

Journal of the Association of Arab Universities for Basic and Applied Sciences

ISSN: 1815-3852 (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tabs19

Chromaticity of a family of 5-partite graphs

R. Hasni, A. Shaman & G. C. Lau

To cite this article: R. Hasni, A. Shaman & G. C. Lau (2014) Chromaticity of a family of 5-partite graphs, Journal of the Association of Arab Universities for Basic and Applied Sciences, 15:1, 68-73, DOI: 10.1016/j.jaubas.2013.05.003

To link to this article: https://doi.org/10.1016/j.jaubas.2013.05.003

9	© 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
	Published online: 27 Mar 2018.
	Submit your article to this journal 🗹
lılı	Article views: 160
Q ^L	View related articles ☑
CrossMark	View Crossmark data ☑
4	Citing articles: 1 View citing articles 🗹

University of Bahrain

Journal of the Association of Arab Universities for Basic and Applied Sciences

www.elsevier.com/locate/jaaubas www.sciencedirect.com

ORIGINAL ARTICLE

Chromaticity of a family of 5-partite graphs

R. Hasni a,*, A. Shaman b, G.C. Lau c

Received 14 August 2012; revised 7 February 2013; accepted 12 May 2013 Available online 10 June 2013

KEYWORDS

Chromatic polynomial; Chromatically closed; Chromatic uniqueness **Abstract** Let $P(G,\lambda)$ be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted $G \sim H$, if $P(G,\lambda) = P(H,\lambda)$. We write $[G] = \{H \mid H \sim G\}$. If $[G] = \{G\}$, then G is said to be chromatically unique. In this paper, we first characterize certain complete 5-partite graphs G with Sn vertices according to the number of 6-independent partitions of G. Using these results, we investigate the chromaticity of G with certain stars or matching deleted parts. As a by-product, two new families of chromatically unique complete 5-partite graphs G with certain stars or matching deleted parts are obtained.

© 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

All graphs considered here are simple and finite. For a graph G, let $P(G,\lambda)$ be the chromatic polynomial of G. Two graphs G and H are said to be *chromatically equivalent* (or simply χ -equivalent), symbolically $G \sim H$, if $P(G,\lambda) = P(H,\lambda)$. The equivalence class determined by G under \sim is denoted by G. A graph G is *chromatically unique* (or simply χ -unique) if $H \cong G$ whenever $H \sim G$, i.e, $[G] = \{G\}$ up to isomorphism. For a set G of graphs, if $[G] \subseteq G$ for every $G \in G$, then G is said to be χ -closed. Many families of χ -unique graphs are known (Koh and Teo, 1990, 1997).

^{*} Corresponding author. Tel.: +609 6683857. E-mail address: hroslan@umt.edu.my (R. Hasni). Peer review under responsibility of University of Bahrain.

Production and hosting by Elsevier

For a graph G, let V(G), E(G), t(G) and $\chi(G)$ be the vertex set, edge set, number of triangles and chromatic number of G, respectively. Let O_n be an edgeless graph with n vertices. Let Q(G) and K(G) be the number of induced subgraphs isomorphic to C_4 and complete subgraphs K_4 in G. Let S be a set of s edges in G. By G - S (or G - s) we denote the graph obtained from G by deleting all edges in S, and $\langle S \rangle$ the graph induced by S. For $t \ge 2$ and $1 \le n_1 \le n_2 \le \cdots \le n_t$, let $K(n_1, n_2, ..., n_t)$ be a complete t-partite graph with partition sets V_i such that $|V_i| = n_i$ for i = 1, 2, ..., t. In (Dong et al., 2001; Lau and Peng, 2010a,b, Lau et al., 2010; Roslan et al., 2010, 2011a, 2012a; Zhao et al., 2004; Zhao, 2004, 2005), the authors proved that certain families of complete t-partite graphs (t = 2, 3, 4, 5) with a matching or a star deleted are γ -unique. The case for the complete 6-partite graphs has been investigated in (2011c; 2012b; 2012c). In particular, Zhao et al. (2004) and Zhao (2005) investigated the chromaticity of complete 5-partite graphs G of 5n and 5n + 4 vertices with certain stars or matching deleted parts. Roslan et al. (2011b) studied the chromaticity of complete 5-partite graphs G with 5n + i

^a Department of Mathematics, Faculty of Science and Technology, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

^b Department of Physics, College of Science, Anbar University, Anbar, Iraq

^c Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Segamat Campus), Johor, Malaysia

vertices for i = 1, 2, 3 with certain stars or matching deleted parts. As a continuation, in this paper, we characterize certain complete 5-partite graphs G with 5n vertices according to the number of 6-independent partitions of G. Using these results, we investigate the chromaticity of G with certain stars or matching deleted parts. As a by-product, two new families of chromatically unique complete 5-partite graphs with certain stars or matching deleted parts are obtained. These results generalized Theorems 3 and 4 in (Zhao, 2005).

