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Abstract

Let P (G,λ) be the chromatic polynomial of a graph G. Two graphs
G and H are said to be chromatically equivalent, denoted G ∼ H, if
P (G,λ) = P (H,λ). We write [G] = {H|H ∼ G}. If [G] = {G}, then
G is said to be chromatically unique. In this paper, two new families of
chromatically unique complete 5-partite graphs G having 5n+4 vertices
with certain star or matching deleted are obtained.
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1 Introduction

All graphs considered here are simple and finite. For a graph G, let P (G, λ)
be the chromatic polynomial of G. Two graphs G and H are said to be
chromatically equivalent (or simply χ−equivalent), symbolically G ∼ H , if
P (G, l) = P (H, l). The equivalence class determined by G under ∼ is denoted
by [G]. A graph G is chromatically unique (or simply χ−unique) if H ∼= G
whenever H ∼ G, i.e, [G] = {G} up to isomorphism. For a set G of graphs,
if [G] ⊆ G for every G ∈ G, then G is said to be χ−closed. Many families of
χ-unique graphs are known (see [3,4]).

For a graph G, let V (G), E(G), t(G) and χ(G) be the vertex set, edge set,
number of triangles and chromatic number of G, respectively. Let On be an
edgeless graph with n vertices. Let Q(G) and K(G) be the number of induced
subgraphs isomorphic to C4 and complete subgraph K4 in G. Let S be a set
of s edges in G. By G − S (or G − s) we denote the graph obtained from
G by deleting all edges in S, and 〈S〉 the graph induced by S. For t ≥ 2
and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nt, let K(n1, n2, · · · , nt) be a complete t−partite
graph with partition sets Vi such that |Vi| = ni for i = 1, 2, · · · , t. In [2,5-7,9-
11,15-17], the authors proved that certain families of complete t-partite graphs
(t = 2, 3, 4, 5) with a matching or a star deleted are χ-unique. In particular,
Zhao et al. [15,16] investigated the chromaticity of complete 5-partite graphs
G of 5n and 5n + 4 vertices with certain star or matching deleted. In [12,13],
Roslan et al. studied the chromaticity of complete 5-partite graphs G with
5n + i vertices for i = 0, 1, 2, 3 with certain star or matching deleted. The
case for chromaticity of complete 5-partite graphs G with 5n vertices in [12]
generalized the results obtained in Zhao’s paper [15]. As a continuation, in this
paper, we characterize certain complete 5-partite graphs G with 5n+4 vertices
according to the number of 6-independent partitions of G. Using these results,
we investigate the chromaticity of G with certain star or matching deleted.
As a by-product, two new families of chromatically unique complete 5-partite
graphs with certain star or matching deleted are obtained.

2 Some Lemmas and Notations

Let K−s(n1, n2, · · · , nt) be the family {K(n1, n2, · · · , nt)−S| S ⊂ E(K(n1, n2, · · ·
, nt)) and |S| = s}. For n1 ≥ s + 1, we denote by K

−K1,s

i,j (n1, n2, · · · , nt) (re-

spectively, K−sK2
i,j (n1, n2, · · · , nt)) the graph in K−s(n1, n2, · · · , nt) where the

s edges in S induce a K1,s with center in Vi and all the end vertices in Vj

(respectively, a matching with end vertices in Vi and Vj).
For a graph G and a positive integer r, a partition {A1, A2, · · · , Ar} of

V (G), where r is a positive integer, is called an r-independent partition of G if
every Ai is independent of G. Let α(G, r) denote the number of r-independent
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partitions in G. Then, we have P (G, λ) =
∑p

r=1 α(G, r)(λ)r, where (λ)r =
λ(λ − 1)(λ − 2) · · · (λ − r + 1) and p is the number of vertices of G(see [8]).
Therefore, α(G, r) = α(H, r) for each r = 1, 2, · · · , if G ∼ H .

For a graph G with p vertices, the polynomial σ(G, x) =
∑p

r=1 α(G, r)xr

is called the σ-polynomial of G (see [1]). Clearly, P (G, λ) = P (H, λ) implies
that σ(G, x) = σ(H, x) for any graphs G and H .

For disjoint graphs G and H , G + H denotes the disjoint union of G and
H . The join of G and H denoted by G∨H is defined as follows: V (G∨H) =
V (G) ∪ V (H); E(G ∨ H) = E(G) ∪ E(H) ∪ {xy | x ∈ V (G), y ∈ V (H)}. For
notations and terminology not defined here, we refer to [14].

Lemma 2.1 (Koh and Teo [3]) Let G and H be two graphs with H ∼ G,
then |V (G)| = |V (H)|, |E(G)| = |E(H)|, t(G) = t(H) and χ(G) = χ(H).
Moreover, α(G, r) = α(H, r) for r ≥ 1, and 2K(G)−Q(G) = 2K(H)−Q(H).
Note that if χ(G) = 3, then G ∼ H implies that Q(G) = Q(H).

Lemma 2.2 (Brenti [1]) Let G and H be two disjoint graphs. Then

σ(G ∨ H, x) = σ(G, x)σ(H, x).

