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Abstract—Let P (G, λ) be the chromatic polynomial

of a graph G. Two graphs G and H are said to be

chromatically equivalent, denoted G ∼ H, if P (G, λ) =
P (H,λ). We write [G] = {H |H ∼ G}. If [G] = {G},
then G is said to be chromatically unique. In this pa-

per, we first characterize certain complete 6-partite

graphs with 6n+3 vertices according to the number of

7-independent partitions of G. Using these results, we

investigate the chromaticity of G with certain star or

matching deleted. As a by-product, many new fami-

lies of chromatically unique complete 6-partite graphs

with certain star or matching deleted are obtained.
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1 Introduction

All graphs considered here are simple and finite. For a
graph G, let P (G, λ) be the chromatic polynomial of G.
Two graphs G and H are said to be chromatically equiv-
alent (or simply χ−equivalent), symbolically G ∼ H , if
P (G, l) = P (H, l). The equivalence class determined by
G under ∼ is denoted by [G]. A graph G is chromatically
unique (or simply χ−unique) if H ∼= G whenever H ∼ G,
i.e, [G] = {G} up to isomorphism. For a set G of graphs,
if [G] ⊆ G for every G ∈ G, then G is said to be χ−closed.
Many families of χ-unique graphs are known (see [6,7,8]).

For a graph G, let V (G), E(G) and t(G) be the ver-
tex set, edge set and number of triangles in G, respec-
tively. Let S be a set of s edges in G. Let G − S (or
G − s) be the graph obtained from G by deleting all
edges in S, and by 〈S〉 the graph induced by S. Let
K(n1, n2, · · · , nt) be a complete t-partite graph. We de-
note by K−s(n1, n2, · · · , nt) the family of graphs which
are obtained from K(n1, n2, · · · , nt) by deleting a set S
of some s edges.

In [4,5,7–10,12–14,18–20], one can find many results on
the chromatic uniqueness of certain families of complete
t-partite graphs (t = 2, 3, 4, 5). There are several fami-
lies complete 6-partite graphs known to be χ-unique, see
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[3,15,16,17].

Let G be a complete 6-partite graph with 6n+3 vertices.
In this paper, we characterize certain complete 6-partite
graphs with 6n + 3 vertices according to the number of
7-independent partitions of G. Using these results, we
investigate the chromaticity of G with certain star or
matching deleted. As a by-product, many new families
of chromatically unique complete 6-partite graphs with
certain star or matching deleted are obtained.

2 Some Lemmas and Notations

For a graph G and a positive integer r, a partition
{A1, A2, · · · , Ar} of V (G), where r is a positive inte-
ger, is called an r-independent partition of G if every
Ai is independent of G. Let α(G, r) denote the num-
ber of r-independent partitions of G. Then, we have
P (G, λ) =

∑p

r=1
α(G, r)(λ)r, where (λ)r = λ(λ − 1)(λ −

2) · · · (λ − r + 1) (see [11]). Therefore, α(G, r) = α(H, r)
for each r = 1, 2, · · · , if G ∼ H .

For a graph G with p vertices, the polynomial σ(G, x) =∑p

r=1
α(G, r)xr is called the σ-polynomial of G (see

[2]). Clearly, P (G, λ) = P (H, λ) implies that σ(G, x) =
σ(H, x) for any graphs G and H .

For disjoint graphs G and H , G ∪H denotes the disjoint
union of G and H . The join of G and H denoted by
G ∨ H is defined as follows: V (G ∨ H) = V (G) ∪ V (H);
E(G ∨H) = E(G)∪E(H)∪ {xy | x ∈ V (G), y ∈ V (H)}.
For notations and terminology not defined here, we refer
[1].

Lemma 2.1 (Brenti [2], Koh and Teo [7]) Let G and H
be two disjoint graphs. Then

(i) |V (G)| = |V (H)|, |E(G)| = |E(H)|, t(G) = t(H)
and α(G, r) = α(H, r) for r = 1, 2, 3, · · · , p, if G ∼
H ;

(ii) σ(G ∨ H, x) = σ(G, x)σ(H, x).

