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A Note on Chromaticity of Certain 6-Partite
Graphs
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Abstract—Let P(G,\) be the chromatic polynomial
of a graph G. Two graphs G and H are said to be
chromatically equivalent, denoted G ~ H, if P(G,)\) =
P(H,)\). We write [G] = {H|H ~ G}. If [G] = {G},
then G is said to be chromatically unique. In this pa-
per, we first characterize certain complete 6-partite
graphs with 6n+3 vertices according to the number of
7-independent partitions of G. Using these results, we
investigate the chromaticity of ¢ with certain star or
matching deleted. As a by-product, many new fami-
lies of chromatically unique complete 6-partite graphs
with certain star or matching deleted are obtained.
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1 Introduction

All graphs considered here are simple and finite. For a
graph G, let P(G,\) be the chromatic polynomial of G.
Two graphs G and H are said to be chromatically equiv-
alent (or simply y—equivalent), symbolically G ~ H, if
P(G,1) = P(H,1). The equivalence class determined by
G under ~ is denoted by [G]. A graph G is chromatically
unique (or simply y—unique) if H = G whenever H ~ G,
i.e, [G] = {G} up to isomorphism. For a set G of graphs,
if [G] C G for every G € G, then G is said to be x—closed.
Many families of y-unique graphs are known (see [6,7,8]).

For a graph G, let V(G), E(G) and t(G) be the ver-
tex set, edge set and number of triangles in G, respec-
tively. Let S be a set of s edges in G. Let G — S (or
G — s) be the graph obtained from G by deleting all
edges in S, and by (S) the graph induced by S. Let
K(ny,ne, --,n:) be a complete t-partite graph. We de-
note by K~ (nl,ng, -+, ny) the family of graphs which
are obtained from K (ni,ne,---,n:) by deleting a set S
of some s edges.

n [4,5,7-10,12-14,18-20], one can find many results on
the chromatic uniqueness of certain families of complete
t-partite graphs (¢t = 2,3,4,5). There are several fami-
lies complete 6-partite graphs known to be y-unique, see

*The corresponding author would like to express his grat-
itude to Universiti Sains Malaysia, Penang for financially
sponsor this research under the Research University Grant
1001/PMATHS/811137. He is currently a senior lecturer at Uni-
versiti Sains Malaysia, 11800 Penang, Malaysia Tel/Fax: +4604-
6532355 Email: hroslan@cs.usm.my

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

[3,15,16,17).

Let G be a complete 6-partite graph with 6n + 3 vertices.
In this paper, we characterize certain complete 6-partite
graphs with 6n 4 3 vertices according to the number of
7-independent partitions of G. Using these results, we
investigate the chromaticity of G with certain star or
matching deleted. As a by-product, many new families
of chromatically unique complete 6-partite graphs with
certain star or matching deleted are obtained.

2 Some Lemmas and Notations

For a graph G and a positive integer r, a partition
{A1,As,---, Ay} of V(G), where r is a positive inte-
ger, is called an r-independent partition of G if every
A; is independent of G. Let «(G,r) denote the num-
ber of r- independent partitions of G. Then, we have

P(G,\)=>",_, a(G,7)(N);, where (A), = A(A = 1)(A —
2)- (A= + 1) (see [11]). Therefore, (G, r) = a(H,r)
foreach r=1,2,---,if G~ H.

For a graph G with p vertices, the polynomial o(G, x) =

P a(G,r)z" is called the o-polynomial of G (see
[2 ]) Clearly, P(G,)\) = P(H, \) implies that o(G,z) =
o(H,z) for any graphs G and H.

For disjoint graphs G and H, G U H denotes the disjoint
union of G and H. The join of G and H denoted by
G V H is defined as follows: V(GV H) =V (G)UV(H);
E(GVH)=FEGUEH)U{zy |z V(G),yc V(H)}.
For notations and terminology not defined here, we refer

).