In particular,

σ(K(n1, n2, · · · , nt), x) =
t∏

i=1

σ(Oni
, x)

Lemma 2.3 (Zhao et al. [15]) Let G = K(n1, n2, n3, n4, n5) and S be a
set of some s edges of G. If H ∼ G − S, then there is a complete graph
F = K(p1, p2, p3, p4, p5) and a subset S ′ of E(F ) of some s′ edges of F such
that H = F − S ′ with |S ′| = s′ = e(F ) − e(G) + s.

Let x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 be positive integers and {xi1 , xi2 , xi3 , xi4 , xi5} =
{x1, x2, x3, x4, x5}. If there exist two elements xi1 and xi2 in {x1, x2, x3, x4, x5}
such that xi2 − xi1 ≥ 2, H ′ = K(xi1 + 1, xi2 − 1, xi3, xi4 , xi5) is called an
improvement of H = K(x1, x2, x3, x4, x5).

Lemma 2.4 (Zhao et al. [15]) Suppose x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 and H ′ =
K(xi1 + 1, xi2 − 1, xi3 , xi4, xi5} is an improvement of H = K(x1, x2, x3, x4, x5),
then

α(H, 6) − α(H ′, 6) = 2xi2
−2 − 2xi1

−1 ≥ 2xi1
−1.

Let G = K(n1, n2, n3, n4, n5). For a graph H = G − S, where S is a set of
some s edges of G, define α′(H) = α(H, 6) − α(G, 6). Clearly, α′(H) ≥ 0.
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Lemma 2.5 (Zhao et al. [15]) Let G = K(n1, n2, n3, n4, n5). Suppose that
min {ni|i = 1, 2, 3, 4, 5} ≥ s + 1 ≥ 1 and H = G−S, where S is a set of some
s edges of G, then

s ≤ α′(H) = α(H, 6) − α(G, 6) ≤ 2s − 1,

α′(H) = s if and only if the set of end-vertices of any r ≥ 2 edges in S is
not independent in H, and α′(H) = 2s − 1 if and only if S induces a star K1,s

and all vertices of K1,s other than its center belong to a same Ai.

Lemma 2.6 (Dong et al. [2]) Let n1, n2 and s be positive integers with
3 ≤ n1 ≤ n2, then

(1) K
−K1,s

1,2 (n1, n2) is χ-unique for 1 ≤ s ≤ n2 − 2,

(2) K
−K1,s

2,1 (n1, n2) is χ-unique for 1 ≤ s ≤ n1 − 2, and

(3) K−sK2(n1, n2) is χ-unique for 1 ≤ s ≤ n1 − 1.

For a graph G ∈ K−s(n1, n2, · · · , nt), we say an induced C4 subgraph of G
is of Type 1 (respectively Type 2 and Type 3) if the vertices of the induced
C4 are in exactly two (respectively three and four) partite sets of V (G). An
example of induced C4 of Types 1, 2 and 3 are shown in Figure 1.

Type 3Type 1

V2

Type 2

....................

V1 V2

V3

V2

......................

...................

V1

V4V3

FIGURE 1. Three types of induced C4

V1

Suppose G is a graph in K−s(n1, n2, · · · , nt). Let Sij (1 ≤ i ≤ t, 1 ≤ j ≤ t)
be a subset of S such that each edge in Sij has an end-vertex in Vi and another
end-vertex in Vj with |Sij| = sij ≥ 0.

Lemma 2.7 (Lau and Peng [6]) For integer t ≥ 3, let F = K(n1, n2, · · · , nt)
be a complete t-partite graph and let G = F − S, where S is a set of s edges
in F . If S induces a matching in F , then

Q(G) = Q(F ) − ∑
1≤i<j≤t

(ni − 1)(nj − 1)sij +

(
s

2

)
− ∑

1≤i<j<l≤t

sijsil −

∑
1 ≤ i < j ≤ t

1 ≤ k < l ≤ t
i < k

sijskl +
∑

1≤i<j≤t

[
sij

∑
k/∈{i,j}

(
nk

2

)]
+
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∑
1 ≤ i < j ≤ t

1 ≤ i < k < l ≤ t

j /∈ {k, l}

sijskl,

and

K(G) = K(F ) − ∑
1≤i<j≤t

[
sij

∑
1 ≤ k < l ≤ t

{i, j} ∩ {k, l} = ∅

nknl

]
+

∑
1 ≤ i < j ≤ t

1 ≤ i < k < l ≤ t

j /∈ {k, l}

sijskl.

By using Lemma 2.7, we obtain the following.