Lemm 2.2 (Brenti [2]) Let G = K(n1, n2, n3, · · · , nt) and
σ(G, x) =

∑
r≥1

α(G, r)xr, then α(G, r) = 0 for 1 ≤ r ≤

t − 1, α(G, t) = 1 and α(G, t + 1) =
∑t

i=1
2ni−1 − t.
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Let x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 ≤ x6

be positive integers and {xi1 , xi2, xi3, xi4, xi5 , xi6} =
{x1, x2, x3, x4, x5, x6}. If there are two elements xi1 and
xi2 in {x1, x2, x3, x4, x5, x6} such that xi2 −xi1 ≥ 2, then
H ′ = K(xi1 + 1, xi2 − 1, xi3, xi4, xi5, xi6} is called an im-
provement of H = K(x1, x2, x3, x4, x5, x6).

Lemma 2.3 (Chen [3]) Suppose x1 ≤ x2 ≤ x3 ≤ x4 ≤
x5 ≤ x6 and H ′ = K(xi1 + 1, xi2 − 1, xi3, xi4, xi5 , xi6} is
an improvement of H = K(x1, x2, x3, x4, x5, x6), then

α(H, 7)− α(H ′, 7) = 2xi2
−2 − 2xi1

−1 ≥ 2xi1
−1.

Let G = K(n1, n2, n3, n4, n5, n6). For a graph H = G−S,
where S is a set of some s edges of G, define α′(H) =
α(H, 7)− α(G, 7). Clearly, α′(H) ≥ 0.

Lemma 2.4 (Chen [3]) Let G = K(n1, n2, n3, n4, n5, n6).
Suppose that min {ni|i = 1, 2, 3, 4, 5, 6} ≥ s + 1 ≥ 1 and
H = G − S, where S is a set of some s edges of G, then

s ≤ α′(H) = α(H, 7)− α(G, 7) ≤ 2s − 1,

α′(H) = s iff the set of end-vertices of any r ≥ 2 edges
in S is not independent in H , and α′(H) = 2s − 1 iff S
induces a star K1,s and all vertices of K1,s other than its
center belong to a same Ai.

Let K(A1 , A2) be a complete bipartite graph with partite
sets A1 and A2. We denote by K−K1,s(Ai, Aj) the graph
obtained from K(Ai, Aj) by deleting s edges that induce
a star with its center in Ai. Note that K−K1,s(Ai, Aj) �=
K−K1,s(Aj , Ai) if |Ai| �= |Aj| for i �= j (see [5]).

Lemma 2.5 (Dong et al. [4]) Let K(n1, n2) be a com-
plete bipartite graph with partite sets A1 and A2 such
that |Ai| = ni for i = 1, 2. If min {n1, n2} ≥ s + 2,
then every K−K1,s(Ai, Aj) is χ-unique, where i �= j and
i, j = 1, 2.

Let G = K(n1, n2, n3, n4, n5, n6) be a complete 5-
partite graph with partite sets Ai(i = 1, 2, · · · , 6) such
that |Ai| = ni. Let 〈Ai ∪ Aj〉 be the subgraph
of G induced by Ai ∪ Aj , where i �= j and i, j ∈

{1, 2, 3, 4, 5, 6}. By K
−K1,s

i,j (n1, n2, n3, n4, n5, n6), we de-
note the graph obtained from K(n1, n2, n3, n4, n5, n6)
by deleting a set of s edges that induce a K1,s

with its center in Ai and all it end vertices are
in Aj . Note that K

−K1,s

i,l (n1, n2, n3, n4, n5, n6) =

K
−K1,s

j,l (n1, n2, n3, n4, n5, n6) and K
−K1,s

l,i (n1, n2, n3, n4,

n5, n6) = K
−K1,s

l,j (n1, n2, n3, n4, n5, n6) for ni = nj and
l �= i, j.

Lemma 2.6 (Chen [3]) If i, j ∈ {1, 2, 3, · · ·, t}, i �=

j, ni �= nj, then P (K
−K1,s

i,j (n1, n2, n3, · · · , nt), λ) �=

P (K
−K1,s

j,i (n1, n2, n3, · · · , nt), λ).

3 Classification

In this section, we shall characterize certain complete 6-
partite graph G = K(n1, n2, n3, n4, n5, n6) according to
the number of 7-independent partitions of G where n1 +
n2 + n3 + n4 + n5 + n6 = 6n + 3, n ≥ 1.