2. Some lemmas and notations

Let $\mathcal{K}^{-s}(n_1, n_2, \dots, n_t)$ be the family $\{K(n_1, n_2, \dots, n_t) - S\}$ $S \subset E(K(n_1, n_2, ..., n_t))$ and |S| = s. For $n_1 \ge s + 1$, we denote by $K_{i,j}^{-K_{1,s}}(n_1, n_2, ..., n_t)$ (respectively, $K_{i,j}^{-sK_2}(n_1, n_2, ..., n_t)$) the graph in $K^{-s}(n_1, n_2, ..., n_t)$ where the s edges in S induce a $K_{1,s}$ with center in V_i and all the end vertices in V_i (respectively, a matching with end vertices in V_i and V_i).

For a graph G and a positive integer r, a partition $\{A_1, A_2, \dots, A_r\}$ of V(G), where r is a positive integer, is called an r-independent partition of G if every A_i is independent of G. Let $\alpha(G,r)$ denote the number of r-independent partitions in G. Then, we have $P(G,\lambda) = \sum_{r=1}^{p} \alpha(G,r)(\lambda)_r$, where $(\lambda)_r = \lambda(\lambda - 1)(\lambda - 2) \cdots (\lambda - r + 1)$ and p is the number of vertices of G(see Read and Tutte, 1988). Therefore, $\alpha(G,r) = \alpha(H,r)$ for each r = 1, 2, ..., if $G \sim H$.

For a graph G with p vertices, the polynomial $\sigma(G,x) = \sum_{r=1}^{p} \alpha(G,r)x^{r}$ is called the σ -polynomial of G (see Brenti, 1992). Clearly, $P(G,\lambda) = P(H,\lambda)$ implies that $\sigma(G,x) = \sigma(H,x)$ for any graphs G and H.

For disjoint graphs G and H, G + H denotes the disjoint union of G and H. The join of G and H denoted by $G \vee H$ is defined as follows: $V(G \lor H) = V(G) \cup V(H)$; $E(G \lor H) =$ $E(G) \cup E(H) \cup \{xy \mid x \in V(G), y \in V(H)\}$. For notations and terminology not defined here, we refer to (West, 2001).

Lemma 2.1. (Koh and Teo, 1990) Let G and H be two graphs with $H \sim G$, then |V(G)| = |V(H)|, |E(G)| = |E(H)|, t(G) = t(H) and $\chi(G) = \chi(H)$. Moreover, $\alpha(G,r) = \alpha(H,r)$ for $r \ge 1$, and 2K(G) - Q(G) = 2K(H) - Q(H). Note that if $\chi(G) = 3$, then $G \sim H$ implies that Q(G) = Q(H).

Lemma 2.2. (Brenti, 1992) Let G and H be two disjoint graphs. Then

 $\sigma(G \vee H, x) = \sigma(G, x)\sigma(H, x).$

In particular,

$$\sigma(K(n_1,n_2,\ldots,n_t),x)=\prod_{i=1}^t\sigma(O_{n_i},x).$$

Lemma 2.3 Zhao et al., 2004. Let $G = K(n_1, n_2, n_3, n_4, n_5)$ and Sbe a set of some s edges of G. If $H \sim G - S$, then there is a complete graph $F = K(p_1, p_2, p_3, p_4, p_5)$ and a subset S' of E(F) of some s' edges of F such that H = F - S' with |S'| = s' = e(F) - e(G) + s.

Let $n_1 \leqslant n_2 \leqslant n_3 \leqslant n_4 \leqslant n_5$ be positive integers and $\{n_{i_1}, n_{i_2}, n_{i_3}, n_{i_4}, n_{i_5}\} = \{n_1, n_2, n_3, n_4, n_5\}.$ If there exist two elements n_{i_1} and n_{i_2} in $\{n_1, n_2, n_3, n_4, n_5\}$ such that $n_{i_2} - n_{i_1} \ge 2$, $H' = K(n_{i_1} + 1, n_{i_2} - 1, n_{i_3}, n_{i_4}, n_{i_5})$ is called an *improvement* of $H = K(n_1, n_2, n_3, n_4, n_5).$

Lemma 2.4 Zhao et al., 2004. Suppose $n_1 \le n_2 \le n_3 \le n_4 \le n_5$ and $H' = K(n_{i_1} + 1, n_{i_2} - 1, n_{i_3}, n_{i_4}, n_{i_5})$ is an improvement of $H = K(n_1, n_2, n_3, n_4, n_5)$, then

$$\alpha(H,6) - \alpha(H',6) = 2^{n_{i_2}-2} - 2^{n_{i_1}-1} \geqslant 2^{n_{i_1}-1}$$
.

Let $G = K(n_1, n_2, n_3, n_4, n_5)$. For a graph H = G - S, where S is a set of some s edges of G, define $\alpha'(H) = \alpha(H,6) - \alpha(G,6)$. Clearly, $\alpha'(H) \ge 0$.

Lemma 2.5 Zhao et al., 2004. Let $G = K(n_1, n_2, n_3, n_4, n_5)$. Suppose that min $\{n_i \mid i=1, 2, 3, 4, 5\} \geqslant s+1 \geqslant 1$ and H = G - S, where S is a set of some s edges of G, then $s \leqslant \alpha'(H) = \alpha(H,6) - \alpha(G,6) \leqslant 2^s - 1$,

 $\alpha'(H) = s$ if and only if the set of end-vertices of any $r \ge 2$ edges in S is not independent in H, and $\alpha'(H) = 2^s - 1$ if and only if S induces a star $K_{I,s}$ and all vertices of $K_{I,s}$ other than its center belong to a same A_i .