Lemma 2.8 Let F = K(n1, n2, n3, n4, n5) be a complete 5-partite graph and
let G = F − S where S is a set of s edges in F . If S induces a matching in
F , then

Q(G) = Q(F ) − ∑
1≤i<j≤5

(ni − 1)(nj − 1)sij +

(
s

2

)
− s12(s13 + s14 + s15 + s23

+s24 + s25) − s13(s14 + s15 + s23 + s34 + s35) − s14(s15 + s24 + s34

+s45) − s15(s25 + s35 + s45) − s23(s24 + s25 + s34 + s35) − s24(s25

+s34 + s45) − s25(s35 + s45) − s34(s35 + s45) − s35s45

+
∑

1≤i<j≤5

[
sij

∑
k/∈{i,j}

(
nk

2

)]
,

and

K(G) = K(F ) − ∑
1≤i<j≤5

[
sij

∑
1 ≤ k < l ≤ 5

{i, j} ∩ {k, l} = ∅

nknl

]
+ s12(s34 + s35 + s45)

+s13(s24 + s25 + s45) + s14(s23 + s25 + s35) + s15(s23 + s24 + s34)

+s23s45 + s24s35 + s25s34.

3 Characterization

In this section, we shall characterize certain complete 5-partite graphs G =
K(n1, n2, n3, n4, n5) according to the number of 6-independent partitions of G
where n5 − n1 ≤ 4.

Theorem 3.1 Let G = K(n1, n2, n3, n4, n5) be a complete 5-partite graph
such that n1 + n2 + n3 + n4 + n5 = 5n + 4 and n5 − n1 ≤ 4. Define θ(G) =
[α(G, 6) − 2n+2 − 2n−1 + 5]/2n−1. Then
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(i) θ(G) = 0 if and only if G = K(n, n + 1, n + 1, n + 1, n + 1);

(ii) θ(G) = 1 if and only if G = K(n, n, n + 1, n + 1, n + 2);

(iii) θ(G) = 11
2

if and only if G = K(n − 1, n + 1, n + 1, n + 1, n + 2);

(iv) θ(G) = 2 if and only if G = K(n, n, n, n + 2, n + 2);

(v) θ(G) = 21
2

if and only if G = K(n − 1, n, n + 1, n + 2, n + 2);

(vi) θ(G) = 31
4

if and only if G = K(n − 2, n + 1, n + 1, n + 2, n + 2);

(vii) θ(G) = 4 if and only if G = K(n, n, n, n + 1, n + 3) or G = K(n− 1, n−
1, n + 2, n + 2, n + 2);

(viii) θ(G) = 41
4

if and only if G = K(n − 2, n, n + 2, n + 2, n + 2);

(ix) θ(G) = 41
2

if and only if G = K(n − 1, n, n + 1, n + 1, n + 3);

(x) θ(G) = 51
2

if and only if G = K(n − 1, n, n, n + 2, n + 3);

(xi) θ(G) = 6 if and only if G = K(n − 1, n − 1, n + 1, n + 2, n + 3);

(xii) θ(G) = 9 if and only if G = K(n − 1, n − 1, n, n + 3, n + 3);

(xiii) θ(G) = 11 if and only if G = K(n, n, n, n, n + 4).

Proof. In order to complete the proof of the theorem, we first give a table
for the θ-value of various complete 5-partite graphs with 5n + 4 vertices as
shown in Table 1.

By the definition of improvement, we have the following:

(i) G1 is the improvement of G2 and G3 with θ(G2) = 1 and θ(G3) = 11
2
;

(ii) G2 is the improvement of G3, G4, G5, G6 and G7 with θ(G3) = 11
2
,

θ(G4) = 2, θ(G5) = 4, θ(G6) = 21
2

and θ(G7) = 41
2
;

(iii) G3 is the improvement of G6, G7, G8 and G9 with θ(G6) = 21
2
, θ(G7) =

41
2
, θ(G8) = 31

4
and θ(G9) = 51

4
;

(iv) G4 is the improvement of G5, G6 and G10 with θ(G5) = 4, θ(G6) = 21
2

and θ(G10) = 51
2
;

(v) G5 is the improvement of G7, G10, G11 and G12 with θ(G7) = 41
2
,

θ(G10) = 51
2
, θ(G11) = 11 and θ(G12) = 111

2
;

(vi) G6 is the improvement of G7, G8, G10, G13, G14, G15 and G16 with
θ(G7) = 41

2
, θ(G8) = 31

4
, θ(G10) = 51

2
, θ(G13) = 4, θ(G14) = 6, θ(G15) =

41
4

and θ(G16) = 61
4
;
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Gi (1 ≤ i ≤ 28) θ(Gi) Gi (29 ≤ i ≤ 56) θ(Gi)

G1 = K(n, n + 1, n + 1, n + 1, n + 1) 0 G29 = K(n − 2, n − 1, n + 1, n + 2, n + 4) 13 3
4

G2 = K(n, n, n + 1, n + 1, n + 2) 1 G30 = K(n − 3, n, n + 2, n + 2, n + 3) 8 1
8

G3 = K(n − 1, n + 1, n + 1, n + 1, n + 2) 1 1
2

G31 = K(n − 3, n, n + 1, n + 3, n + 3) 10 1
8

G4 = K(n, n, n, n + 2, n + 2) 2 G32 = K(n − 3, n, n + 1, n + 2, n + 4) 13 1
8

G5 = K(n, n, n, n + 1, n + 3) 4 G33 = K(n − 4, n + 2, n + 2, n + 2, n + 2) 7 1
16

