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Abstract Let P(G,2) be the chromatic polynomial of a graph G. Two graphs G and H are said to be
chromatically equivalent, denoted G ~ H, if P(G,)) = P(H,%). We write [G] = {H H~ G}. If
[G] = {G}, then G is said to be chromatically unique. In this paper, we first characterize certain
complete 5-partite graphs G with 5n vertices according to the number of 6-independent partitions

of G. Using these results, we investigate the chromaticity of G with certain stars or matching deleted
parts . As a by-product, two new families of chromatically unique complete 5-partite graphs G with
certain stars or matching deleted parts are obtained.

© 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

All graphs considered here are simple and finite. For a graph
G, let P(G,4) be the chromatic polynomial of G. Two graphs
G and H are said to be chromatically equivalent (or simply -
equivalent), symbolically G ~ H, if P(G,.) = P(H,.). The
equivalence class determined by G under ~ is denoted by
[G]. A graph G is chromatically unique (or simply y-unique) if
H=G whenever H~ G, ie, [G] = {G} up to isomorphism.
For a set 4 of graphs, if [G] C ¥ for every G € ¥, then ¥ is said
to be y-closed. Many families of y-unique graphs are known
(Koh and Teo, 1990, 1997).
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For a graph G, let V(G), E(G), t(G) and y(G) be the vertex
set, edge set, number of triangles and chromatic number of G,
respectively. Let O,, be an edgeless graph with n vertices. Let
0(G) and K(G) be the number of induced subgraphs isomor-
phic to C, and complete subgraphs K4 in G. Let S be a set
of s edges in G. By G — S (or G — 5) we denote the graph ob-
tained from G by deleting all edges in S, and (S) the graph in-
duced by S. For t>2 and 1<n<nm<---<n, let
K(ny,ns,. . .,n;) be a complete z-partite graph with partition sets
V; such that | V,l =n;fori=1,2,...,t In (Dong et al., 2001;
Lau and Peng, 2010a,b, Lau et al., 2010; Roslan et al., 2010,
2011a, 2012a; Zhao et al., 2004; Zhao, 2004, 2005), the authors
proved that certain families of complete z-partite graphs
(t = 2, 3, 4, 5) with a matching or a star deleted are y-unique.
The case for the complete 6-partite graphs has been investi-
gated in (2011c; 2012b; 2012c). In particular, Zhao et al.
(2004) and Zhao (2005) investigated the chromaticity of com-
plete 5-partite graphs G of 5n and 5n + 4 vertices with certain
stars or matching deleted parts. Roslan et al. (2011b) studied
the chromaticity of complete 5-partite graphs G with 57 + i

1815-3852 © 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
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vertices for i = 1, 2, 3 with certain stars or matching deleted
parts. As a continuation, in this paper, we characterize certain
complete 5-partite graphs G with 5n vertices according to the
number of 6-independent partitions of G. Using these results,
we investigate the chromaticity of G with certain stars or
matching deleted parts. As a by-product, two new families of
chromatically unique complete S-partite graphs with certain
stars or matching deleted parts are obtained. These results gen-
eralized Theorems 3 and 4 in (Zhao, 2005).

2. Some lemmas and notations

Let " *(n,n,...,n,) be the family {K(nn,....n)— N
S c E(K(ny,n,. . .,1n,)) and| 8l = s}. Forn; = s + 1, we denote
by K;Kl*‘*(nl,nz,...,n,) (respectively, IC,-Jf"K2 (n1,ny,...,n,)) the
graph in K *(ny,n,,...,n,) where the s edges in S induce a K|
with center in V; and all the end vertices in V; (respectively,
a matching with end vertices in V; and V).

For a graph G and a positive integer r, a partition
{A},45,...,4,} of V(G), where r is a positive integer, is called
an r-independent partition of G if every A4; is independent of
G. Let a(G,r) denote the number of r-independent partitions
in G. Then, we have P(G,4)=>"  a(G,r)(4),, where
Dr=22-D(A—=2)---(A—r + 1) and p is the number of
vertices of G(see Read and Tutte, 1988). Therefore,
oG,r) = a(H,r) foreach r = 1,2,...,if G~ H.

For a graph G with p vertices, the polynomial
o(G,x) =" a(G,r)x" is called the g-polynomial of G (see
Brenti, 1992). Clearly, P(G,A) = P(H,A) implies that
0(G,x) = o(H,x) for any graphs G and H.