Lemma 2.1 (Brenti [2], Koh and Teo [7]) Let G and H
be two disjoint graphs. Then

(i) V(&) = [V(H)|, |EG)| = |[EH)|, {(G) = t(H)
and o(G,r) = a(H,r) forr = 1,2,3,---,p, if G ~
H7
(ii) o(GV H,z) = 0(G,x)o(H, x).
Lemm 2.2 (Brenti [2]) Let G = K(ny,n2,ns, - +,n:) and
o(G,z) =3, (G, r)z", then a(G,r) =0 for 1 <r <
t—1,a(Gt)=1and a(G,t+1) =3F_ 271 —¢.
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Let z1 < w2 < 23 < x < w5 < 6
be positive integers and {zi,, iy, Tiy, Tiys Tis, Tig} =
{x1, 22, 3, 4, x5, x6}. If there are two elements z;, and
x4, in {21, X2, w3, x4, 5, 6} such that z;, —x;, > 2, then
H = K(x;, + 1,2 — 1,24, iy, T4y, i } 1s called an im-
provement of H = K (x1, x2, X3, T4, T5, Tg)-

Lemma 2.3 (Chen [3]) Suppose 21 < 23 < z3 < 24 <
x5 < xg and H' = K(x;, + 1,24, — 1, X4y, Tiy, Tig, Tig} 1S
an improvement of H = K(x1, x2, T3, T4, Ts5, Tg), then

Q(H,T) — a(H',T) = 2722 — 9% ~1 > 9 —1

Let G = K(n1,ne, ns, n4, ns,ng). For a graph H = G-,
where S is a set of some s edges of G, define o/ (H)
a(H,7) — oG, 7). Clearly, o/(H) > 0.

Lemma 2.4 (Chen [3]) Let G = K(n1, no, ng, ng, ns, ne).
Suppose that min {n;|i =1,2,3,4,5,6} > s+ 1> 1 and
H =G — S, where S is a set of some s edges of G, then

s<d(H)=a(HT7) —a(G,T7) <2°-1,

o/(H) = s iff the set of end-vertices of any r > 2 edges
in S is not independent in H, and o/(H) = 2°5 — 1 iff §
induces a star K s and all vertices of K , other than its
center belong to a same A;.

Let K (A1, As) be a complete bipartite graph with partite
sets A; and Ay. We denote by K~ %1.5(4;, A;) the graph
obtained from K (A;, A;) by deleting s edges that induce
a star with its center in A4;. Note that K~ %1.5(A4;, A;) #
K—Kus (A, Ay) if |A;| # |Aj] for i # j (see [5]).

Lemma 2.5 (Dong et al. [4]) Let K(ni,n2) be a com-
plete bipartite graph with partite sets A; and Ao such
that |4;| = n; for i = 1,2. If min {ni,n2} > s+ 2,
then every K—%1.:(4;, A;) is x-unique, where i # j and
ij=1,2.

Let G K(ny,n2,ns,n4,ns,ng) be a complete 5-
partite graph with partite sets A;(i = 1,2,---,6) such
that |A;] n;. Let (A; U A;) be the subgraph
of G induced by A; U Aj, where i # j and 4,j €
{1,2,3,4,5,6}. By K, " (n1,na,n3,n4,n5,n6), we de-
note the graph obtained from K(ni,ns,ns,nq,ns,ne)
by deleting a set of s edges that induce a K,
with its center in A; and all it end vertices are

. —Ki .
in A;.  Note that K ;"' (ni,n2,n3 n4,n5,n6) =
—Ki s —Ki s
Kj,l (7’),1,77,2,713,7’),4,715,716) and Kl,i (7’),1,’7’L2,7’l3,7’L4,
—Kis
ns,ng) = K, ; (n1,n2,ng, na, ns,ng) for n, = n; and
l#£1,7.

Lemma 2.6 (Chen [3]) If 4,5 € {1,2,3,---,t}, ¢
J, mi # mnj, then P(K&Kl's(nl,ng,ng,---,nt),)\)

P(Kj_,’LKlys(nla nQ; n3) Ty nt)7 )\)

4
4
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3 Classification

In this section, we shall characterize certain complete 6-
partite graph G = K(n1,nsa, ng, n4, ns,ne) according to
the number of 7-independent partitions of G where n; +
ng +n3+ng+ns+ng=6m+3,n>1.