G6 = K(n − 1, n, n + 1, n + 2, n + 2) 2 1
2

G34 = K(n − 4, n + 1, n + 2, n + 2, n + 3) 9 1
16

G7 = K(n − 1, n, n + 1, n + 1, n + 3) 4 1
2

G35 = K(n − 4, n + 1, n + 1, n + 3, n + 3) 11 1
16

G8 = K(n − 2, n + 1, n + 1, n + 2, n + 2) 3 1
4

G36 = K(n − 4, n + 1, n + 1, n + 2, n + 4) 15 1
16

G9 = K(n − 2, n + 1, n + 1, n + 1, n + 3) 5 1
4

G37 = K(n − 1, n − 1, n − 1, n + 3, n + 4) 16 1
2

G10 = K(n − 1, n, n, n + 2, n + 3) 5 1
2

G38 = K(n − 2, n − 1, n, n + 3, n + 4) 16 3
4

G11 = K(n, n, n, n, n + 4) 11 G39 = K(n − 3, n, n, n + 3, n + 4) 8 1
16

G12 = K(n − 1, n, n, n + 1, n + 4) 11 1
2

G40 = K(n − 2, n − 2, n + 2, n + 3, n + 3) 11 1
2

G13 = K(n − 1, n − 1, n + 2, n + 2, n + 2) 4 G41 = K(n − 2, n − 2, n + 2, n + 2, n + 4) 15 1
2

G14 = K(n − 1, n − 1, n + 1, n + 2, n + 3) 6 G42 = K(n − 3, n − 1, n + 2, n + 3, n + 3) 11 5
8

G15 = K(n − 2, n, n + 2, n + 2, n + 2) 4 1
4

G43 = K(n − 3, n − 1, n + 2, n + 2, n + 4) 15 5
8

G16 = K(n − 2, n, n + 1, n + 2, n + 3) 6 1
4

G44 = K(n − 2, n − 2, n + 1, n + 3, n + 4) 17 1
2

G17 = K(n − 1, n − 1, n + 1, n + 1, n + 4) 12 G45 = K(n − 3, n − 1, n + 1, n + 3, n + 4) 17 5
8

G18 = K(n − 2, n, n + 1, n + 1, n + 4) 12 1
4

G46 = K(n − 4, n, n + 2, n + 3, n + 3) 12 1
16

G19 = K(n − 3, n + 1, n + 2, n + 2, n + 2) 10 1
4

G47 = K(n − 4, n, n + 2, n + 2, n + 4) 16 1
16

G20 = K(n − 3, n + 1, n + 1, n + 2, n + 3) 7 1
8

G48 = K(n − 4, n, n + 1, n + 3, n + 4) 18 1
16

G21 = K(n − 3, n + 1, n + 1, n + 1, n + 4) 13 1
8

G49 = K(n − 5, n + 2, n + 2, n + 2, n + 3) 11 1
32

G22 = K(n − 1, n − 1, n, n + 3, n + 3) 9 G50 = K(n − 5, n + 1, n + 2, n + 3, n + 3) 13 1
32

G23 = K(n − 1, n − 1, n, n + 2, n + 4) 13 G51 = K(n − 5, n + 1, n + 2, n + 2, n + 4) 17 1
32

G24 = K(n − 2, n, n, n + 3, n + 3) 9 1
4

G52 = K(n − 3, n, n, n + 2, n + 5) 29 1
8

G25 = K(n − 2, n, n, n + 2, n + 4) 13 1
4

G53 = K(n − 3, n − 1, n, n + 4, n + 4) 24 5
8

G26 = K(n − 1, n, n, n, n + 5) 26 1
2

G54 = K(n − 3, n − 1, n, n + 3, n + 5) 32 5
8

G27 = K(n − 2, n − 1, n + 2, n + 2, n + 3) 7 3
4

G55 = K(n − 4, n, n, n + 4, n + 4) 25 1
16

G28 = K(n − 2, n − 1, n + 1, n + 3, n + 3) 9 3
4

G56 = K(n − 4, n, n, n + 3, n + 5) 33 1
16

Table 1: Some complete 5-partite graphs with 5n+4 vertices and their θ-values.

(vii) G7 is the improvement of G9, G10, G12, G14, G16, G17 and G18 with
θ(G9) = 51

4
, θ(G10) = 51

2
, θ(G12) = 111

2
, θ(G14) = 6, θ(G16) = 61

4
,

θ(G17) = 12 and θ(G18) = 121
4
;

(viii) G8 is the improvement of G9, G15, G16, G19 and G20 with θ(G9) = 51
4
,

θ(G15) = 41
4
, θ(G16) = 61

4
, θ(G19) = 101

4
and θ(G20) = 71

8
;

(ix) G9 is the improvement of G16, G18, G20 and G21 with θ(G16) = 61
4
,

θ(G18) = 121
4
, θ(G20) = 71

8
and θ(G21) = 131

8
;

(x) G10 is the improvement of G12, G14, G16, G22, G23, G24 and G25 with
θ(G12) = 111