For disjoint graphs G and H, G + H denotes the disjoint
union of G and H. The join of G and H denoted by G v H is
defined as follows: V(Gv H) = V(G)U V(H); E(Gv H) =
E(G) U E(H) U {x)l x € V(G),y € V(H)}. For notations and
terminology not defined here, we refer to (West, 2001).

Lemma 2.1. (Koh and Teo, 1990) Let G and H be two graphs
with H~G, then |V(G) =1v(H), |EG)| =|EH),
t(G) = t(H) and y(G) = y(H). Moreover, o(G,r) = a(H,r)
forr=1,and2K(G) — Q(G) = 2K(H) — Q(H). Note that if
2(G) = 3, then G ~ H implies that Q(G) = Q(H).

Lemma 2.2. (Brenti, 1992) Let G and H be two disjoint graphs.
Then

o(GV H,x)=0(G,x)o(H, x).

In particular,

t
’ I’l,)7 X) = HU(OH," X)’

i=1
Lemma 2.3 Zhao et al., 2004. Let G = K(n;n>n3nyns) and S
be a set of some s edges of G. If H~ G — S, then there is a com-
plete graph F = K(p;.p>.p3.ps.ps5) and a subset S' of E(F) of
some s edges of F such that H=F—-S with
|S| =¢ =e(F)—e(G) + s.

O'(K(I’lh}’lz,.. .

Let ny<m<ny<ny<ns be positive integers and
{ni,ny,, niy my,, ni b = {ny, my, n3, ng, ns}. If there exist two ele-
ments n;, and n; in {n;,ny,n3,n4,ns} such that n;, —n; > 2,
H = K(n; + 1,n;, — 1,n;,m,,n;) is called an improvement of
H = K(nl,nz,n3,n4,n5).

Lemma 2.4 Zhao et al., 2004. Suppose n; < n, < nz < ny < ns
and H = K(ni, + 1,n;, — 1,niy,my,, ni} is an improvement of
H = K(n;nyn3ngns), then

w(H,6) —a(H',6) =2" 2 — 2"~ > 2m—!,

Let G = K(ny,na,n3,n4,ns). For a graph H = G — S, where S
is a set of some s edges of G, define o'(H) = o(H,6) — a(G,6).
Clearly, o/(H) = 0.

Lemma 2.5 Zhao et al.,, 2004. Let G = K(n;nsnznyns).
Suppose that min {n}i=1, 2, 3, 4, 5 =>s+1>1 and
H = G — S, where S is a set of some s edges of G, then
s<d(H)=a(H,6)—a(G,6) <2 —1,

o (H) = s if and only if the set of end-vertices of any r = 2
edges in S is not independent in H, and o/ (H) = 2° — 1 if and
only if' S induces a star K; s and all vertices of K; s other than
its center belong to a same A,.

Lemma 2.6 Dong et al., 2001. Let n;,n, and s be positive inte-
gers with 3 < n; < ny, then

) K;K‘""(nl,nQ) is y-unique for 1 < s <y — 2,
(2) Ky, " (n1,my) is y-unique for 1 < s < — 2, and
(3) K**(ny,n,) is y-unique for 1 < s < n; — 1.

For a graph G € K *(ny,ny,...,n,), we say an induced Cy4
subgraph of G is of Type 1 (respectively Type 2 and Type 3)
if the vertices of the induced C, are in exactly two (respectively
three and four) partite sets of V(G). An example of induced C,
of Types 1, 2 and 3 is shown in Fig. 1.

Suppose G is a graph in K ‘(npn,,...n). Let
Si(1 <i< 1,1 <j< 1) be a subset of S such that each edge in
Sj; has an end-vertex in V; and another end-vertex in V; with
| S,,I = Si/ = 0.

Lemma 2.7 Lau and Peng, 2010b. For integer t = 3, let
F = K(n;n,,. ...n,) be a complete t-partite graph and let
G =F— S, where S is a set of s edges in F. If S induces a
matching in F, then

0(6) =01~ 3 (=1l + (3) = 3 s

1<i<j<t I<i<j<I<t

— Z S8jSki + Z |:Slj Z (nzlc ):|
1 < l<] <t 1<i<j<t ke{ij}
1<k<iI<t
i<k

DS
1<i<j<t
1<i<k<I<t

J¢{k, 1}

S,'/'S/([,

Figure 1

Three types of induced Cj.
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and

K(G) = K(F) - Z Sij Z ey

Isigsr] 1 <k<I<t
{ij}n{k, 1} =0
+ Z SiiSki-
1<i<j<t
1<i<k<I<t
j k. 1}

By using Lemma 2.7, we obtain the following.