Theorem 3.1 Let G = K(n1,ne,ns,n4,ns,ng) be a
complete 6-partite graph such that ny + ns + n3 +ng +
ns + ng = 6n + 3, n > 1. Define 0(G) = [a(G,7) — 9 -
971 4 6]/27~2. Then

(i) 0(G) = 0;
(ii) 6(G) = 0 if and only if G = K(n,n,n,n+ 1,n +
1,n+1);
(iii) 0(G) =1 if and only if G = K(n — 1,n,n+ 1,n +

Lin+41,n+1);
0(G) = 2ifand only if G = K (n,n,n,n,n+1,n+2);

0(G) =5/2 if and only if G = K(n —2,n+ 1,n+
ILn+1,n+1,n+1);

(vi) 0(G) =3 ifand only if G = K(n —1,n,n,n+1,n+
1,n+2);
(vii) (G) =4 ifandonlyif G = K(n—1,n—1,n+1,n+
ILn+1,n+2);
(viii) 6(G) > 9/2 if and only if G is not a graph appeared

in (ii)—(vii).

Proof. For a complete 6-partite graph H; with 6n + 3
vertices, we can construct a sequence of complete 6-
partite graphs with 6n + 3 vertices, say Hy, Ho, - -+, Hy,
such that H; is an improvement of H, ; for each
i = 2,3,---,t, and H, = K(n,n,n,n+ 1,n+ 1,n+
1). By Lemma 2.3, «(H;—1,7) — «(H;,7) > 0. So
O(H,;,—1)—0(H;) > 0, which implies that 6(G) > 0(H;) =
O(K(n,n,n,n+1,n+1,n+1)). From Lemma 2.2 and by
a simple calculation, (K (n,n,n,n+1,n+1,n+1))=0.
Thus, (ii) is true.

Since H; = K(n,n,n,n+ 1,n+ 1,n+ 1) and H; is an
improvement of H; 1, it is not hard to see that H, | €
{R, Ry, R2}, where R=K(n—1,n,n+1,n+1,n+1,n+
1), Rg K(n,n,n,n,n+ 1,n 4+ 2) and Ry = K(n —
1,n,n,n+1,n+1,n+2). Hence, by Lemma 2.2, we have
O(R) =1, 0(Ry) = 2 and 0(R3) = 3. Note that H;_; is
an improvement of H; 5 and it is not hard to see that
Hi_5 € {Rili = 1,2,---,11}, where R; and 0(R;) are
shown in Table 1.

To complete the proof of the theorem, we need only deter-
mine all complete 6-partite graph G with 6n + 3 vertices
such that 0(G) < 9/2. By Lemma 2.3, 0(H;_3) > 9/2
for each Hy,_3 if Hi_o € {R;]i = 4,5,6,---,11}. All
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R; Graphs H; o | 0(R;)
Ry | Kn—2,n+1l,n+1l,n+1,n+1,n+1) 5/2
Ry Kn—1,nnn+1n+1,n+2) 3
Ry | Kn—1,n—1,n+1,n+1,n+1,n+2) 4
Ry Kn—2nn+1,n+1,n+1,n+2) 9/2
R5 Kn—1,n,nnn+2n+2) 5
Rg Kn—1,n—1,nn+1,n+2n+2) 6
Ry Kn—-2nnn+1n+2n+2) | 13/2
Rg K(n,n,n,n,n,n+ 3) 8
Ry Kn—1,nnnn+1,n+3) 9
Ry Kn—1,n—1,nn+1,n+1,n+3) 10
Rqq Kn—-2nnn+1n+1n+3)| 53/2
Table 1: H;_5 and its 6-values
M, Graphs H;_3 | 6(M;)
M; | Kn—3,n+1l,n+1,n+1,n+1,n+2) 25/4
My | Kn—2,n—1,n+1,n+1,n+2,n+2) 15/2
Ms | Kn—2,n—1,n+1,n+1,n+1,n+3) 23/2

Table 2: H;_3 and its #-values

graphs H;_3 and its 6-values are listed in Table 2 when
H; 5 € {R1|Z =1,2, 3}

By Lemma 2.3, 0(H;_4) > 9/2 for every Hy_4 if Hi_3 €
{M;|i = 1,2,3}.So, from Lemma 2.3, Tables 1 and 2,
and the above arguments, we conclude that the theorem
holds.