Theorem 3.1 Let G = K(n1, n2, n3, n4, n5, n6) be a
complete 6-partite graph such that n1 + n2 + n3 + n4 +
n5 + n6 = 6n + 3, n ≥ 1. Define θ(G) = [α(G, 7) − 9 ·
2n−1 + 6]/2n−2. Then

(i) θ(G) ≥ 0;

(ii) θ(G) = 0 if and only if G = K(n, n, n, n + 1, n +
1, n + 1);

(iii) θ(G) = 1 if and only if G = K(n − 1, n, n + 1, n +
1, n + 1, n + 1);

(iv) θ(G) = 2 if and only if G = K(n, n, n, n, n+1, n+2);

(v) θ(G) = 5/2 if and only if G = K(n − 2, n + 1, n +
1, n + 1, n + 1, n + 1);

(vi) θ(G) = 3 if and only if G = K(n − 1, n, n, n + 1, n +
1, n + 2);

(vii) θ(G) = 4 if and only if G = K(n−1, n−1, n+1, n+
1, n + 1, n + 2);

(viii) θ(G) ≥ 9/2 if and only if G is not a graph appeared
in (ii)–(vii).

Proof. For a complete 6-partite graph H1 with 6n + 3
vertices, we can construct a sequence of complete 6-
partite graphs with 6n + 3 vertices, say H1, H2, · · · , Ht,
such that Hi is an improvement of Hi−1 for each
i = 2, 3, · · · , t, and Ht = K(n, n, n, n + 1, n + 1, n +
1). By Lemma 2.3, α(Hi−1, 7) − α(Hi, 7) > 0. So
θ(Hi−1)− θ(Hi) > 0, which implies that θ(G) ≥ θ(Ht) =
θ(K(n, n, n, n+1, n+1, n+1)). From Lemma 2.2 and by
a simple calculation, θ(K(n, n, n, n+1, n+1, n+1)) = 0.
Thus, (ii) is true.

Since Ht = K(n, n, n, n + 1, n + 1, n + 1) and Ht is an
improvement of Ht−1, it is not hard to see that Ht−1 ∈
{R, R0, R2}, where R = K(n−1, n, n+1, n+1, n+1, n+
1), R0 = K(n, n, n, n, n + 1, n + 2) and R2 = K(n −
1, n, n, n+1, n+1, n+2). Hence, by Lemma 2.2, we have
θ(R) = 1, θ(R0) = 2 and θ(R3) = 3. Note that Ht−1 is
an improvement of Ht−2 and it is not hard to see that
Ht−2 ∈ {Ri|i = 1, 2, · · ·, 11}, where Ri and θ(Ri) are
shown in Table 1.

To complete the proof of the theorem, we need only deter-
mine all complete 6-partite graph G with 6n + 3 vertices
such that θ(G) < 9/2. By Lemma 2.3, θ(Ht−3) > 9/2
for each Ht−3 if Ht−2 ∈ {Ri|i = 4, 5, 6, · · · , 11}. All
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Ri Graphs Ht−2 θ(Ri)

R1 K(n − 2, n + 1, n + 1, n + 1, n + 1, n + 1) 5/2
R2 K(n − 1, n, n, n + 1, n + 1, n + 2) 3

R3 K(n − 1, n − 1, n + 1, n + 1, n + 1, n + 2) 4
R4 K(n − 2, n, n + 1, n + 1, n + 1, n + 2) 9/2

R5 K(n − 1, n, n, n, n+ 2, n + 2) 5
R6 K(n − 1, n− 1, n, n + 1, n + 2, n + 2) 6

R7 K(n − 2, n, n, n + 1, n + 2, n + 2) 13/2
R8 K(n, n, n, n, n, n+ 3) 8

R9 K(n − 1, n, n, n, n+ 1, n + 3) 9
R10 K(n − 1, n− 1, n, n + 1, n + 1, n + 3) 10

R11 K(n − 2, n, n, n + 1, n + 1, n + 3) 53/2

Table 1: Ht−2 and its θ-values

Mi Graphs Ht−3 θ(Mi)

M1 K(n − 3, n + 1, n + 1, n + 1, n + 1, n + 2) 25/4
M2 K(n − 2, n− 1, n + 1, n + 1, n + 2, n + 2) 15/2

M3 K(n − 2, n− 1, n + 1, n + 1, n + 1, n + 3) 23/2

Table 2: Ht−3 and its θ-values

graphs Ht−3 and its θ-values are listed in Table 2 when
Ht−2 ∈ {Ri|i = 1, 2, 3}.