Lemma 2.6 Dong et al., 2001. Let n_1, n_2 and s be positive integers with $3 \le n_1 \le n_2$, then

- (1) $K_{1,2}^{-K_{1,s}}(n_1, n_2)$ is χ -unique for $1 \le s \le n_2 2$, (2) $K_{2,1}^{-K_{1,s}}(n_1, n_2)$ is χ -unique for $1 \le s \le n_1 2$, and (3) $K^{-sK_2}(n_1, n_2)$ is χ -unique for $1 \le s \le n_1 1$.

For a graph $G \in K^{-s}(n_1, n_2, ..., n_t)$, we say an induced C_4 subgraph of G is of Type 1 (respectively Type 2 and Type 3) if the vertices of the induced C_4 are in exactly two (respectively three and four) partite sets of V(G). An example of induced C_4 of Types 1, 2 and 3 is shown in Fig. 1.

Suppose G is a graph in $K^{-s}(n_1, n_2, ..., n_t)$. Let $S_{ii}(1 \le i \le t, 1 \le j \le t)$ be a subset of S such that each edge in S_{ij} has an end-vertex in V_i and another end-vertex in V_j with $|\dot{S}_{ij}| = s_{ij} \geqslant 0.$

Lemma 2.7 Lau and Peng, 2010b. For integer $t \ge 3$, let $F = K(n_1, n_2, ..., n_t)$ be a complete t-partite graph and let G = F - S, where S is a set of s edges in F. If S induces a matching in F, then

$$Q(G) = Q(F) - \sum_{1 \le i < j \le t} (n_i - 1)(n_j - 1)s_{ij} + \binom{s}{2} - \sum_{1 \le i < j \le l \le t} s_{ij}s_{il}$$

$$- \sum_{1 \le i < j \le t} s_{ij}s_{kl} + \sum_{1 \le i < j \le t} \left[s_{ij} \sum_{k \notin \{i,j\}} \binom{n_k}{2} \right]$$

$$1 \le k < l \le t$$

$$i < k$$

$$+ \sum_{1 \le i < j \le t} s_{ij}s_{kl},$$

$$1 \le i < k < l \le t$$

$$1 \le i < k < l \le t$$

$$j \notin \{k, l\}$$

Three types of induced C_4 .

70 R. Hasni et al.

and

$$K(G) = K(F) - \sum_{1 \leq i < j \leq t} \left[s_{ij} \sum_{\substack{1 \leq k < l \leq t \\ \{i, j\} \cap \{k, l\} = \emptyset}} n_k n_l \right]$$

$$+ \sum_{\substack{1 \leq i < j \leq t \\ 1 \leq i < k < l \leq t \\ j \notin \{k, l\}}} s_{ij} s_{kl}.$$

By using Lemma 2.7, we obtain the following.

Lemma 2.8. Let $F = K(n_1, n_2, n_3, n_4, n_5)$ be a complete 5-partite graph and let G = F - S where S is a set of s edges in F. If S induces a matching in F, then

$$\begin{split} Q(G) &= Q(F) - \sum_{1 \leq i < j \leq 5} (n_i - 1)(n_j - 1)s_{ij} + \binom{s}{2} - s_{12}(s_{13} + s_{14}) \\ &+ s_{15} + s_{23} + s_{24} + s_{25}) - s_{13}(s_{14} + s_{15} + s_{23}) \\ &+ s_{34} + s_{35}) - s_{14}(s_{15} + s_{24} + s_{34} + s_{45}) - s_{15}(s_{25}) \\ &+ s_{35} + s_{45}) - s_{23}(s_{24} + s_{25} + s_{34} + s_{35}) - s_{24}(s_{25} + s_{34}) \\ &+ s_{45}) - s_{25}(s_{35} + s_{45}) - s_{34}(s_{35} + s_{45}) - s_{35}s_{45} \\ &+ \sum_{1 \leq i \leq i \leq 5} \left[s_{ij} \sum_{k \neq i \neq i} \binom{n_k}{2} \right], \end{split}$$

and

$$K(G) = K(F) - \sum_{1 \le i < j \le 5} \left[s_{ij} \sum_{\substack{1 \le k < l \le 5 \\ \{i, j\} \cap \{k, l\} = \emptyset}} n_k n_l \right] + s_{12}(s_{34} + s_{35}) + s_{45} + s_{45} + s_{13}(s_{24} + s_{25} + s_{45}) + s_{14}(s_{23} + s_{25} + s_{35}) + s_{15}(s_{23} + s_{24} + s_{34}) + s_{23}s_{45} + s_{24}s_{35} + s_{25}s_{34}.$$

3. Characterization

In this section, we shall characterize certain complete 5-partite graphs $G = K(n_1, n_2, n_3, n_4, n_5)$ according to the number of 6-independent partitions of G where $n_5 - n_1 \le 4$.

