A Note on Chromaticity of Certain 6-Partite Graphs

A.Sh. Ameen, Y.H. Peng, H. Roslan [∗]

Abstract—Let $P(G, \lambda)$ be the chromatic polynomial **of a graph** G**. Two graphs** G **and** H **are said to be chromatically equivalent, denoted** $G ∼ H$, if $P(G, λ) =$ P(H,λ)**. We write** [G] = {H|H ∼ G}**. If** [G] = {G}**, then** G **is said to be chromatically unique. In this paper, we first characterize certain complete 6-partite** graphs with $6n+3$ vertices according to the number of **7-independent partitions of** G**. Using these results, we investigate the chromaticity of** G **with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 6-partite graphs with certain star or matching deleted are obtained.**

Keywords: Chromatic Polynomial, Chromatically Closed, Chromatic Uniqueness

1 Introduction

All graphs considered here are simple and finite. For a graph G, let $P(G, \lambda)$ be the chromatic polynomial of G. Two graphs G and H are said to be *chromatically equiv*alent (or simply χ -equivalent), symbolically $G \sim H$, if $P(G, l) = P(H, l)$. The equivalence class determined by G under \sim is denoted by [G]. A graph G is *chromatically* unique (or simply χ -unique) if $H \cong G$ whenever $H \sim G$, i.e, $[G] = \{G\}$ up to isomorphism. For a set G of graphs, if $[G] ⊆ G$ for every $G ∈ G$, then G is said to be $χ$ -closed. Many families of χ -unique graphs are known (see [6,7,8]).

For a graph G, let $V(G)$, $E(G)$ and $t(G)$ be the vertex set, edge set and number of triangles in G , respectively. Let S be a set of s edges in G. Let $G - S$ (or $(G - s)$ be the graph obtained from G by deleting all edges in S, and by $\langle S \rangle$ the graph induced by S. Let $K(n_1, n_2, \dots, n_t)$ be a complete t-partite graph. We denote by $\mathcal{K}^{-s}(n_1, n_2, \dots, n_t)$ the family of graphs which are obtained from $K(n_1, n_2, \dots, n_t)$ by deleting a set S of some s edges.

In [4,5,7–10,12–14,18–20], one can find many results on the chromatic uniqueness of certain families of complete t-partite graphs $(t = 2, 3, 4, 5)$. There are several families complete 6-partite graphs known to be χ -unique, see $[3,15,16,17]$.

Let G be a complete 6-partite graph with $6n+3$ vertices. In this paper, we characterize certain complete 6-partite graphs with $6n + 3$ vertices according to the number of 7-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 6-partite graphs with certain star or matching deleted are obtained.

2 Some Lemmas and Notations

For a graph G and a positive integer r , a partition $\{A_1, A_2, \dots, A_r\}$ of $V(G)$, where r is a positive integer, is called an r-independent partition of G if every A_i is independent of G. Let $\alpha(G, r)$ denote the number of r -independent partitions of G . Then, we have $P(G, \lambda) = \sum_{r=1}^{p} \alpha(G, r)(\lambda)_r$, where $(\lambda)_r = \lambda(\lambda - 1)(\lambda 2)\cdots(\lambda-r+1)$ (see [11]). Therefore, $\alpha(G,r)=\alpha(H,r)$ for each $r = 1, 2, \dots$, if $G \sim H$.

 $\sum_{r=1}^{p} \alpha(G, r) x^r$ is called the σ -polynomial of G (see For a graph G with p vertices, the polynomial $\sigma(G, x) =$ [2]). Clearly, $P(G, \lambda) = P(H, \lambda)$ implies that $\sigma(G, x) =$ $\sigma(H, x)$ for any graphs G and H.

For disjoint graphs G and H, $G \cup H$ denotes the disjoint union of G and H . The join of G and H denoted by $G \vee H$ is defined as follows: $V(G \vee H) = V(G) \cup V(H)$; $E(G \vee H) = E(G) \cup E(H) \cup \{xy \mid x \in V(G), y \in V(H)\}.$ For notations and terminology not defined here, we refer [1].

Lemma 2.1 (Brenti [2], Koh and Teo [7]) Let G and H be two disjoint graphs. Then

- (i) $|V(G)| = |V(H)|$, $|E(G)| = |E(H)|$, $t(G) = t(H)$ and $\alpha(G, r) = \alpha(H, r)$ for $r = 1, 2, 3, \dots, p$, if $G \sim$ $H:$
- (ii) $\sigma(G \vee H, x) = \sigma(G, x) \sigma(H, x).$

Lemm 2.2 (Brenti [2]) Let $G = K(n_1, n_2, n_3, \dots, n_t)$ and $\sigma(G, x) = \sum_{r \geq 1} \alpha(G, r) x^r$, then $\alpha(G, r) = 0$ for $1 \leq r \leq$ $t-1, \alpha(G, t) = 1$ and $\alpha(G, t+1) = \sum_{i=1}^{t} 2^{n_i-1} - t$.