Lemma 2.8. Let F = K(nj;,nynzngns) be a complete 5-partite
graph and let G = F — S where S is a set of s edges in F. If S
induces a matching in F, then

K
0(6) = 0P = Y= (=1~ Dyt (5 ) = s+
1<i<<5
+ S15 + 823 + 524 + $25) — $13(814 + 515 + 523

+ 534 4 $35) — S14(S15 + $24 + 534 + S45)
+ S35 + Sa5) — 823 (S24 + $25 + S34 + $35) — $24(525 + 34

+ 45)

-9 15(525
— $25(835 + S45) — $34(835 + Sa5) — S35545

-y ey (%)

1<ig<s | kefih

)

and

K(G)=K(F)— Y |s; >
IS 1 <k<IL<S5
iy nik iy =0
+ 513(524 + S25 + S45) + S12(523 + 525 + 35)

+ 515(523 + S24 + S34) + 523845 + 524535 + 525534

mny |+ $12(834 + 835

+ s45)

3. Characterization

In this section, we shall characterize certain complete 5-partite
graphs G = K(ny,ns,n3,n4,n5) according to the number of 6-
independent partitions of G where ns — n; < 4.

Theorem 3.1. Let G = K(n;nynszngns) be a complete 5-
partite graph such that n; + n, + n3 + ny + ns = 5n and
ns—n; <4. Define 0(G)=[a(G6)—2""TT -2+ 5]
2"=2. Then

(i) 8(G) = 0 if and only if G = K(n,n,n,n,n),

(ii) 6(G) = 1 if and only if G = K(n — l,n,nnn + 1);

(iii) 0(G) = 2 if and only if G=Kn—1,n— lnn+ 1,
n+ 1)

(iv) 0(G) =24 if and only if G = K(n — 2,n,n,n + 1n + 1);

(v) 0(G) =31 if and only if G=Kn—-2n—1n+1,
n+ ln+ 1)

(vi) 0(G) = 4 if and only if G = K(n — Ln — L + 2);

(vii) 0(G) =41 if and only
n+ ln+ 1)

(vii) 0(G) = 44 if and only if G = K(n — 2,nnnn + 2);

if G=Kn-3nn+1,

(ix) 0(G) =5 if and only if G=Kn—1n—1n-—1,
n+ ln + 2);
(x) 0(G) =51 if and only if G = K(n—2n—1, nn+ 1,
n+ 2),
(xi) (G) = 7Tifand only if G = K(n —2,n —2,n + 1,n + 1,
n+ 2);
(xii) 0(G) =8%ifand onlyif G = K(n —2,n — Ln — Ln + 2,
n+ 2);
(xiii) 6(G) = 9 if and only if G = Kn—2,n—2nn + 2,
n+ 2);
(xiv) 6(G) = 11 if and only if G=Kn—1,n—1,n— 1,n,

n + 3);

Proof. In order to complete the proof of the theorem, we first
give a table for the 0-value of various complete 5-partite
graphs with 5n vertices as shown in Table 1.

By using Table 1, Lemma 2.4 and the definition of
improvement, the proof is complete. [

4. Chromatically closed 5-partite graphs

In this section, we obtain a y-closed family of graphs from the
graphs in Theorem 3.1.

Theorem 4.1. The family of graphs A (n1,ny, n3, na, ns) where
nyt+n,+nyt+ng+ns=5nn—n<4andn; =s+5is
x-closed.

Proof. By Theorem 3.1, there are 14 cases to consider. Denote
each graph in Theorem 3.1 (i),(ii).. . .,(xiv) by G;,G,...,G4,
respectively. Suppose H ~ G; — S. It suffices to show that
H € {G;— S}. By Lemma 2.3, we know there exists a complete
5-partite graph F = (p1,p2,p3.p4.Ps) such that H = F — S’ with
| sl =y = e(F)—e(G) + s = 0.

Case (i). Let G = G; with n >
H~F—-Sex™

s + 2. In this case,
*(n,n,n,n,n). By Lemma 2.5, we have

o(G — S,6) = a(G,6) + o' (G —S) with s <o'(G—S) <2° -1,
o(F—S,6) =a(F,6)+d(F—S) with0<s <o«(F-S).
Hence,

oa(F—S,6) —a(G—S,6) = a(F,6) —a(G,6) + o (F—S')

—d(G-29).