Theorem 3.1. Let $G = K(n_1, n_2, n_3, n_4, n_5)$ be a complete 5-partite graph such that $n_1 + n_2 + n_3 + n_4 + n_5 = 5n$ and $n_5 - n_1 \le 4$. Define $\theta(G) = [\alpha(G, 6) - 2^{n+1} - 2^{n-1} + 5]/2^{n-2}$. Then

- (i) $\theta(G) = 0$ if and only if G = K(n,n,n,n,n);
- (ii) $\theta(G) = 1$ if and only if G = K(n-1,n,n,n,n+1);
- (iii) $\theta(G) = 2$ if and only if G = K(n 1, n 1, n, n + 1, n + 1);
- (iv) $\theta(G) = 2\frac{1}{2}$ if and only if G = K(n-2,n,n,n+1,n+1);
- (v) $\theta(G) = 3\frac{1}{2}$ if and only if G = K(n-2, n-1, n+1, n+1, n+1, n+1);
- (vi) $\theta(G) = 4$ if and only if G = K(n 1, n 1, n, n, n + 2);

- (vii) $\theta(G) = 4\frac{1}{4}$ if and only if G = K(n-3,n,n+1, n+1,n+1);
- (viii) $\theta(G) = 4\frac{1}{2}$ if and only if G = K(n-2,n,n,n,n+2);
 - (ix) $\theta(G) = 5^2$ if and only if G = K(n-1, n-1, n-1, n+1, n+2);
 - (x) $\theta(G) = 5\frac{1}{2}$ if and only if G = K(n-2, n-1, n, n+1, n+2);
 - (xi) $\theta(G) = 7$ if and only if G = K(n-2, n-2, n+1, n+1, n+2);
- (xii) $\theta(G) = 8\frac{1}{2}$ if and only if G = K(n-2, n-1, n-1, n+2, n+2):
- (xiii) $\theta(G) = 9$ if and only if G = K(n-2, n-2, n, n+2, n+2):
- (xiv) $\theta(G) = 11$ if and only if G = K(n-1, n-1, n-1, n, n+3);

Proof. In order to complete the proof of the theorem, we first give a table for the θ -value of various complete 5-partite graphs with 5n vertices as shown in Table 1.

By using Table 1, Lemma 2.4 and the definition of improvement, the proof is complete. \Box

4. Chromatically closed 5-partite graphs

In this section, we obtain a χ -closed family of graphs from the graphs in Theorem 3.1.

Theorem 4.1. The family of graphs $\mathcal{K}^{-s}(n_1, n_2, n_3, n_4, n_5)$ where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n$, $n_5 - n_I \le 4$ and $n_I \ge s + 5$ is γ -closed.

Proof. By Theorem 3.1, there are 14 cases to consider. Denote each graph in Theorem 3.1 (i),(ii),...,(xiv) by $G_1,G_2,...,G_{14}$, respectively. Suppose $H \sim G_i - S$. It suffices to show that $H \in \{G_i - S\}$. By Lemma 2.3, we know there exists a complete 5-partite graph $F = (p_1,p_2,p_3,p_4,p_5)$ such that H = F - S' with $|S'| = s' = e(F) - e(G) + s \ge 0$.

Case (i). Let $G = G_1$ with $n \ge s + 2$. In this case, $H \sim F - S \in \mathcal{K}^{-s}(n, n, n, n, n)$. By Lemma 2.5, we have $\alpha(G - S, 6) = \alpha(G, 6) + \alpha'(G - S)$ with $s \le \alpha'(G - S) \le 2^s - 1$, $\alpha(F - S', 6) = \alpha(F, 6) + \alpha'(F - S')$ with $0 \le s' \le \alpha'(F - S')$.

Hence.

$$\alpha(F - S', 6) - \alpha(G - S, 6) = \alpha(F, 6) - \alpha(G, 6) + \alpha'(F - S') - \alpha'(G - S).$$

By the definition, $\alpha(F,6) - \alpha(G,6) = 2^{n-2}(\theta(F) - \theta(G))$. By Theorem 3.1, $\theta(F) \ge 0$. Suppose $\theta(F) > 0$, then

$$\alpha(F - S', 6) - \alpha(G - S, 6) \ge 2^{n-2} + \alpha'(F - S') - \alpha'(G - S)$$

 $\ge 2^s + \alpha'(F - S') - 2^s + 1,$
 $\ge 1.$

contradicting $\alpha(F - S', 6) = \alpha(G - S, 6)$. Hence, $\theta(F) = 0$ and so F = G and s = s'. Therefore, $H \in \mathcal{H}^{-s}(n, n, n, n, n)$.