2
, θ(G14) = 6, θ(G16) = 61

4
, θ(G22) = 9, θ(G23) = 13,

θ(G24) = 91
4

and θ(G25) = 131
4
;

(xi) G11 is the improvement of G12 and G26 with θ(G12) = 111
2

and θ(G26) =
261

2
;
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(xii) G13 is the improvement of G14, G15 and G27 with θ(G14) = 6, θ(G15) = 41
4

and θ(G27) = 73
4
;

(xiii) G14 is the improvement of G16, G17, G22, G23, G27, G28 and G29 with
θ(G16) = 61

4
, θ(G17) = 12, θ(G22) = 9, θ(G23) = 13, θ(G27) = 73

4
,

θ(G28) = 93
4

and θ(G29) = 133
4
;

(xiv) G15 is the improvement of G16, G19, G27 and G30 with θ(G16) = 61
4
,

θ(G19) = 101
4
, θ(G27) = 73

4
and θ(G30) = 81

8
;

(xv) G16 is the improvement of G18, G20, G24, G25, G27, G28, G29, G30, G31

and G32 with θ(G18) = 121
4
, θ(G20) = 71

8
, θ(G24) = 91

4
, θ(G25) = 131

4
,

θ(G27) = 73
4
, θ(G28) = 93

4
, θ(G29) = 133

4
, θ(G30) = 81

8
, θ(G31) = 101

8
and

θ(G32) = 131
8
;

(xvi) G19 is the improvement of G20, G30, G33 and G34 with θ(G20) = 71
8
,

θ(G30) = 81
8
, θ(G33) = 7 1

16
and θ(G34) = 9 1

16
;

(xvii) G20 is the improvement of G21, G30, G31, G32, G34, G35 and G36 with
θ(G21) = 131

8
, θ(G30) = 81

8
, θ(G31) = 101

8
, θ(G32) = 131

8
, θ(G34) = 9 1

16
,

θ(G35) = 11 1
16

and θ(G36) = 15 1
16

;

(xviii) G22 is the improvement of G23, G24, G28, G37 and G38 with θ(G23) = 13,
θ(G24) = 91

4
, θ(G28) = 93

4
, θ(G37) = 161

2
and θ(G38) = 163

4
;

(xix) G24 is the improvement of G25, G28, G31, G38 and G39 with θ(G25) = 131
4
,

θ(G28) = 93
4
, θ(G31) = 101

8
, θ(G38) = 163

4
and θ(G39) = 8 1

16
;

(xx) G27 is the improvement of G28, G29, G30, G40, G41, G42 and G43 with
θ(G28) = 93

4
, θ(G29) = 161

8
, θ(G30) = 81

8
, θ(G40) = 111

2
, θ(G41) = 151

2
,

θ(G42) = 115
8

and θ(G43) = 155
8
;

(xxi) G28 is the improvement of G29, G31, G38, G40, G42, G44 and G45 with
θ(G29) = 161

8
, θ(G31) = 101

8
, θ(G38) = 163

4
, θ(G40) = 111

2
, θ(G42) = 115

8
,

θ(G44) = 171
2

and θ(G45) = 175
8
.

(xxii) G30 is the improvement of G31, G32, G34, G42, G43, G46 and G47 with
θ(G31) = 101

8
, θ(G32) = 131

8
, θ(G34) = 9 1

16
, θ(G42) = 115

8
, θ(G43) = 155

8
,

θ(G46) = 12 1
16

and θ(G47) = 16 1
16

.

(xxiii) G31 is the improvement of G32, G35, G39, G42, G45, G46 and G48 with
θ(G32) = 131

8
, θ(G35) = 11 1

16
, θ(G39) = 8 1

16
, θ(G42) = 115

8
, θ(G45) = 175

8
,

θ(G46) = 12 1
16

and θ(G48) = 18 1
16

.

(xxiv) G33 is the improvement of G34 and G49 with θ(G34) = 9 1
16

and θ(G49) =
11 1

32
.
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(xxv) G34 is the improvement of G35, G36, G46, G47, G49, G50 and G51 with
θ(G35) = 11 1

16
, θ(G36) = 15 1

16
, θ(G46) = 12 1

16
, θ(G47) = 16 1

16
, θ(G49) =

11 1
32

, θ(G50) = 13 1
32

and θ(G51) = 17 1
32

.

(xxvi) G39 is the improvement of G45, G48, G52, G53, G54, G55 and G56 with
θ(G45) = 175

8
, θ(G48) = 18 1

16
, θ(G52) = 291

8
, θ(G53) = 245

8
, θ(G54) =

325
8
, θ(G55) = 25 1

16
and θ(G56) = 33 1

16
.

Hence, by Lemma 2.4 and the above arguments, we know (i) to (xiii) holds.
Thus the proof is complete.

4 Chromatically Closed 5-Partite Graphs

In this section, we obtain a χ-closed family of graphs from the graphs in
Theorem 3.1.