By the definition, a(F,6) — «(G,6) = 2" *(0(F) — 0(G)). By
Theorem 3.1, O(F) = 0. Suppose 0(F) > 0, then

W(F—S8,6)—a(G—S,6) =22 +d(F-8)—do(G-1S)
P4 A (F—8)—2+1,

=
= 1,

contradicting a(F — §',6) = a(G — S,6). Hence, O(F) = 0 and
so F = G and s = §'. Therefore, H € # °(n,n,n,n,n).

Case (ii). Let G = G, with n > s + 3. In this case,
H~F-Sex*(n—1,nnnn+1). By Lemma 2.5 we
have
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Table 1 Some complete S-partite graphs with 5n vertices and their 0-values.
Gl <i<23) 0(G)) G{24 < i< 46) 0(G))
G, = K(n,n,nnn) 0 Gos = K(n—4nn+ Ln+ Ln + 2) 81
G, = K(n — l,nnnn + 1) 1 Gys = K(n —4.nnn + 2n + 2) 10%
Gi=Kn—1n—1nn+ 1n+1) 2 Grs = K(n — 4,n,nn + 1,n + 3) 143
Gy = K(n—2,nnn + 1n + 1) 2% Gy =Kn—1ln—1n—1n—1n+ 4) 26
Gs = Kn— 1,n— lnnn + 2) 4 Gog = Kn—2n—1n—1nn + 4) 261
Gg¢ = K(n — 2,n,n.nn + 2) 4% Gy = Kn—2n—-2n—1n+ 2n+ 3) 16
G;=Kmn—1ln—1pn—1n+ ln+ 2) 5 Gyy=Kn—3n—1pn—1n+ 2n+ 3) 16%
Gg=Kn—2n—1n+ 1n+ 1n+1) 3% Gy = Kn—3n—-2n+ ln+ 2n+2) 10%
Gy = K(n—2n—1nn+ ln+ 2) 5% Gy = Kn—3n—2n+ 1+ ln+3) 142
Gy=Kmn—-3nn+ ln+1n+1) 4% Gy3; = Kn—4n—1n+ Ln+ 2n + 2) 11%
Gy = K(n—3.nnn+ 1n +2) 61 Gy = Kinn—4n—1n+ 1n+ 1n+ 3) 15%
G, =Kn—1n—1n—1lnn+ 3) 11 G35 = K(n—3.,n—2,nn + 2,n + 3) 16%
Gy = K(n—2.n— lnnn + 3) 111 Gy = K(n —4n— 1nn + 2.n + 3) 17%
Gy = K(n —3.nnnn + 3) 12% Gy; =Kn—5n+1n+ 1n+1n+2) 10%6
Gis=Kn—2n—1n—1n+2n+2) 8% Gys = K(n—5nn + Ln + 20 + 2) 124
Gig=Kn—2n—1n—1n+ Ln+ 3) 12% G39 = K(n—5nn + 1,n + 1,n + 3) 16%6
Gip=Kin—2n—2n+ 1+ 1+ 2) 7 Gao = Kin — Snn + 2, + 3) 18
Gg=Kn—-3n—1n+ ln+ 1n+2) 7% Gy = Kn—3n—-3n+2n+2n+2) 14%
Gio=Kn—2n—2nn+2n+2) 9 Gypp=Kn—3n—-3n+ ln+ 2n+ 3) 18%
Gy = K(n—2.n—2nn + Ln + 3) 13 Gy =Kn—4n—2n+ 2n+ 2n + 2) 14%
Gy = K(n—3n— lnn + 20 + 2) 91 Gy =Kn—4n—2n+ 1n+ 20+ 3) 19%
Gy = K(n—3n—1nn + 1,n + 3) 13% Gys = Kn—6n + 1n+ 1n+ 2n+ 2) 143i2
Gy=Kn—4n+1ln+1ln+ln+1) 61 Gy =Kn—6n+ 1n+1n+ L+ 3) 18

a(G — S,6) = a(G,6) + o' (G—S) with s < o' (G—S) <2°—1,
a(F—8,6)=a(F,6) +o(F—S) with 0 <s <o (F-S).
Hence,

a(F—S,6) —a(G—S,6) = a(F,6) — a(G,6) + o (F—S)

— (G- 9).
By the definition, a(F,6) — «(G.6) = 2"~%(0(F) — 6(G)). Sup-
pose O(F) # 0(G). Then, we consider two subcases.