[∗]The corresponding author would like to express his gratitude to Universiti Sains Malaysia, Penang for financially sponsor this research under the Research University Grant 1001/PMATHS/811137. He is currently a senior lecturer at Universiti Sains Malaysia, 11800 Penang, Malaysia Tel/Fax: +604- 6532355 Email: hroslan@cs.usm.my

Let $x_1 \leq x_2 \leq x_3 \leq x_4 \leq x_5 \leq x_6$ be positive integers and ${x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6}} =$ ${x_1, x_2, x_3, x_4, x_5, x_6}$. If there are two elements x_{i_1} and x_{i_2} in $\{x_1, x_2, x_3, x_4, x_5, x_6\}$ such that $x_{i_2} - x_{i_1} \geq 2$, then $H' = K(x_{i_1} + 1, x_{i_2} - 1, x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6})$ is called an *im*provement of $H = K(x_1, x_2, x_3, x_4, x_5, x_6)$.

Lemma 2.3 (Chen [3]) Suppose $x_1 \leq x_2 \leq x_3 \leq x_4 \leq x_4$ $x_5 \leq x_6$ and $H' = K(x_{i_1} + 1, x_{i_2} - 1, x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6})$ is an improvement of $H = K(x_1, x_2, x_3, x_4, x_5, x_6)$, then

$$
\alpha(H,7) - \alpha(H',7) = 2^{x_{i_2}-2} - 2^{x_{i_1}-1} \ge 2^{x_{i_1}-1}.
$$

Let $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$. For a graph $H = G - S$, where S is a set of some s edges of G, define $\alpha'(H)$ = $\alpha(H, 7) - \alpha(G, 7)$. Clearly, $\alpha'(H) \geq 0$.

Lemma 2.4 (Chen [3]) Let $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$. Suppose that min ${n_i|i = 1, 2, 3, 4, 5, 6} \ge s + 1 \ge 1$ and $H = G - S$, where S is a set of some s edges of G, then

$$
s \le \alpha'(H) = \alpha(H, 7) - \alpha(G, 7) \le 2^s - 1,
$$

 $\alpha'(H) = s$ iff the set of end-vertices of any $r \geq 2$ edges in S is not independent in H, and $\alpha'(H)=2^s - 1$ iff S induces a star $K_{1,s}$ and all vertices of $K_{1,s}$ other than its center belong to a same A_i .

Let $K(A_1, A_2)$ be a complete bipartite graph with partite sets A_1 and A_2 . We denote by $K^{-K_{1,s}}(A_i, A_j)$ the graph obtained from $K(A_i, A_j)$ by deleting s edges that induce a star with its center in A_i . Note that $K^{-K_{1,s}}(A_i, A_j) \neq$ $K^{-K_{1,s}}(A_i, A_i)$ if $|A_i| \neq |A_i|$ for $i \neq j$ (see [5]).

Lemma 2.5 (Dong et al. [4]) Let $K(n_1, n_2)$ be a complete bipartite graph with partite sets A_1 and A_2 such that $|A_i| = n_i$ for $i = 1, 2$. If min $\{n_1, n_2\} \geq s + 2$, then every $K^{-K_{1,s}}(A_i, A_j)$ is χ -unique, where $i \neq j$ and $i, j = 1, 2.$

Let $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$ be a complete 5partite graph with partite sets $A_i(i = 1, 2, \dots, 6)$ such that $|A_i| = n_i$. Let $\langle A_i \cup A_j \rangle$ be the subgraph of G induced by $A_i \cup A_j$, where $i \neq j$ and $i, j \in$ $\{1, 2, 3, 4, 5, 6\}$. By $K_{i,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6)$, we denote the graph obtained from $K(n_1, n_2, n_3, n_4, n_5, n_6)$ by deleting a set of s edges that induce a $K_{1,s}$ with its center in A_i and all it end vertices are in A_j . Note that $K_{i,l}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6)$ = $K_{j,l}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6)$ and $K_{l,i}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6)$ $(n_5, n_6) = K_{l,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5, n_6)$ for $n_i = n_j$ and $l \neq i, j.$

Lemma 2.6 (Chen [3]) If $i, j \in \{1, 2, 3, \dots, t\}, i \neq j$ $j, n_i \neq n_j$, then $P(K_{i,j}^{-K_{1,s}}(n_1, n_2, n_3, \dots, n_t), \lambda) \neq$ $P(K_{j,i}^{-K_{1,s}}(n_1, n_2, n_3, \cdots, n_t), \lambda).$