Theorem 4.1 The family of graphs K−s(n1, n2, n3, n4, n5) where n1 + n2 +
n3 + n4 + n5 = 5n + 4, n5 − n1 ≤ 4 and n1 ≥ s + 5 is χ-closed except that
{K−s(n, n, n, n+1, n+3),K−(s−2)(n−1, n−1, n+2, n+2, n+2)} is χ-closed.

Proof. By Theorem 3.1, there are 13 cases to consider. Denote each
graph in Theorem 3.1 (i), · · · , (vi), (viii), · · · , (xiii) by G1, G2, · · · , G6, G8, · · · ,
G13, respectively, and denote the two graphs in Theorem 3.1(vii) by G′

7 =
K(n, n, n, n + 1, n + 3) and G′′

7 = K(n− 1, n− 1, n + 2, n + 2, n + 2). Suppose
H ∼ Gi − S. It suffices to show that H ∈ {Gi − S}. By Lemma 2.3, we
know there exists a complete 5-partite graph F = (p1, p2, p3, p4, p5) such that
H = F − S ′ with |S ′| = s′ = e(F ) − e(G) + s ≥ 0.

Case (i). Let G = G1 with n ≥ s + 1. In this case, H ∼ F − S ∈
K−s(n, n + 1, n + 1, n + 1, n + 1). By Lemma 2.5, we have

α(G − S, 6) = α(G, 6) + α′(G − S) with s ≤ α′(G − S) ≤ 2s − 1, (1)

α(F − S ′, 6) = α(F, 6) + α′(F − S ′) with 0 ≤ s′ ≤ α′(F − S ′). (2)

Hence,

α(F − S ′, 6) − α(G − S, 6) = α(F, 6) − α(G, 6) + α′(F − S ′) − α′(G − S).

By the definition, α(F, 6)−α(G, 6) = 2n−1(θ(F )−θ(G)). By Theorem 3.1,
θ(F ) ≥ 0. Suppose θ(F ) > 0, then

α(F − S ′, 6) − α(G − S, 6) ≥ 2n−1 + α′(F − S ′) − α′(G − S)

≥ 2s + α′(F − S ′) − 2s + 1,

≥ 1,
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contradicting α(F − S ′, 6) = α(G − S, 6). Hence, θ(F ) = 0 and so F = G
and s = s′. Therefore, H ∈ K−s(n, n + 1, n + 1, n + 1, n + 1).

Case (ii). Let G = G2 with n ≥ s + 2. In this case, H ∼ F − S ∈
K−s(n, n, n + 1, n + 1, n + 2). By Lemma 2.5, we have

α(G − S, 6) = α(G, 6) + α′(G − S) with s ≤ α′(G − S) ≤ 2s − 1, (3)

α(F − S ′, 6) = α(F, 6) + α′(F − S ′) with 0 ≤ s′ ≤ α′(F − S ′). (4)

Hence,

α(F − S ′, 6) − α(G − S, 6) = α(F, 6) − α(G, 6) + α′(F − S ′) − α′(G − S).

By the definition, α(F, 6)−α(G, 6) = 2n−1(θ(F )− θ(G)). Suppose θ(F ) �=
θ(G). Then, we consider two subcases.

Subcase (a). θ(F ) < θ(G). By Theorem 3.1, F = G1 and H = G1 −S ′ ∈
{G1 − S ′}. However, G− S /∈ {G1 − S ′} since by Case (i) above, {G1 − S ′} is
χ-closed, a contradiction.

Subcase (b). θ(F ) > θ(G). By Theorem 3.1, α(F, 6) − α(G, 6) ≥ 2n−1.
So,

α(F − S ′, 6) − α(G − S, 6) ≥ 2n−1 + α′(F − S ′) − α′(G − S)

≥ 2s + α′(F − S ′) − 2s + 1,

≥ 1,

contradicting α(F − S ′, 6) = α(G − S, 6). Hence, θ(F ) − θ(G) = 0 and so
F = G and s = s′. Therefore, H ∈ K−s(n, n, n + 1, n + 1, n + 2).

By an argument to that in Cases (i)–(vi), we can also prove Cases (viii)–
(xiii).

We now prove Case (vii).

Case (iii). Let G = G′
7 = K(n, n, n, n + 1, n + 3) with n ≥ s + 3 or

G = G′′
7 = K(n − 1, n − 1, n + 2, n + 2, n + 2) with n ≥ s + 4. For G′

7 =
K(n, n, n, n+1, n+3), θ(F ) = θ(G7) implies that (a) F = G′

7 = K(n, n, n, n+
1, n + 3), or (b) F = G′′

7 = K(n − 1, n − 1, n + 2, n + 2, n + 2). So, in
(a), s′ = s and H ∈ {K(n, n, n, n + 1, n + 3) − s}, and in (b), s′ = s − 2
and H ∈ {K(n − 1, n − 1, n + 2, n + 2, n + 2) − s + 2}. Therefore, H ∈
{K−s(n, n, n, n + 1, n + 3),K−(s−2)(n − 1, n − 1, n + 2, n + 2, n + 2)}. Hence,
{K−s(n, n, n, n+1, n+3),K−(s−2)(n− 1, n− 1, n+2, n+2, n+2)} is χ-closed.