Case (ii). Let $G = G_2$ with $n \ge s + 3$. In this case, $H \sim F - S \in \mathcal{H}^{-s}(n-1,n,n,n,n+1)$. By Lemma 2.5, we have

 $18\frac{1}{22}$

$G_i(1\leqslant i\leqslant 23)$	$\theta(G_i)$	$G_i(24 \leqslant i \leqslant 46)$	$\theta(G_i)$
$G_1 = K(n, n, n, n, n)$	0	$G_{24} = K(n-4,n,n+1,n+1,n+2)$	8 <u>1</u>
$G_2 = K(n-1,n,n,n,n+1)$	1	$G_{25} = K(n-4,n,n,n+2,n+2)$	$10\frac{1}{8}$
$G_3 = K(n-1,n-1,n,n+1,n+1)$	2	$G_{26} = K(n-4,n,n,n+1,n+3)$	$14\frac{1}{8}$
$G_4 = K(n-2,n,n,n+1,n+1)$	$2\frac{1}{2}$	$G_{27} = K(n-1,n-1,n-1,n-1,n+4)$	26
$G_5 = K(n-1,n-1,n,n,n+2)$	4	$G_{28} = K(n-2,n-1,n-1,n,n+4)$	$26\frac{1}{2}$
$G_6 = K(n-2,n,n,n,n+2)$	$4\frac{1}{2}$	$G_{29} = K(n-2,n-2,n-1,n+2,n+3)$	16
$G_7 = K(n-1,n-1,n-1,n+1,n+2)$	5	$G_{30} = K(n-3,n-1,n-1,n+2,n+3)$	$16\frac{1}{4}$
$G_8 = K(n-2,n-1,n+1,n+1,n+1)$	$3\frac{1}{2}$	$G_{31} = K(n-3,n-2,n+1,n+2,n+2)$	$10\frac{3}{4}$
$G_9 = K(n-2,n-1,n,n+1,n+2)$	$5\frac{1}{2}$	$G_{32} = K(n-3,n-2,n+1,n+1,n+3)$	$14\frac{3}{4}$
$G_{10} = K(n-3,n,n+1,n+1,n+1)$	$4\frac{1}{4}$	$G_{33} = K(n-4,n-1,n+1,n+2,n+2)$	$11\frac{1}{8}$
$G_{11} = K(n-3,n,n,n+1,n+2)$	$6\frac{1}{4}$	$G_{34} = K(n-4,n-1,n+1,n+1,n+3)$	$15\frac{1}{8}$
$G_{12} = K(n-1,n-1,n-1,n,n+3)$	11	$G_{35} = K(n-3,n-2,n,n+2,n+3)$	$16\frac{3}{4}$
$G_{13} = K(n-2,n-1,n,n,n+3)$	$11\frac{1}{2}$	$G_{36} = K(n-4,n-1,n,n+2,n+3)$	$17\frac{1}{8}$
$G_{14} = K(n-3,n,n,n,n+3)$	$12\frac{1}{4}$	$G_{37} = K(n-5,n+1,n+1,n+1,n+2)$	$10\frac{1}{16}$
$G_{15} = K(n-2,n-1,n-1,n+2,n+2)$	$8\frac{1}{2}$	$G_{38} = K(n-5,n,n+1,n+2,n+2)$	$12\frac{1}{16}$
$G_{16} = K(n-2,n-1,n-1,n+1,n+3)$	$12\frac{1}{2}$	$G_{39} = K(n-5,n,n+1,n+1,n+3)$	$16\frac{1}{16}$
$G_{17} = K(n-2,n-2,n+1,n+1,n+2)$	7	$G_{40} = K(n-5,n,n,n+2,n+3)$	$18\frac{1}{16}$
$G_{18} = K(n-3,n-1,n+1,n+1,n+2)$	$7\frac{1}{4}$	$G_{41} = K(n-3,n-3,n+2,n+2,n+2)$	$14\frac{1}{2}$
$G_{19} = K(n-2,n-2,n,n+2,n+2)$	9	$G_{42} = K(n-3,n-3,n+1,n+2,n+3)$	$18\frac{1}{2}$
$G_{20} = K(n-2,n-2,n,n+1,n+3)$	13	$G_{43} = K(n-4,n-2,n+2,n+2,n+2)$	$14\frac{5}{8}$
$G_{21} = K(n-3,n-1,n,n+2,n+2)$	$9\frac{1}{4}$	$G_{44} = K(n-4,n-2,n+1,n+2,n+3)$	19 <u>ľ</u>
$G_{22} = K(n-3,n-1,n,n+1,n+3)$	$13\frac{1}{4}$	$G_{45} = K(n-6,n+1,n+1,n+2,n+2)$	$14\frac{1}{32}$

$$\alpha(G-S,6) = \alpha(G,6) + \alpha'(G-S) \text{ with } s \leqslant \alpha'(G-S) \leqslant 2^s - 1,$$

$$\alpha(F-S',6) = \alpha(F,6) + \alpha'(F-S') \text{ with } 0 \leqslant s' \leqslant \alpha'(F-S').$$

Hence.

$$\alpha(F - S', 6) - \alpha(G - S, 6) = \alpha(F, 6) - \alpha(G, 6) + \alpha'(F - S') - \alpha'(G - S).$$

 $G_{23} = K(n-4,n+1,n+1,n+1,n+1)$

By the definition, $\alpha(F,6) - \alpha(G,6) = 2^{n-2}(\theta(F) - \theta(G))$. Suppose $\theta(F) \neq \theta(G)$. Then, we consider two subcases.