4 Chromatically closed 6-partite graphs

In this section, we obtained the y—closed of the families
IHIC (nlan25n3)n4)n5)n6)

Theorem 4.1 If n > s + 2, then the family of graphs
K=*(n,n,n,n+ 1,n+1,n+ 1) is x-closed.

Proof. Let G = K(n,n,n,n+ 1,n+ 1,n + 1) and
Z e K *(n,n,n,n+1,n+1,n+1). The 6-independent
partition of G is certainly 6-independent partition of Z.
So a(Z,6) > a(G,6) = 1. Let H ~ Z, then a(H,6) =
OZ(Z, 6) > O[(G, 6) = 1. Let {Al,AQ,Ag,A4,A5,A6} be a
6-independent partition of H, |A;| =1t;, 1 =1,2,3,4,5,6
and I’ = K(tl,tg,tg,t4,t5,t6). Then there exist S’ €
E(F) such that H = F — 5. Let ¢(G) be the num-
ber of edges in graph G. Since ¢(H) = ¢(Z), therefore
s' =19 =q(F) — q(G) + s.

From Lemma 2.4, we have
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Thus «(H,7)—a(Z,7) = a(F,7)—a(G, 7)+a' (H)—a' (Z)
and «(Z,7) = «(H,7),s0 a(H,7) — a(Z,7) = 0.

If FF# G, from Theorem 3.1, we have 6(F) —
So, we have
a(F,7) —a(G,7) = (A(F) — 0(G)) -2"72 > 22,
Hence
a(H,7)—a(Z,7) >
>2" 2 40—

This is a contradiction. So F = G, s = s'. Thus, H €
K=*(n,n,n,n+1,n+1,n+1). Therefore K=*(n,n,n,n+
1,n+1,n+1) is y-closed if n > s+ 2. The proof is now
completed.

9(G) > 1

2" 2 4 o/ (H) -/ (2)
(2% — 1) > 1.

By using the similar proof of Theorem 4.1, we can obtain
the following results.

Theorem 4.2 If n > s+ 3, then the family of graphs
K=*(n—-1,n,n+1l,n+1,n+1,n+1), L *(n,n,n,n,n+
1I,n+2), K*(n—-1,n,nn+1,n+1,n+2)and L *(n—
1,n— 1,n+1,n+1,n+1,n+2)arexclosed.

Theorem 4.3 If n > s+ 5, then the family of graphs
K#n—-2,n+1L,n+1,n+1,n+1,n+1) is y-closed.

5 Chromatically unique 6-partite graphs

In this section, we first study the chromatically unique
6-partite graphs with 6n + 3 vertices and a set S of s
edges deleted where the deleted edges induce a star K .

Theorem 5.1 If n > s + 2,
Ki_jKl‘S(n,n,n,n—|—1,n—|—1,n—|—1) are x-unique for (i, j) €

{(1,2),(1,4), (4, 1), (4,5)}.

Proof. From Lemma 2.4 and Theorem 4.1, we know that
K;jKl'S(n,n,n,n—|—1,n—|—1,n—|—1) {K, JKl *(n,n,n,n+
Ln+1,n+1|6G7) € {(1,2),(1,4), (4,1), (4, 5)} is x-
closed if n > s+ 2. Note that

t(Klflg(n n,n,n+1l,n+1,n+1)) =

ILn+1,n+ 1))—5(4n—|—3);
t(Kinlg(”ananan+1,n+1,n+1)) t(K(n,n,n,n +

Ln+1,n+1)) — s(dn + 2) for (i, 5) e_{(l, 4),(4,1)};

then the graphs

t(K(n,n,n,n+

WK 2 (nymymn 4+ L+ 1,n 4 1)) = (K (n,n,n,n +
Ln+1,n+1))—s(dn+1).