This completes the proof.
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5 Chromatically Unique 5-Partite Graphs

The following results give two families of chromatically unique complete 5-
partite graphs having 5n+4 vertices with a set S of s edges deleted where the
deleted edges induce a star K1,s and a matching sK2, respectively.

Theorem 5.1 The graphs K
−K1,s

i,j (n1, n2, n3, n4, n5) where n1 + n2 + n3 +
n4 + n5 = 5n + 4, n5 − n1 ≤ 4 and n1 ≥ s + 5 are χ-unique for 1 ≤ i �= j ≤ 5
except the graph K

−K1,s

i,j (n − 1, n − 1, n + 2, n + 2, n + 2).

Proof. By Theorem 3.1, there are 13 cases to consider. Denote each graph
in Theorem 3.1 (i), (ii), · · · , (vi), (viii), · · · , (xiii) by G1, G2, · · · , G6, G8, · · · , G13,
respectively, and two graphs in Case (vii) by G′

7 = K(n, n, n, n + 1, n + 3) and
G′′

7 = K(n−1, n−1, n+2, n+2, n+2). The proof for graphs in Cases (i)–(vi)
and Cases (viii)–(xiii) are similar, so we only present the detailed proofs of
Case (iv) and Case (vii). Now we give the proof of Case (iv).

By Lemma 2.5 and Theorem 4.1, we know that K
−K1,s

i,j (n, n, n, n+2, n+2) =

{K−K1,s

i,j (n, n, n, n + 2, n + 2)|(i, j) ∈ {(1, 2), (1, 4), (4, 1), (4, 5)} is χ-closed for
n ≥ s + 3. Note that

t(K
−K1,s

1,2 (n, n, n, n + 2, n + 2)) = t(K(n, n, n, n + 2, n + 2)) − s(3n + 4),

t(K
−K1,s

i,j (n, n, n, n+2, n+2)) = t(K(n, n, n, n+2, n+2))−s(3n+2) for (i, j) ∈
{(1, 4), (4, 1)},
t(K

−K1,s

4,5 (n, n, n, n + 2, n + 2)) = t(K(n, n, n, n + 2, n + 2)) − 3sn.

By Lemma 2.6, we conclude that σ(K
−K1,s

1,4 (n, n, n, n + 2, n + 2), λ) �=
σ(K

−K1,s

4,1 (n, n, n, n+2, n+2), λ). Hence, by Lemma 2.2, the graphs K
−K1,s

i,j (n, n,
n, n + 2, n + 2) are χ-unique where n ≥ s + 3 for 1 ≤ i �= j ≤ 5.

We now present the proof of Case (vii).
We first determine the chromatic uniqueness of G = G′

7 − S with 〈S〉 is a
star joining vertices in Vi and Vj of G′

7. By Case 7 of Theorem 4.1, if H ∼ G,
then H = G′

7 − S or H = G′′
7 − S ′ with s′ = s − 2. If H = G′′

7 − S ′, then
by Lemma 2.5, α′(H) ≤ 2s−2 − 1 < 2s − 1 = α′(G), a contradiction. Hence,
H = G′

7 − S. This shows that G = K−s(n, n, n, n + 1, n + 3) where 〈S〉 is a
star is χ-closed.

By Lemma 2.5 and Theorem 4.1, we know that K
−K1,s

i,j (n, n, n, n+1, n+3) =

{K−K1,s

i,j (n, n, n, n+1, n+3)|(i, j) ∈ {(1, 2), (1, 4), (4, 1), (1, 5), (5, 1), (4, 5), (5, 4)}
is χ-closed for n ≥ s + 3. Note that

t(K
−K1,s

1,2 (n, n, n, n + 1, n + 3)) = t(K(n, n, n, n + 1, n + 3)) − s(3n + 4),

t(K
−K1,s

i,j (n, n, n, n+1, n+3)) = t(K(n, n, n, n+1, n+3))−s(3n+3) for (i, j) ∈
{(1, 4), (4, 1)},
t(K

−K1,s

i,j (n, n, n, n+1, n+3)) = t(K(n, n, n, n+1, n+3))−s(3n+1) for (i, j) ∈
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{(1, 5), (5, 1)},
t(K

−K1,s

i,j (n, n, n, n + 1, n + 3)) = t(K(n, n, n, n + 1, n + 3)) − 3sn for (i, j) ∈
{(4, 5), (5, 4)}.

By Lemma 2.6, we conclude that σ(K
−K1,s

i,j (n, n, n, n + 1, n + 3), λ) �=
σ(K

−K1,s

j,i (n, n, n, n + 1, n + 3), λ) for each (i, j) ∈ {(1, 4), (1, 5), (4, 5)}. Hence,

by Lemma 2.2, the graphs K
−K1,s

i,j (n, n, n, n + 1, n + 3) are χ-unique where
n ≥ s + 3 for 1 ≤ i �= j ≤ 5.

This completes the proof.

