}(n-1, n, n, n+1, n+2)$ is χ -closed.

Theorem 4.6. If $n \ge s + 4$, then the family of graphs $\mathcal{K}^{-s}(n-1, n-1, n+1, n+1, n+2)$ is χ -closed.

5. Chromatically Unique 5-partite Graphs

In this section, we first study the chromatically unique 5-partite graphs with 5n + 2 vertices and a set *S* of *s* edges deleted where the deleted edges induce a star $K_{1,s}$.

Theorem 5.1. If $n \ge s + 2$, then the graphs $K_{i, j}^{-K_{1, s}}(n, n, n, n + 1, n + 1)$ are χ -unique for each $(i, j) \in \{(1, 2), (1, 4), (4, 1), (4, 5)\}.$

Proof. From Theorem 4.1, we know that $K^{-s}(n, n, n, n+1, n+1)$ is χ -closed if $n \ge s+2$. Comparing the number of 6-independent partitions of the graphs in $K^{-s}(n, n, n, n+1, n+1)$ and by using Lemma 2.5, we have that $K_{i, j}^{-K_{1, s}}(n, n, n, n+1, n+1) = \{K_{i, j}^{-K_{1, s}}(n, n, n, n+1, n+1)|(i, j) \in \{(1, 2), (1, 4), (4, 1), (4, 5)\}\}$ is χ -closed.

Note that

$$t(K_{1,2}^{-K_{1,s}}(n, n, n, n+1, n+1)) = t(K(n, n, n, n+1, n+1)) - s(3n+2),$$

$$t(K_{4,5}^{-K_{1,s}}(n, n, n, n+1, n+1)) = t(K(n, n, n, n+1, n+1)) - 3sn,$$

$$t(K_{i,j}^{-K_{1,s}}(n, n, n, n+1, n+1)) = t(K(n, n, n, n+1, n+1)) - s(3n+1) \text{ for}$$

$$(i, j) \in \{(1, 4), (4, 1)\}.$$

From Lemma 2.7, we have

$$P(K_{1,4}^{-K_{1,s}}(n, n, n, n+1, n+1), \lambda) \neq P(K_{4,1}^{-K_{1,s}}(n, n, n, n+1, n+1), \lambda).$$

Hence, by Lemma 2.1, we conclude that the graphs $K_{i,j}^{-K_{1,s}}(n, n, n, n + 1, n + 1)$ are χ -unique where $n \ge s + 2$ for each $(i, j) \in \{(1, 2), (1, 4), (4, 1), (4, 5)\}$.

Theorem 5.2. If $n \ge s + 3$, then the graphs $K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2)$ are χ -unique for each $(i, j) \in \{(1, 2), (2, 1), (2, 5), (5, 2), (4, 5), (5, 4)\}$.

Proof. Let

$$F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2) | (i, j)$$
$$= \{(1, 2), (2, 1), (2, 5), (5, 2), (4, 5), (5, 4)\}\}$$

and $H \sim F$. Then by Theorem 4.5, $H \in \mathcal{K}^{-s}(n-1, n, n, n+1, n+2)$. Since

$$\alpha(H, 6) = \alpha(F, 6) = \alpha(K(n-1, n, n, n+1, n+2), 6) + 2^{s} - 1,$$

from Lemma 4.1, we know that

$$H \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2) | i \neq j, i, j = 1, 2, 3, 4, 5\}.$$

It is easy to see that

$$H \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2) | i \neq j, i, j = 1, 2, 3, 4, 5\}$$
$$= \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2) | (i, j)$$
$$\in \{(1, 2), (2, 1), (1, 4), (4, 1), (1, 5), (5, 1), (2, 3), (2, 4), (4, 2), (2, 5), (5, 2), (4, 5), (5, 4)\}\}.$$