By Lemmas 2.1 and 2.6, we conclude that
o(K i (o + Ln + Ln + 1)  #
U(K;f(l's(”ananan + 1,n + 1,n + 1)). Hence, by

Lemma 2.1, the graphs K;Kl's(n,n,n,n+1,n—|—1,n—|—1)
are x-unique where n > s + 2 for (i,j) €
{(1,2),(1,4),(4,1),(4,5)}.  The proof is now com-
pleted.

Similarly to the proof of Theorem 5.1, we can prove The-
orems 5.2-5.5.
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Theorem 5.2 If n > s+ 3, then the graphs ngKl,s(n -
L,n,n+1,n+ 1,n+ 1,n+ 1) are y-unique for (i,j) €

{(1,2),(2,1),(1,3), (3,1),(2,3),(3,2), (3,4)}.

Theorem 5.3 If n > s + 3, then the graphs
KV_J.Kl'S(n,n,n,n,n—F 1,n + 2) are y-unique for (i,5) €

3

{(1,2), (1,5),(5,1), (1,6), (6,1), (5,6), (6,5)}.

Theorem 5.4 If n > s+ 5, then the graphs ngKl'S(n -
2,n+1,n+1,n+1,n+1,n+1) are y-unique for (i, j) €

{(1,2),(2,1),(2,3)}.

Theorem 5.5 If n > s+ 3, then the graphs K;JKl'S(n —
I,n—1,n+1,n+1,n+1,n+2) are y-unique for (i, ) €

{(1,2),(1,3),(3,1),(1,6), (6,1),(3,4), (3,6), (6,3)}.

Theorem 5.6 If n > s+ 3, then the graphs K_Kl(n -
Ln,n,n+ 1,n + 1,n 4+ 2) are y-unique for (i,j) €

{(1,2),(2,1), (4,6), (6,4)}.

Proof. Let F ¢ {K;K1 ‘n—1Ln,nn+1ln+1,n+
2/, J) € {(1,2), (2,1}, (4,6), (6,1)}} and H ~ F. By
Theorem 4.2, H € K~ *(n — I,n,n,n+ 1,n+ 1,n+ 2).

Since

a(H,7) = a(F,7) =
2),7)+ 25 1,

from Lemma 2.4, we know that H € {K K —

a(K(n—1,n,n,n+1,n+1,n+

1nnn—|—1n—|—1n—|—2)|z7é], .7 = 1,2 3456}.
It easy to see that H € {ngKl‘S(n 1,n,n,n +
Ln+ Lin+ 2 # j ij = 1,234,56} =

{KJK“(n—1nnn—|—1n—|—1n—|—2)|(z) €
{(1,2),(2,1),(1,4),(4,1),(1,6),(6,1),(2,3), (2,4), (4,2),
(2,6),(6,2),(4,5),(4,6), (6,4)}}.

Now let’s determine the number of triangles in H and F.
Then we obtain that

t(KiTjKl'S(n —Lnnn+1l,n+1,n+2) = t(Kn -
Ln,n,n+ Ln+ 1,n+ 2)) — s(4n + 4) for (i,j) €
{(1,22(, (2, 1)},

—NA1,s —
tK ;" (n = Lnnn+ Ln+ 1Ln+2) = t(K(;z—

Ln,n,n+ Ln+ 1,n+ 2)) — s(4n + 3) for (i,j

{(1,4),(4,1),(2,3)},

HE, (0 — Linynyn + L+ Ln +2)) = t(K(n —
Ln,n,n+ Ln+ 1,n+ 2)) — s(4n + 2) for (i,j) €
{(1,6),(6,1),(2,4), (4,2)},

HE, 7 (n — Lnynyn + L+ Ln +2)) = t(K(n —
1,nnn—|— ILn+ 1L,n+2) —s(dn + 1) for (i,j) €
{(2,6),(6,2), (4,5)}.