3 Classification

In this section, we shall characterize certain complete 6 partite graph $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$ according to the number of 7-independent partitions of G where $n_1 +$ $n_2 + n_3 + n_4 + n_5 + n_6 = 6n + 3, n \ge 1.$

Theorem 3.1 Let $G = K(n_1, n_2, n_3, n_4, n_5, n_6)$ be a complete 6-partite graph such that $n_1 + n_2 + n_3 + n_4 +$ $n_5 + n_6 = 6n + 3, n \ge 1.$ Define $\theta(G) = [\alpha(G, 7) - 9 \cdot$ $2^{n-1} + 6$ |/2^{n−2}. Then

- (i) $\theta(G) \geq 0;$
- (ii) $\theta(G) = 0$ if and only if $G = K(n, n, n, n + 1, n + 1)$ $1, n + 1$:
- (iii) $\theta(G) = 1$ if and only if $G = K(n-1, n, n+1, n+1)$ $1, n + 1, n + 1$;
- (iv) $\theta(G) = 2$ if and only if $G = K(n, n, n, n, n+1, n+2);$
- (v) $\theta(G) = 5/2$ if and only if $G = K(n 2, n + 1, n + 1)$ $1, n+1, n+1, n+1$;
- (vi) $\theta(G) = 3$ if and only if $G = K(n 1, n, n, n + 1, n + 1)$ $1, n + 2$:
- (vii) $\theta(G) = 4$ if and only if $G = K(n-1, n-1, n+1, n+1)$ $1, n + 1, n + 2$:
- (viii) $\theta(G) \geq 9/2$ if and only if G is not a graph appeared in (ii) – (vii) .

Proof. For a complete 6-partite graph H_1 with $6n + 3$ vertices, we can construct a sequence of complete 6 partite graphs with $6n + 3$ vertices, say H_1, H_2, \cdots, H_t , such that H_i is an improvement of H_{i-1} for each $i = 2, 3, \dots, t$, and $H_t = K(n, n, n, n + 1, n + 1, n +$ 1). By Lemma 2.3, $\alpha(H_{i-1}, 7) - \alpha(H_i, 7) > 0$. So $\theta(H_{i-1}) - \theta(H_i) > 0$, which implies that $\theta(G) \geq \theta(H_t) =$ $\theta(K(n, n, n, n+1, n+1, n+1))$. From Lemma 2.2 and by a simple calculation, $\theta(K(n, n, n, n+1, n+1, n+1)) = 0$. Thus, (ii) is true.

Since $H_t = K(n, n, n, n + 1, n + 1, n + 1)$ and H_t is an improvement of H_{t-1} , it is not hard to see that $H_{t-1} \in$ ${R, R_0, R_2}$, where $R = K(n-1, n, n+1, n+1, n+1, n+1)$ 1), $R_0 = K(n, n, n, n, n + 1, n + 2)$ and $R_2 = K(n - 1)$ $1, n, n, n+1, n+1, n+2$. Hence, by Lemma 2.2, we have $\theta(R) = 1, \, \theta(R_0) = 2$ and $\theta(R_3) = 3$. Note that H_{t-1} is an improvement of H_{t-2} and it is not hard to see that $H_{t-2} \in \{R_i | i = 1, 2, \cdots, 11\}$, where R_i and $\theta(R_i)$ are shown in Table 1.

To complete the proof of the theorem, we need only determine all complete 6-partite graph G with $6n + 3$ vertices such that $\theta(G) < 9/2$. By Lemma 2.3, $\theta(H_{t-3}) > 9/2$ for each H_{t-3} if $H_{t-2} \in \{R_i | i = 4, 5, 6, \dots, 11\}$. All Proceedings of the World Congress on Engineering 2010 Vol III WCE 2010, June 30 - July 2, 2010, London, U.K.