Subcase (a). O(F) < 0(G). By Theorem 3.1, F = G; and
H=G,—-Se€{G,—S'}. However, G — S¢{G, — S’} since
by Case (i) above, {G; — S’} is y-closed, a contradiction.

Subcase  (b). O(F) > 0(G). By
a(F,6) — a(G.6) = 2"2. So,

Theorem 3.1,

W(F—8,6)—a(G—S,6)=>2"2+d(F-S)—do(G-2S)
224 d(F-S)-2"+12> 1,
contradicting  o(F — §',6) = (G — S,6). Hence, 0(F)—

0(G) =0 and so F=G and s = .
(n—1,n,n,n,n+1).

Using Table 1, we can prove (iii) to (xiv) in a similar way.
This completes the proof. [

Therefore, He A

5. Chromatically unique S-partite graphs

The following results give two families of chromatically unique
complete S-partite graphs having 5n vertices with a set S of s
edges deleted where the deleted edges induce a star K, ; and
a matching sK5, respectively.

Theorem 5.1. em The graphs K,-_:]-K"“(nl,nz,n3,n4,n5) where
ny +ny +ny+ng+ns=>5,ns—n <4andn; = s + 5are

y-unique for 1 <i#j<5.

Proof. By Theorem 3.1, there are 14 cases to consider. Denote
each graph in Theorem 3.1 (i),(ii),. . .,(xiv) by G,G>,....G 14,
respectively. The proof for each graph obtained from G;
(i=1,2,...,14) is similar, so we only give the detailed proof
for the graphs obtained from G, below.

By Lemma 2.5 and Case 2 of Theorem 4.1, we know that
K (n—1,n,n, n,n+1>:{K:,-K“(n—17n7n7n7n+1)|(z;j>e

{(1]7 2),(2,1),(1,5),(5,1),(2,3),(4,5),(5,4)} is z-closed for
n > s + 3. Note that

t(K ;K“(n—l,n,n,n,n—k ) =

t(Gy) —s(3n+ 1) for (i,j) € {(1,2),(2,1)},

t(K:/K ‘(n—Lin,n,n,n+1)) =

t(GZ,)K_ 3sn for (i,7) € {(1,5),(5, 1)},

t(Kg;("(n—lnnnn+ )) = t(G,) — 3sn,

HK ;" (n—1,n,n,nn+1)) =

t(G>) —s(3n — 1) for (i,)) € {(4,5),(5,4)}.

By Lemmas 2.2 and 2.6, we conclude that O'(K;]«Kl"‘ (n—

1nnnn—o—l));éa(K/K“(n—lnnnn+1)) for  each
(iy) € {(1,2),(1,5),(4,5)}. We now show that K23"( —1,n,n,
n,n+1) and K‘K (n—1,n,n,n,n+ 1) are not y-equivalent
for (iy) € {(1,5),(5,1)}. We have

Q(K;é(l..& (n—1,n,n,n,n+1))=0(G,) —s(n— 1)2+ (;)

() G)+ (1)
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Q(K;jkl“(n— Lin,n,nyn+1)) = Q(G,) —sn(n—2) + (;)

+3S(Z) for (i,/)
€ {(1,5),(5, D}
with

0Ky ™ (n
=0

—Ln,n,nn+1)) — Q(K,-T,-Kl“’(n —1,n,n,nn+1))

since s; = 0 if (i) # {(2,3),(1,5),(5,1)}.
We also obtain

K(K;f"’(n—I,n,n,n,nJrl)):K(Gz)—s(3nz—1);

K(K;/-K"‘ (nfl,n,n,n,nJrl)):K(Gz)73sn2 for (i,j) € {(1,5),(5,1) },
with

K(Kzf"(n - Lnnnn+1))— K;J-K""(n —lLn,nnn+1))=s
since s; = 0 if (i) # {(2,3),(1, 5) (5,1)}.

This means that 2K(K;, "“(n— l,n,n,n,n+ 1)) —
Kls( 17nan7n7n+1))7é2K( 7K“(
K
(Ky3"(n
K, -K“(n— l,n,n,n,n+1) is y-unique where n > s + 3 for

)
1<i#j<5s.