t(K _Klg(n—lnnn+1n+1n+2)) = t(K(n —
1,n,n,n+1,n+1,n+2))—4sn for (i,5) € {(4,6), (6,4)}.
Recalling

Fe{K, ™ (n—1,n,n,n+1,n+1,n+2)|(i,j) € {(1,2),
(2,1),(4,6),(6,4)}}
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and t(H) = t(F), thus we have

H,F € {K, [ (n—Lnnn+Ln+1n+2)i)) e
{(1,2),

(2,1)}}

or

H,F € {K, JK“(n—1,n,n,n—|—1,n—|—1,n—|—2)|(i,
{(4,6),

j) €

(6,4)}}.

It follows from Lemmas 2.1 and 2.6 that

P(Klé(1 (n — Linnn + 1Ln + 1Ln + 2),X) #
P(K, K“( —Lin,n,n+1,n+1,n+2)N\);

P(K K“(n — Linnn + 1,n + 1Ln + 2),\) #

P(Kﬁ_fl ‘n—1Ln,n,n+1,n+1,n+2),N).

Hence, by Lemma 2.1, we conclude that the graphs
K,_.Kl’s(n— 1,n,n,n+1,n+1,n+2) are y-unique where

n > s+ 3 for each (i,7) € 1,2),(2,1), (4,6), (6,4)}.

Let KJ;KQ (n1,n9, n3, n4, ns,ng) denotes the graph ob-
tained from K(ni,ns,ns, n4, ns,ng) by deleting a set of
s edges that forms a matching in (4; U A;). We now in-
vestigate the chromatically unique 6-partite graphs with
6n + 3 vertices and a set S of s edges deleted where the
deleted edges induce a matching sKo.

Theorem 5.7 If n > s+ 3, then the graphs K 3"*(n —
Ln,n+1,n+1,n+1,n+1) are x-unique.

Proof. Let F' ~ Kf;KQ(n—l n,n+1,n+1,n+1,n+1).
It is sufficient to prove that F' = K_SK2 (n—1,n,n+1,n+
1,n+1,n+1). By Theorem 4.2 and Lemma 2 4, we have
FEIC S(n—1,n,n+1,n+1,n+1, n—|—1)anda( ) =s.
Let ' =G — SwhereG Kn—1nn+1n+1n+
1,n 4+ 1). Next we consider the number of triangles in
F. Let ¢; € S and t(e;) be the number of triangles in G
containing the edge e;. It is easy to see that t(e;) < 4n+4.
Asn—1<n<n+1<n+1<n+1<n+1, we know
that t(e;) = 4n + 4 if and only if ¢; is an edge in the
subgraph (A; U As) in G. So we have

S

HF) > HG) =Y tle;) > t(G) — s(4n + 4);

=1

and the equality holds if and only if each edge e; in S is
an edge of the subgraph (A; U As) in G.

Note that t(F) = t(G) — s(4n + 4) and o'(F) = s. By
Lemma 2.4, we know that F' = K;;KQ(n— 1,n,n+1,n+
1,n+ 1,n+ 1). This completes the proof.

Similarly to the proof of Theorem 5.7, we can prove The-
orem 5.8.

Theorem 5.8 If n > s+ 3, then the graphs K| ng(
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I,n—1,n+1,n+1,n+1,n+2) are y-unique.
We end this paper with the following problems:

[1.] Study the chromaticity of the graph K_Kl “(n —
1,n,n,n+1,n+1,n+2) where n > s+3 for each (i,§) €
g( ;1)(( 1),(2,3),(1,6),(6,1),(2,4), (4,2), (2,6),

6,2

[2.] Study the chromaticity of the following graphs: (i)
KESKQ(n,n,n,n—F 1,n+1,n+ 1) where n > s+ 2, (ii)
KESKQ(n,n,n,n,n—F 1,n + 2) where n > s+ 3, (iii)
KESKQ(TL —2n+1,n+1,n+1,n+ 1,n+ 1) where
n>s+5, and (iv) K;;KQ(n— Ln,n,n+1,n+1,n+2)
where n > s + 3.
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