Subcase (a). $\theta(F) < \theta(G)$. By Theorem 3.1, $F = G_1$ and $H = G_1 - S' \in \{G_1 - S'\}$. However, $G - S \notin \{G_1 - S'\}$ since by Case (i) above, $\{G_1 - S'\}$ is χ -closed, a contradiction.

Subcase (b). $\theta(F) > \theta(G)$. By Theorem 3.1, $\alpha(F,6) - \alpha(G,6) \ge 2^{n-2}$. So,

$$\alpha(F - S', 6) - \alpha(G - S, 6) \ge 2^{n-2} + \alpha'(F - S') - \alpha'(G - S)$$

 $\ge 2^s + \alpha'(F - S') - 2^s + 1 \ge 1,$

contradicting $\alpha(F - S', 6) = \alpha(G - S, 6)$. Hence, $\theta(F) - \theta(G) = 0$ and so F = G and s = s'. Therefore, $H \in \mathcal{K}^{-s}$ (n-1, n, n, n, n+1).

Using Table 1, we can prove (iii) to (xiv) in a similar way. This completes the proof. $\hfill\Box$

5. Chromatically unique 5-partite graphs

The following results give two families of chromatically unique complete 5-partite graphs having 5n vertices with a set S of s edges deleted where the deleted edges induce a star $K_{1,s}$ and a matching sK_2 , respectively.

Theorem 5.1. em The graphs $K_{i,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5)$ where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n, n_5 - n_1 \le 4$ and $n_1 \ge s + 5$ are χ -unique for $1 \le i \ne j \le 5$.

 $G_{46} = K(n-6,n+1,n+1,n+1,n+3)$

Proof. By Theorem 3.1, there are 14 cases to consider. Denote each graph in Theorem 3.1 (i),(ii),...,(xiv) by $G_1,G_2,...,G_{14}$, respectively. The proof for each graph obtained from G_i (i = 1, 2,...,14) is similar, so we only give the detailed proof for the graphs obtained from G_2 below.

By Lemma 2.5 and Case 2 of Theorem 4.1, we know that $K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)=\{K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)|(i,j)\in\{(1,2),(2,1),(1,5),(5,1),(2,3),(4,5),(5,4)\}$ is χ -closed for $n\geqslant s+3$. Note that

$$\begin{array}{l} t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)) = \\ t(G_2) - s(3n+1) \text{ for } (i,j) \in \{(1,2),(2,1)\}, \\ t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)) = \\ t(G_2) - 3sn \text{ for } (i,j) \in \{(1,5),(5,1)\}, \\ t(K_{2,3}^{-K_{1,s}}(n-1,n,n,n,n+1)) = t(G_2) - 3sn, \\ t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)) = \\ t(G_2) - s(3n-1) \text{ for } (i,j) \in \{(4,5),(5,4)\}. \end{array}$$

By Lemmas 2.2 and 2.6, we conclude that $\sigma(K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)) \neq \sigma(K_{j,i}^{-K_{1,s}}(n-1,n,n,n,n+1))$ for each $(i,j) \in \{(1,2),(1,5),(4,5)\}$. We now show that $K_{2,3}^{-K_{1,s}}(n-1,n,n,n,n+1)$ and $K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)$ are not χ -equivalent for $(i,j) \in \{(1,5),(5,1)\}$. We have

$$Q(K_{2,3}^{-K_{1,s}}(n-1,n,n,n,n+1)) = Q(G_2) - s(n-1)^2 + \binom{s}{2} + s\left(\binom{n-1}{2} + \binom{n}{2} + \binom{n+1}{2}\right);$$

R. Hasni et al.

$$Q(K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)) = Q(G_2) - sn(n-2) + \binom{s}{2}$$

$$+ 3s\binom{n}{2} \text{ for } (i,j)$$

$$\in \{(1,5), (5,1)\};$$

$$Q(K_{2,3}^{-K_{1,s}}(n-1,n,n,n,n+1)) - Q(K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1))$$
= 0

since $s_{ij} = 0$ if $(i,j) \neq \{(2,3),(1,5),(5,1)\}.$ We also obtain

$$\begin{split} &K(K_{2,3}^{-K_{1,s}}(n-1,n,n,n,n+1)) = K(G_2) - s(3n^2 - 1); \\ &K(K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)) = K(G_2) - 3sn^2 \text{ for } (i,j) \in \{(1,5),(5,1)\}, \end{split}$$

$$K(K_{2.3}^{-K_{1,s}}(n-1,n,n,n,n+1)) - K_{i,i}^{-K_{1,s}}(n-1,n,n,n,n+1)) = s$$

since $s_{ij} = 0$ if $(i,j) \neq \{(2,3),(1,5),(5,1)\}$. This means that $2K(K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)) - Q(K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)) - Q(K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)) - Q$ $(K_{2,3}^{-K_{1,s}}(n-1,n,n,n,n+1))$, contradicting Lemma 2.1. Hence, $K_{i,j}^{-K_{1,s}}(n-1,n,n,n,n+1)$ is χ -unique where $n \ge s+3$ for $1 \leqslant i \neq j \leqslant 5$.