By Lemma 2.3, θ(Ht−4) > 9/2 for every Ht−4 if Ht−3 ∈
{Mi|i = 1, 2, 3}.So, from Lemma 2.3, Tables 1 and 2,
and the above arguments, we conclude that the theorem
holds.

4 Chromatically closed 6-partite graphs

In this section, we obtained the χ−closed of the families
in K−s(n1, n2, n3, n4, n5, n6).

Theorem 4.1 If n ≥ s + 2, then the family of graphs
K−s(n, n, n, n + 1, n + 1, n + 1) is χ-closed.

Proof. Let G = K(n, n, n, n + 1, n + 1, n + 1) and
Z ∈ K−s(n, n, n, n + 1, n + 1, n + 1). The 6-independent
partition of G is certainly 6-independent partition of Z.
So α(Z, 6) ≥ α(G, 6) = 1. Let H ∼ Z, then α(H, 6) =
α(Z, 6) ≥ α(G, 6) = 1. Let {A1, A2, A3, A4, A5, A6} be a
6-independent partition of H , |Ai| = ti, i = 1, 2, 3, 4, 5, 6
and F = K(t1, t2, t3, t4, t5, t6). Then there exist S′ ∈
E(F ) such that H = F − S′. Let q(G) be the num-
ber of edges in graph G. Since q(H) = q(Z), therefore
s′ = |S′| = q(F ) − q(G) + s.

From Lemma 2.4, we have

α(Z, 7) = α(G, 7) + α′(Z), s ≤ α′(Z) ≤ 2s − 1, and

α(H, 7) = α(F, 7) + α′(H), s′ ≤ α′(H).

Thus α(H, 7)−α(Z, 7) = α(F, 7)−α(G, 7)+α′(H)−α′(Z)
and α(Z, 7) = α(H, 7), so α(H, 7)− α(Z, 7) = 0.

If F �= G, from Theorem 3.1, we have θ(F ) − θ(G) ≥ 1.
So, we have

α(F, 7)− α(G, 7) = (θ(F ) − θ(G)) · 2n−2 ≥ 2n−2.

Hence

α(H, 7)− α(Z, 7) ≥ 2n−2 + α′(H) − α′(Z)

≥ 2n−2 + 0 − (2s − 1) ≥ 1.

This is a contradiction. So F = G, s = s′. Thus, H ∈
K−s(n, n, n, n+1, n+1, n+1). Therefore, K−s(n, n, n, n+
1, n + 1, n + 1) is χ-closed if n ≥ s + 2. The proof is now
completed.

By using the similar proof of Theorem 4.1, we can obtain
the following results.

Theorem 4.2 If n ≥ s + 3, then the family of graphs
K−s(n−1, n, n+1, n+1, n+1, n+1), K−s(n, n, n, n, n+
1, n+2), K−s(n−1, n, n, n+1, n+1, n+2) and K−s(n−
1, n− 1, n + 1, n + 1, n + 1, n + 2) are χ-closed.

Theorem 4.3 If n ≥ s + 5, then the family of graphs
K−s(n − 2, n + 1, n + 1, n + 1, n + 1, n + 1) is χ-closed.

5 Chromatically unique 6-partite graphs

In this section, we first study the chromatically unique
6-partite graphs with 6n + 3 vertices and a set S of s
edges deleted where the deleted edges induce a star K1,s.

Theorem 5.1 If n ≥ s + 2, then the graphs

K
−K1,s

i,j (n, n, n, n+1, n+1, n+1) are χ-unique for (i, j) ∈
{(1, 2), (1, 4), (4, 1), (4, 5)}.

Proof. From Lemma 2.4 and Theorem 4.1, we know that

K
−K1,s

i,j (n, n, n, n+1, n+1, n+1) = {K
−K1,s

i,j (n, n, n, n+
1, n + 1, n + 1)|(i, j) ∈ {(1, 2), (1, 4), (4, 1), (4, 5)} is χ-
closed if n ≥ s + 2. Note that

t(K
−K1,s

1,2 (n, n, n, n + 1, n + 1, n + 1)) = t(K(n, n, n, n +
1, n + 1, n + 1)) − s(4n + 3);

t(K
−K1,s

i,j (n, n, n, n + 1, n + 1, n + 1)) = t(K(n, n, n, n +
1, n + 1, n + 1)) − s(4n + 2) for (i, j) ∈ {(1, 4), (4, 1)};

t(K
−K1,s

4,5 (n, n, n, n + 1, n + 1, n + 1)) = t(K(n, n, n, n +
1, n + 1, n + 1)) − s(4n + 1).