Theorem 5.2 The graphs K−sK2
1,2 (n1, n2, n3, n4, n5) where n1 + n2 + n3 +

n4 + n5 = 5n + 4, n5 − n1 ≤ 4 and n1 ≥ s + 5 are χ-unique except the graph
K−sK2

1,2 (n, n, n, n + 1, n + 3).

Proof. By Theorem 3.1, there are 13 cases to consider. Denote each graph
in Theorem 3.1 (i), (ii), · · · , (vi), (viii), · · · , (xiii) by G1, G2, · · · , G6, G8, · · · , G13,
respectively, and two graphs in Case (vii) by G′

7 = K(n, n, n, n + 1, n + 3) and
G′′

7 = K(n − 1, n − 1, n + 2, n + 2, n + 2). For a graph K(p1, p2, p3, p4, p5),
let S = {e1, e2, · · · , es} be the set of s edges in E(K(p1, p2, p3, p4, p5)) and let
t(ei) denote the number of triangles containing ei in K(p1, p2, p3, p4, p5). The
proof for graphs in Cases (i)–(vi) and Cases (viii)–(xiii) are similar, so we only
present the detailed proof for Case (iv) and Case (vii).

Now we give the proof of Case (iv).
Suppose H ∼ G = K−sK2

i,j (n, n, n, n+2, n+2) for n ≥ s+3. By Theorem 4.1
and Lemma 2.1, H ∈ K−s(n, n, n, n + 2, n + 2) and α′(H) = α′(G) = s. Let
H = F −S where F = K(n, n, n, n + 2, n + 2). Clearly, t(ei) ≤ 3n + 4 for each
ei ∈ S. So,

t(H) ≥ t(F ) − s(3n + 4),

with equality holds only if t(ei) = 3n+4 for all ei ∈ S. Since t(H) = t(G) =
t(F ) − s(3n + 4), the equality above holds with t(ei) = 3n + 4 for all ei ∈ S.
Therefore each edge in S has an end-vertex in Vi and another end-vertex in
Vj (1 ≤ i < j ≤ 3). Moreover, S must induce a matching in F . Otherwise,
equality does not hold or α′(H) > s.

Clearly, H ∼= G if S is ideal. Otherwise, there exists i, j, k and l such that
Sij(1 ≤ i < j ≤ 3) and Skl(1 ≤ k < l ≤ 3) are two disjoint non-empty subsets
of S. Observe that each induced C4 in G (respectively H) is of Type 1 or 2.
By Lemma 2.8, we obtain

Q(G) = Q(F ) − s(n − 1)2 +

(
s

2

)
+ s

[(n

2

)
+ 2

(
n + 2

2

)]

whereas
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Q(G) = Q(F ) − s(n − 1)2 +

(
s

2

)
− s12(s13 + s23) − s13s23 +

s
[(n

2

)
+ 2

(
n + 2

2

)]

≤ Q(G).

Moreover, K(G) = K(H) = K(F ) − s(3n2 + 8n + 4).
Hence, 2K(G)−Q(G) ≥ 2K(H)−Q(H) and the equality holds if and only

if s = sij (1 ≤ i < j ≤ 3). Hence 〈S〉 ∼= sK2 with H ∼= G.
We now present the proof of Case (vii).
We first determine the chromatic uniqueness of G = G′′

7 − S with 〈S〉 is a
matching joining vertices in V1 and V2 of G′′

7. By Case 7 of Theorem 4.1, if
H ∼ G, then H = G′′

7 − S or H = G′
7 − S ′ with s′ = s + 2. If H = G′

7 − S ′,
then by Lemma 2.5, α′(H) ≥ s + 2 > s = α′(G), a contradiction. Hence,
H = G′′

7 − S. This shows that G = K−s(n− 1, n− 1, n + 2, n + 2, n + 2) where
〈S〉 is a matching is χ-closed.

Suppose H ∼ G = K−sK2
i,j (n−1, n−1, n+2, n+2, n+2) for n ≥ s+4. By

Theorem 4.1 and Lemma 2.1, H ∈ K−s(n − 1, n − 1, n + 2, n + 2, n + 2) and
α′(H) = α′(G) = s. Let H = F−S where F = K(n−1, n−1, n+2, n+2, n+2).
Clearly, t(ei) ≤ 3n + 6 for each ei ∈ S. So,

t(H) ≥ t(F ) − s(3n + 6),

with equality holds only if t(ei) = 3n+6 for all ei ∈ S. Since t(H) = t(G) =
t(F ) − s(3n + 6), the equality above holds with t(ei) = 3n + 6 for all ei ∈ S.
Therefore each edge in S has an end-vertex in V1 and another end-vertex in
V2. Moreover, S must induce a matching in F . Otherwise, α′(H) > s. Hence
〈S〉 ∼= sK2 with H ∼= G.

Thus the proof is complete.

Remark. This paper generalized some results obtained in paper [16].

We end this paper with the following open problem.

Problem. Study the chromaticity of the graphs K
−K1,s

i,j (n−1, n−1, n+2, n+

2, n + 2) and K−sK2
1,2 (n, n, n, n + 1, n + 3).
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