The proof is thus complete. \Box

Theorem 5.2. The graphs $K_{1,2}^{-sK_2}(n_1, n_2, n_3, n_4, n_5)$ where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n$, $n_5 - n_1 \leqslant 4$ and $n_1 \geqslant s + 5$ are γ -unique.

Proof. By Theorem 3.1, there are 14 cases to consider. Denote each graph in Theorem 3.1 (i),(ii),...,(xiv) by $G_1,G_2,...,G_{14}$, respectively. For a graph $K(p_1, p_2, p_3, p_4, p_5)$, let $S = \{e_1, e_2, ..., e_s\}$ be the set of s edges in $E(K(p_1,p_2,p_3,p_4,p_5))$ and let $t(e_i)$ denote the number of triangles containing e_i in $K(p_1,p_2,p_3,p_4,p_5)$. The proofs for each graph obtained from $G_i(i = 1, 2, ..., 14)$ are similar, so we only give the proof for the graph obtained from G_1 and G_2 as follows.

Suppose $H \sim G = K_{1,2}^{-sK_2}(n, n, n, n, n)$ for $n \ge s + 2$. By Theorem 4.1 and Lemma 2.1, $H \in \mathcal{K}^{-s}(n, n, n, n, n)$ and $\alpha'(H) = \alpha'(G) = s$. Let H = F - S where F = K(n, n, n, n, n). Clearly, $t(e_i) \leq 3n$ for each $e_i \in S$. So,

$$t(H) \geqslant t(F) - 3ns$$
,

with equality holds only if $t(e_i) = 3n$ for all $e_i \in S$. Since t(H) = t(G) = t(F) - 3ns, the equality above holds with $t(e_i) = 3n$ for all $e_i \in S$. Therefore each edge in S has an endvertex in V_i and another end-vertex in V_i ($1 \le i \le j \le 5$). Moreover, S must induce a matching in F. Otherwise, equality does not hold or $\alpha'(H) > s$. By Lemma 2.8, we obtain

$$Q(G) = Q(F) - s(n-1)^{2} + {s \choose 2} + 3s {n \choose 2},$$

whereas

$$Q(H) = Q(F) - s(n-1)^{2} + {s \choose 2} - s_{12}(s_{13} + s_{14} + s_{15} + s_{23} + s_{24} + s_{25})$$

$$- s_{13}(s_{14} + s_{15} + s_{23} + s_{34} + s_{35}) - s_{14}(s_{15} + s_{24} + s_{34} + s_{45})$$

$$- s_{15}(s_{25} + s_{35} + s_{45}) - s_{23}(s_{24} + s_{25} + s_{34} + s_{35}) - s_{24}(s_{25} + s_{34} + s_{45})$$

$$- s_{25}(s_{35} + s_{45}) - s_{34}(s_{35} + s_{45}) - s_{35}s_{45} + 3s {n \choose 2}$$

$$\leqslant Q(G)$$

and the equality holds if and only if $s = s_{ij}$ for $1 \le i \le j \le 5$, or $s = s_{ij} + s_{kl}$ for $1 \le i \le j \le 5, 1 \le k \le l \le 5, \{i,j\} \cap \{k,l\} = l \le j \le 5, \{i,j\} \cap \{k,l\} = l \le j \le 5, \{i,j\} \cap \{k,l\} = l \le j \le 5, \{i,j\} \cap \{k,l\} = l \le j \le 5, \{i,j\} \cap \{k,l\} = l \le 5, \{i,j\} \cap \{k,l\} = 1, \{i,j\} \cap \{k,l\} \cap \{k,l\} = 1, \{i,j\} \cap \{k,l\} \cap \{k,$ \emptyset . Moreover, $K(G) = K(F) - 3sn^2$ whereas

$$K(H) = K(F) - 3sn^2 + s_{12}(s_{34} + s_{35} + s_{45}) + s_{13}(s_{24} + s_{25} + s_{45}) + s_{14}(s_{23} + s_{25} + s_{35}) + s_{15}(s_{23} + s_{24} + s_{34}) + s_{23}s_{45} + s_{24}s_{35} + s_{25}s_{34} \ge K(G)$$

and the equality holds if and only if $s = s_{ij}$ for $1 \le i \le j \le 5$. Hence,

$$Q(H) - 2K(H) \leqslant Q(G) - 2K(G)$$

and the equality holds if and only if $s = s_{ij}$ for $1 \le i \le j \le 5$.