By Lemmas 2.1 and 2.6, we conclude that

σ(K
−K1,s

1,4 (n, n, n, n + 1, n + 1, n + 1)) �=

σ(K
−K1,s

4,1 (n, n, n, n + 1, n + 1, n + 1)). Hence, by

Lemma 2.1, the graphs K
−K1,s

i,j (n, n, n, n+1, n+1, n+1)
are χ-unique where n ≥ s + 2 for (i, j) ∈
{(1, 2), (1, 4), (4, 1), (4, 5)}. The proof is now com-
pleted.

Similarly to the proof of Theorem 5.1, we can prove The-
orems 5.2–5.5.
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Theorem 5.2 If n ≥ s + 3, then the graphs K
−K1,s

i,j (n−
1, n, n + 1, n + 1, n + 1, n + 1) are χ-unique for (i, j) ∈
{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (3, 4)}.

Theorem 5.3 If n ≥ s + 3, then the graphs

K
−K1,s

i,j (n, n, n, n, n + 1, n + 2) are χ-unique for (i, j) ∈
{(1, 2), (1, 5), (5, 1), (1, 6), (6, 1), (5, 6), (6, 5)}.

Theorem 5.4 If n ≥ s + 5, then the graphs K
−K1,s

i,j (n−
2, n +1, n +1, n+1, n +1, n+1) are χ-unique for (i, j) ∈
{(1, 2), (2, 1), (2, 3)}.

Theorem 5.5 If n ≥ s + 3, then the graphs K
−K1,s

i,j (n−
1, n− 1, n +1, n+1, n +1, n+2) are χ-unique for (i, j) ∈
{(1, 2), (1, 3), (3, 1), (1, 6), (6, 1), (3, 4), (3, 6), (6, 3)}.

Theorem 5.6 If n ≥ s + 3, then the graphs K
−K1,s

i,j (n−
1, n, n, n + 1, n + 1, n + 2) are χ-unique for (i, j) ∈
{(1, 2), (2, 1), (4, 6), (6, 4)}.

Proof. Let F ∈ {K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n +
2)|(i, j) ∈ {(1, 2), (2, 1), (4, 6), (6, 4)}} and H ∼ F . By
Theorem 4.2, H ∈ K−s(n − 1, n, n, n + 1, n + 1, n + 2).
Since

α(H, 7) = α(F, 7) = α(K(n − 1, n, n, n + 1, n + 1, n +
2), 7) + 2s − 1,

from Lemma 2.4, we know that H ∈ {K
−K1,s

i,j (n −
1, n, n, n + 1, n + 1, n + 2)|i �= j, i, j = 1, 2, 3, 4, 5, 6}.

It easy to see that H ∈ {K
−K1,s

i,j (n − 1, n, n, n +
1, n + 1, n + 2)|i �= j, i, j = 1, 2, 3, 4, 5, 6} =

{K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n + 2)|(i, j) ∈
{(1, 2), (2, 1), (1, 4), (4, 1), (1, 6), (6, 1), (2, 3), (2, 4), (4, 2),
(2, 6), (6, 2), (4, 5), (4, 6), (6, 4)}}.

Now let’s determine the number of triangles in H and F .
Then we obtain that

t(K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n + 2)) = t(K(n −
1, n, n, n + 1, n + 1, n + 2)) − s(4n + 4) for (i, j) ∈
{(1, 2), (2, 1)},

t(K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n + 2)) = t(K(n −
1, n, n, n + 1, n + 1, n + 2)) − s(4n + 3) for (i, j) ∈
{(1, 4), (4, 1), (2, 3)},

t(K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n + 2)) = t(K(n −
1, n, n, n + 1, n + 1, n + 2)) − s(4n + 2) for (i, j) ∈
{(1, 6), (6, 1), (2, 4), (4, 2)},

t(K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n + 2)) = t(K(n −
1, n, n, n + 1, n + 1, n + 2)) − s(4n + 1) for (i, j) ∈
{(2, 6), (6, 2), (4, 5)},

t(K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n + 2)) = t(K(n −
1, n, n, n+1, n+1, n+2))−4sn for (i, j) ∈ {(4, 6), (6, 4)}.