O(K;;
- Ln,nnn+1)) -0

— 1,n,n,n,n+ 1)), contradicting Lemma 2.1. Hence,

The proof is thus complete. [

Theorem 5.2. The graphs
n1+n2+n3+n4+n5:5n,

sK:
K52 (ny,ny,n3,na,ms5)  where
ns—n; <4 and n; =s+5
are y-unique.

Proof. By Theorem 3.1, there are 14 cases to consider. Denote
each graph in Theorem 3.1 (i),(ii),. . ..(xiv) by G,Ga,....G1a,
respectively. For a graph K(p1,p2,p3.p4.05), let S = {ey,ea,. . .,es}
be the set of s edges in E(K(p1,p2,p3.P4.P5)) and let t(e;) denote
the number of triangles containing e; in K(py,p>,p3,p4.ps)- The
proofs for each graph obtained from G(i = 1, 2,...,14) are
similar, so we only give the proof for the graph obtained from
G and G, as follows.

Suppose H~ G = K,_;Kz(n,n,n n,n) for n>s+ 2. By
Theorem 4.1 and Lemma 2.1, H € # *(n,n,n,n,n) and
o(H) = od(G) =s. Let H= F— S where F = K(n,n,n,n,n).
Clearly, #(e;) < 3n for each ¢; € S. So,

t(H) = t(F) — 3ns,

with equality holds only if #(e;) = 3n for all ¢; € S. Since
t(H) = t(G) = t(F) — 3ns, the equality above holds with
t(e;) = 3n for all ¢; € S. Therefore each edge in S has an end-
vertex in V; and another end-vertex in V(1 <i < j < 5). More-
over, S must induce a matching in F. Otherwise, equality does
not hold or /(H) > s. By Lemma 2.8, we obtain

0(G) = O(F) — s(n— 1) + (;) +3s(’;),

whereas

O(H)=Q(F)—s(n— 1)2“‘ (;) — $12(813 4 S14 4 S15 + 523 + 524 + 525)

—513(S14 4515+ 523 + 535+ 535) — S14(S15 + 524 + 534+ 845)

— 515(825 + 535+ Sas5) — 523 (524 + S25 + 534 + 535) — 524 (525 + 534 + S45)
n
— 825 (535 + 545) — 834 (S35 +S45) — 835545+ 38 5

<Q0(G)

and the equality holds if and only if s = s; for 1 <i < <5,
ors =s;+ syfor 1 <i<j<51<k<IL<S {ijyni{kl} =
f. Moreover, K(G) = K(F) — 3sn*> whereas

K(H)=K(F) - 35”2+512(534+S35+S45)+513(Sz4+525+545)
+314(323+325+535)+515(323+524-H34)+523645+324é35+325534

K(G)

and the equality holds if and only if s
Hence,

Q(H) < Q(G)

and the equality holds if and only if s
Consequently, (S) = sK, with H=G.
Suppose H ~ G = KT;KZ(n—l n,n,n,n+ 1) forn > s + 3.
By Theorem 4.1 and Lemma 2.1, H € # *(n — 1,n,n,n,n + 1)
and o' (H) =« (G) =s. Let H=F—-S Where F=Kn-
l,nnnn + 1). Clearly, t(e;) < 3n + 1 for each ¢; € S. So,

t(H) = t(F) —s(3n+1),

with equality holds only if #(e;) = 3n + 1 for all ¢; € S. Since
t(H) = t(G) = t(F) — s(3n + 1), the equality above holds with
tle;) = 3n + 1 for all ¢; € S. Therefore each edge in S has an
end-vertex in ¥, and another end-vertex in V{2 <j<4).
Moreover, S must induce a matching in F. Otherwise, equality
does not hold or o'(H) > s. By Lemma 2.8, we obtain

0(6)=0(5)-stn-2-1+ () 45(2(3) + ("] ).

whereas

=g, for 1 <i<j<s.

— 2K(H) — 2K(G)

o) = 0P st -2~ 1)+ ()

n n+1
— (S12S13 + S12814 + S13S14) +s 2 2 + 2

< 0(6),

and the equality holds if and only if s = 51(2 <j < 4). More-

over, K(G) = K(H) = K(F) — s(37* + 2n). Hence, 2K(G) —

0(G) = 2K(H) — Q(H) if and only if (S) = sK, with H=G.
Thus the proof is complete. [

Remark: Our results generalized Theorems 3 and 4 in
(Zhao, 2005).
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