Consequently, $\langle S \rangle = sK_2$ with $H \cong G$. Suppose $H \sim G = K_{1,2}^{-sK_2}(n-1,n,n,n,n+1)$ for $n \geqslant s+3$. By Theorem 4.1 and Lemma 2.1, $H \in \mathcal{K}^{-s}(n-1,n,n,n,n+1)$ and $\alpha'(H) = \alpha'(G) = s$. Let H = F - S where F = K(n - 1)1,n,n,n,n+1). Clearly, $t(e_i) \leq 3n+1$ for each $e_i \in S$. So,

$$t(H) \geqslant t(F) - s(3n+1),$$

with equality holds only if $t(e_i) = 3n + 1$ for all $e_i \in S$. Since t(H) = t(G) = t(F) - s(3n + 1), the equality above holds with $t(e_i) = 3n + 1$ for all $e_i \in S$. Therefore each edge in S has an end-vertex in V_1 and another end-vertex in $V_i(2 \le i \le 4)$. Moreover, S must induce a matching in F. Otherwise, equality does not hold or $\alpha'(H) > s$. By Lemma 2.8, we obtain

$$Q(G) = Q(F) - s(n-2)(n-1) + \binom{s}{2} + s\left(2\binom{n}{2} + \binom{n+1}{2}\right),$$

whereas

$$Q(H) = Q(F) - s(n-2)(n-1) + \binom{s}{2}$$

$$- (s_{12}s_{13} + s_{12}s_{14} + s_{13}s_{14}) + s\left(2\binom{n}{2} + \binom{n+1}{2}\right)$$

$$\leq Q(G),$$

and the equality holds if and only if $s = s_{1i}(2 \le i \le 4)$. Moreover, $K(G) = K(H) = K(F) - s(3n^2 + 2n)$. Hence, 2K(G) – Q(G) = 2K(H) - Q(H) if and only if $\langle S \rangle \cong sK_2$ with $H \cong G$. Thus the proof is complete. \square

Remark: Our results generalized Theorems 3 and 4 in (Zhao, 2005).

Acknowledgement

The authors would like to extend their sincere thanks to the referees for their constructive and valuable comments.

References

- Brenti, F., 1992. Expansions of chromatic polynomials and logconcavity. Trans. Am. Math. Soc. 332 (2), 729–756.
- Dong, F.M., Koh, K.M., Teo, K.L., 2001. Sharp bounds for the number of 3-independent partitions and chromaticity of bipartite graphs. J. Graph Theory 37, 48–77.
- Koh, K.M., Teo, K.L., 1990. The search for chromatically unique graphs. Graphs Combin. 6, 259–285.
- Koh, K.M., Teo, K.L., 1997. The search for chromatically unique graphs II. Discrete Math. 172, 59–78.
- Lau, G.C., Peng, Y.H., 2010a. Chromaticity of complete 4-partite graphs with certain star and matching deleted. Appl. Anal. Discrete Math. 4, 253–268.
- Lau, G.C., Peng, Y.H., 2010b. Chromaticity of Turán graps with certain matching or star deleted. Ars. Combin. 94, 391–404.
- Lau, G.C., Peng, Y.H., Mohd. Atan, K.A., 2010. Chromaticity of complete tripartite graphs with certain star or matching deleted. Ars. Combin. 97, 65–77.
- Read, R.C., Tutte, W.T., 1988. Chromatic polynomials. In: Beineke, L.W., Wilson, R.J. (Eds.), Selected Topics in Graph Theory (II). Academic Press, New York, pp. 15–42.
- Roslan, H., Ameen, A.Sh., Peng, Y.H., Zhao, H.X., 2012a. Chromaticity of complete 5-partite graphs with certain star and matching deleted. Thai J. Math. 10, 25–34.
- Roslan, H., Ameen, A.Sh., Peng, Y.H., Zhao, H.X., 2010. Classification of complete 5-partite graphs and chromaticity

- of 5-partite graphs with 5n + 2 vertices. Far East J. Math. Sci. 43 (1), 59-72.
- Roslan, H., Ameen, A.Sh., Peng, Y.H., Zhao, H.X., 2011a. On chromatic uniqueness of certain 5-partite graphs. J. Appl. Math. Comput. 35, 507–516.
- Roslan, H., Ameen, A.Sh., Peng, Y.H., Lau, G.C., 2011b. Some families of chromatically unique 5-partite graphs. Int. J. Math. Combin. 4, 96–108.
- Roslan, H., Ameen, A.Sh., Peng, Y.H., 2012b. Chromaticity of complete 6-partite graphs with certain star and matching deleted. Bull. Malaysian Math. Sci. Soc 2 3 (51), 15–24.
- Roslan, H., Ameen, A.Sh., Peng, Y.H., 2012c. On chromatic uniqueness of certain 6-partite graphs. Appl. Math. Sci. 6 (35), 1727–1740.
- Roslan, H., Ameen, A.Sh., Alikhani, S., 2011c. On chromatic uniqueness of complete 6-partite graphs. J. Int. Math. Forum 6 (56), 2795–2814.
- West, D.B., 2001. Introduction to Graph Theory, second ed. Springer,
- Zhao, H.X., Liu, R.Y., Zhang, S.G., 2004. Classification of complete 5-partite graphs and chromaticity of 5-partite graphs with 5*n* vertices. Appl. Math. J. Chin. Univ. B 19 (1), 116–124.
- Zhao, H.X., 2004. On the chromaticity of 5-partite graphs with 5n + 4 vertices. J. Lanzhou Univ. (Nat. Sci.) 40 (3), 12–16 (in Chinese, English summary).
- Zhao, H.X., 2005. Chromaticity and adjoint polynomials of graphs. Ph.D. Thesis, University of Twente, Netherland.