Recalling

F ∈ {K
−K1,s

i,j (n−1, n, n, n+1, n+1, n+2)|(i, j) ∈ {(1, 2),
(2, 1), (4, 6), (6, 4)}}

and t(H) = t(F ), thus we have

H, F ∈ {K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n + 2)|(i, j) ∈
{(1, 2),
(2, 1)}}

or

H, F ∈ {K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1, n + 2)|(i, j) ∈
{(4, 6),
(6, 4)}}.

It follows from Lemmas 2.1 and 2.6 that

P (K
−K1,s

1,2 (n − 1, n, n, n + 1, n + 1, n + 2), λ) �=

P (K
−K1,s

2,1 (n − 1, n, n, n + 1, n + 1, n + 2), λ);

P (K
−K1,s

4,6 (n − 1, n, n, n + 1, n + 1, n + 2), λ) �=

P (K
−K1,s

6,4 (n − 1, n, n, n + 1, n + 1, n + 2), λ).

Hence, by Lemma 2.1, we conclude that the graphs

K
−K1,s

i,j (n−1, n, n, n+1, n+1, n+2) are χ-unique where
n ≥ s + 3 for each (i, j) ∈ 1, 2), (2, 1), (4, 6), (6, 4)}.

Let K−sK2

i,j (n1, n2, n3, n4, n5, n6) denotes the graph ob-
tained from K(n1, n2, n3, n4, n5, n6) by deleting a set of
s edges that forms a matching in 〈Ai ∪ Aj〉. We now in-
vestigate the chromatically unique 6-partite graphs with
6n + 3 vertices and a set S of s edges deleted where the
deleted edges induce a matching sK2.

Theorem 5.7 If n ≥ s + 3, then the graphs K−sK2

1,2 (n −
1, n, n + 1, n + 1, n + 1, n + 1) are χ-unique.

Proof. Let F ∼ K−sK2

1,2 (n−1, n, n+1, n+1, n+1, n+1).

It is sufficient to prove that F = K−sK2

1,2 (n−1, n, n+1, n+
1, n+1, n+1). By Theorem 4.2 and Lemma 2.4, we have
F ∈ K−s(n−1, n, n+1, n+1, n+1, n+1) and α′(F ) = s.
Let F = G − S where G = K(n − 1, n, n + 1, n + 1, n +
1, n + 1). Next we consider the number of triangles in
F . Let ei ∈ S and t(ei) be the number of triangles in G
containing the edge ei. It is easy to see that t(ei) ≤ 4n+4.
As n − 1 ≤ n < n + 1 ≤ n + 1 ≤ n + 1 ≤ n + 1, we know
that t(ei) = 4n + 4 if and only if ei is an edge in the
subgraph 〈A1 ∪ A2〉 in G. So we have

t(F ) ≥ t(G) −

s∑

i=1

t(ei) ≥ t(G) − s(4n + 4);

and the equality holds if and only if each edge ei in S is
an edge of the subgraph 〈A1 ∪ A2〉 in G.

Note that t(F ) = t(G) − s(4n + 4) and α′(F ) = s. By
Lemma 2.4, we know that F = K−sK2

1,2 (n−1, n, n+1, n+
1, n + 1, n + 1). This completes the proof.

Similarly to the proof of Theorem 5.7, we can prove The-
orem 5.8.

Theorem 5.8 If n ≥ s + 3, then the graphs K−sK2

1,2 (n −
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1, n− 1, n + 1, n + 1, n + 1, n + 2) are χ-unique.

We end this paper with the following problems:

[1.] Study the chromaticity of the graph K
−K1,s

i,j (n −
1, n, n, n+1, n+1, n+2) where n ≥ s+3 for each (i, j) ∈
{(1, 4), (4, 1), (2, 3), (1, 6), (6, 1), (2, 4), (4, 2), (2, 6),
(6, 2), (4, 5)}.

[2.] Study the chromaticity of the following graphs: (i)
K−sK2

1,2 (n, n, n, n + 1, n + 1, n + 1) where n ≥ s + 2, (ii)

K−sK2

1,2 (n, n, n, n, n + 1, n + 2) where n ≥ s + 3, (iii)

K−sK2

1,2 (n − 2, n + 1, n + 1, n + 1, n + 1, n + 1) where

n ≥ s + 5, and (iv) K−sK2

1,2 (n− 1, n, n, n+ 1, n +1, n + 2)
where n ≥ s + 3.
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