Now let us determine the numbers of triangles in H and F. Then we obtain that

$$t(K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2)) = t(K(n-1, n, n, n+1, n+2)) - s(3n+3) \text{ for}$$

$$(i, j) \in \{(1, 2), (2, 1)\},$$

$$t(K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2)) = t(K(n-1, n, n, n+1, n+2)) - s(3n+2) \text{ for}$$

$$(i, j) \in \{(1, 4), (4, 1), (2, 3)\},$$

$$t(K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2)) = t(K(n-1, n, n, n+1, n+2)) - s(3n+1) \text{ for}$$

$$(i, j) \in \{(1, 5), (5, 1), (2, 4), (4, 2)\},$$

$$t(K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2)) = t(K(n-1, n, n, n+1, n+2)) - 3sn \text{ for } (i, j)$$

$$\in \{(2, 5), (5, 2)\},$$

$$t(K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2)) = t(K(n-1, n, n, n+1, n+2)) - s(3n-1) \text{ for}$$

$$(i, j) \in \{(4, 5), (5, 4)\}.$$

Recalling

$$F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2) | (i, j)$$

$$\in \{(1, 2), (2, 1), (2, 5), (5, 2), (4, 5), (5, 4)\}\}$$

and t(H) = t(F), thus we have

$$H, F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2) | (i, j) \in \{(1, 2), (2, 1)\}\}$$

or

$$H, F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2) | (i, j) \in \{(2, 5), (5, 2)\}\}$$

or

$$H, F \in \{K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2) | (i, j) \in \{(4, 5), (5, 4)\}\}.$$

It follows from Lemma 2.7 that

$$P(K_{1,2}^{-K_{1,s}}(n-1, n, n, n+1, n+2), \lambda) \neq P(K_{2,1}^{-K_{1,s}}(n-1, n, n, n+1, n+2), \lambda);$$

$$P(K_{2,5}^{-K_{1,s}}(n-1, n, n, n+1, n+2), \lambda) \neq P(K_{5,2}^{-K_{1,s}}(n-1, n, n, n+1, n+2), \lambda);$$

$$P(K_{4,5}^{-K_{1,s}}(n-1, n, n, n+1, n+2), \lambda) \neq P(K_{5,4}^{-K_{1,s}}(n-1, n, n, n+1, n+2), \lambda).$$

Hence, by Lemma 2.1, we conclude that the graphs $K_{i,j}^{-\kappa_{1,s}}(n-1, n, n, n+1, n+2)$ are χ -unique, where $n \ge s+3$ for each $(i, j) \in \{(1, 2), (2, 1), (2, 5), (5, 2), (4, 5), (5, 4)\}$.

Similar to the proofs of Theorems 5.1 and 5.2, we can prove Theorems 5.3, 5.4, 5.5 and 5.6.

Theorem 5.3. If $n \ge s+3$, then the graphs $K_{i, j}^{-K_{1, s}}(n-1, n, n+1, n+1, n+1)$ are χ -unique for each $(i, j) \in \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (3, 4)\}$.

Theorem 5.4. If $n \ge s + 2$, then the graphs $K_{i, j}^{-K_{1, s}}(n, n, n, n, n + 2)$ are χ -unique for each $(i, j) \in \{(1, 2), (1, 5), (5, 1)\}$.

Theorem 5.5. If $n \ge s + 4$, then the graphs

$$K_{i,j}^{-K_{1,s}}(n-2, n+1, n+1, n+1, n+1)$$

are χ -unique for each $(i, j) \in \{(1, 2), (2, 1), (2, 3)\}$.

Theorem 5.6. If $n \ge s + 3$, then the graphs

$$K_{i, j}^{-K_{1, s}}(n-1, n-1, n+1, n+1, n+2)$$

are χ -unique for each

$$(i, j) \in \{(1, 2), (1, 3), (3, 1), (1, 5), (5, 1), (3, 4), (3, 5), (5, 3)\}$$

Let $K_{i,j}^{-sK_2}(n_1, n_2, n_3, n_4, n_5)$ denote the graph obtained from $K(n_1, n_2, n_3, n_4, n_5)$ by deleting a set of *s* edges that forms a matching in $\langle A_i \cup A_j \rangle$. We now investigate the chromatically unique 5-partite graphs with 5n + 2 vertices and a set *S* of *s* edges deleted where the deleted edges induce a matching sK_2 .

Theorem 5.7. If $n \ge s + 3$, then the graphs $K_{1,2}^{-sK_2}(n-1, n, n+1, n+1, n+1)$ are χ -unique.

Proof. Let $F \sim K_{1,2}^{-sK_2}(n-1, n, n+1, n+1, n+1)$. Then it is sufficient to prove that

$$F = K_{1,2}^{-sK_2}(n-1, n, n+1, n+1, n+1).$$

By Theorem 4.2 and Lemma 2.5,

$$F \in \mathcal{K}^{-s}(n-1, n, n+1, n+1, n+1)$$

and $\alpha'(F) = s$. Let F = G - S, where G = K(n - 1, n, n + 1, n + 1, n + 1). Next, we consider the number of triangles in F. Let $e_i \in S$ and $t(e_i)$ be the number of triangles in G containing the edge e_i for each i = 1, 2, ..., s. Then it is easy to see that $t(e_i) \leq 3n + 3$. As $n - 1 < n < n + 1 \leq n + 1 \leq n + 1$, we know that $t(e_i) = 3n + 3$ if and only if e_i is an edge in the subgraph $\langle A_1 \cup A_2 \rangle$ in G. So we have

$$t(F) \ge t - \sum_{i=1}^{s} t(e_i) \ge t - s(3n+3);$$

and the equality holds if and only if each edge in S is an edge of the subgraph $\langle A_1 \cup A_2 \rangle$ in G. It follows from Lemmas 2.1 and 2.5 that

$$\alpha(F, 6) = \alpha(K(n-1, n, n+1, n+1, n+1), 6) + s$$

70

and the set of end-vertices of any $r \ge 2$ edges in *S* is not independent in *F*. Therefore, *S* induces a matching of *s* edges in $\langle A_1 \cup A_2 \rangle$ and

$$F = K_{1,2}^{-sK_2}(n-1, n, n+1, n+1, n+1).$$

This completes the proof.

Similar to the proof of Theorem 5.7, we can prove Theorem 5.8.

Theorem 5.8. If $n \ge s + 4$, then the graphs

$$K_{1,2}^{-sK_2}(n-1, n-1, n+1, n+1, n+2)$$

are χ -unique.

We end this paper with the following two problems:

1. Study the chromaticity of the graphs $K_{i,j}^{-K_{1,s}}(n-1, n, n, n+1, n+2)$ for each

$$(i, j) \in \{(1, 4), (4, 1), (2, 3), (1, 5), (5, 1), (2, 4), (4, 2)\}.$$

2. Study the chromaticity of the graphs

$$K_{1,2}^{-sK_2}(n, n, n, n+1, n+1), \quad K_{1,2}^{-sK_2}(n, n, n, n, n+2),$$

$$K_{1,2}^{-sK_2}(n-2, n+1, n+1, n+1, n+1)$$

and

$$K_{1,2}^{-sK_2}(n-1, n, n, n+1, n+2).$$

References

- J. A. Bondy and U. S. R. Murty, Graph Theory with Application, Macmillan, London, 1976.
- [2] F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc. 332(2) (1992), 729-756.
- [3] G. L. Chia, B. H. Goh and K. M. Koh, The chromaticity of some families of complete tripartite graphs, Scientia, Series A: Math. Sci. 2 (1988), 27-37.
- [4] F. M. Dong, K. M. Koh and K. L. Teo, Sharp bounds for the number of 3-independent partition and chromaticity of bipartite graphs, J. Graph Theory 37 (2001), 48-77.

71

72 H. ROSLAN, A. SH. AMEEN, Y. H. PENG and H. X. ZHAO

- [5] F. M. Dong, K. M. Koh and K. L. Teo, Chromatic Polynomials and Chromaticity of Graphs, World Scientific, 2005.
- [6] K. M. Koh and K. L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990), 259-285.
- [7] K. M. Ko and K. L. Teo, The search for chromatically unique graphs II, Discrete Math. 172 (1997), 59-78.
- [8] R. C. Read and W. T. Tutte, Chromatic polynomials, Selected Topics in Graph Theory (II), L. W. Beineke and R. J. Wilson, eds., Academic Press, New York, 1988, pp. 15-42.
- [9] H. Roslan, A. Sh. Ameen, Y. H. Peng and H. Zhao, Chromaticity of complete 5-partite graphs with certain star and matching deleted, submitted.
- [10] H. X. Zhao, R. Y. Liu and S. G. Zhang, Classification of complete 5-partite graphs and chromaticity of 5-partite graphs with 5n vertices, Appl. Math. J. Chinese Univ. Ser. B. 19(1) (2004), 116-124.
- [11] H. X. Zhao, On the chromaticity of 5-partite graphs with 5n + 4 vertices, J. Lanzhou Univ. (Natural Sciences) 40(3) (2004), 12-16 (in Chinese).
- [12] H. X. Zhao, Chromaticity and adjoint polynomials of graphs, Ph.D. Thesis, University of Twente, The Netherlands, 2005.