R_i	Graphs H_{t-2}	$\theta(R_i)$
R_1	$K(n-2,n+1,n+1,n+1,n+1,n+1)$	5/2
R_2	$K(n-1,n,n,n+1,n+1,n+2)$	3
R_3	$K(n-1, n-1, n+1, n+1, n+1, n+2)$	4
R_4	$K(n-2, n, n+1, n+1, n+1, n+2)$	9/2
R_5	$K(n-1,n,n,n,n+2,n+2)$	5
R_6	$K(n-1, n-1, n, n+1, n+2, n+2)$	6
R_7	$K(n-2,n,n,n+1,n+2,n+2)$	13/2
R_8	$K(n, n, n, n, n, n+3)$	8
R_9	$K(n-1,n,n,n,n+1,n+3)$	9
R_{10}	$K(n-1, n-1, n, n+1, n+1, n+3)$	10
R_{11}	$K(n-2,n,n,n+1,n+1,n+3)$	53/2

Table 1: H_{t-2} and its θ -values

M_i	Graphs H_{t-3} $\theta(M_i)$	
	$\mid M_1 \mid K(n-3,n+1,n+1,n+1,n+1,n+2)$	25/4
M_2	$K(n-2, n-1, n+1, n+1, n+2, n+2)$	15/2
M_3	$K(n-2, n-1, n+1, n+1, n+1, n+3)$	23/2

Table 2: H_{t-3} and its θ -values

graphs H_{t-3} and its θ -values are listed in Table 2 when $H_{t-2} \in \{R_i | i = 1, 2, 3\}.$

By Lemma 2.3, $\theta(H_{t-4}) > 9/2$ for every H_{t-4} if $H_{t-3} \in$ ${M_i|i = 1, 2, 3}$. So, from Lemma 2.3, Tables 1 and 2. and the above arguments, we conclude that the theorem holds.

4 Chromatically closed 6-partite graphs

In this section, we obtained the χ -closed of the families in $\mathcal{K}^{-s}(n_1, n_2, n_3, n_4, n_5, n_6)$.

Theorem 4.1 If $n \geq s + 2$, then the family of graphs $\mathcal{K}^{-s}(n, n, n, n+1, n+1, n+1)$ is χ -closed.

Proof. Let $G = K(n, n, n, n + 1, n + 1, n + 1)$ and $Z \in \mathcal{K}^{-s}(n, n, n, n+1, n+1, n+1)$. The 6-independent partition of G is certainly 6-independent partition of Z . So $\alpha(Z, 6) \geq \alpha(G, 6) = 1$. Let $H \sim Z$, then $\alpha(H, 6) =$ $\alpha(Z, 6) \geq \alpha(G, 6) = 1$. Let $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ be a 6-independent partition of H, $|A_i| = t_i$, $i = 1, 2, 3, 4, 5, 6$ and $F = K(t_1, t_2, t_3, t_4, t_5, t_6)$. Then there exist $S' \in$ $E(F)$ such that $H = F - S'$. Let $q(G)$ be the number of edges in graph G. Since $q(H) = q(Z)$, therefore $s' = |S'| = q(F) - q(G) + s.$

From Lemma 2.4, we have

$$
\alpha(Z, 7) = \alpha(G, 7) + \alpha'(Z), s \le \alpha'(Z) \le 2^s - 1
$$
, and
\n $\alpha(H, 7) = \alpha(F, 7) + \alpha'(H), s' \le \alpha'(H)$.

Thus
$$
\alpha(H, 7) - \alpha(Z, 7) = \alpha(F, 7) - \alpha(G, 7) + \alpha'(H) - \alpha'(Z)
$$

and $\alpha(Z, 7) = \alpha(H, 7)$, so $\alpha(H, 7) - \alpha(Z, 7) = 0$.

If $F \neq G$, from Theorem 3.1, we have $\theta(F) - \theta(G) \geq 1$. So, we have

$$
\alpha(F,7) - \alpha(G,7) = (\theta(F) - \theta(G)) \cdot 2^{n-2} \ge 2^{n-2}.
$$

Hence

 $\alpha(H, 7) - \alpha(Z, 7) \ge 2^{n-2} + \alpha'(H) - \alpha'(Z)$ $> 2^{n-2} + 0 - (2^s - 1) > 1$.

This is a contradiction. So
$$
F = G
$$
, $s = s'$. Thus, $H \in$
 $\mathcal{K}^{-s}(n, n, n, n+1, n+1, n+1)$. Therefore, $\mathcal{K}^{-s}(n, n, n, n+1, n+1, n+1)$ is χ -closed if $n \geq s+2$. The proof is now completed.

By using the similar proof of Theorem 4.1, we can obtain the following results.

Theorem 4.2 If $n > s + 3$, then the family of graphs $\mathcal{K}^{-s}(n-1, n, n+1, n+1, n+1, n+1), \mathcal{K}^{-s}(n, n, n, n, n+1)$ $1, n+2$), $K^{-s}(n-1, n, n, n+1, n+1, n+2)$ and $K^{-s}(n-1, n, n, n+1, n+1)$ $1, n-1, n+1, n+1, n+1, n+2$ are χ -closed.

Theorem 4.3 If $n \geq s+5$, then the family of graphs $\mathcal{K}^{-s}(n-2, n+1, n+1, n+1, n+1, n+1)$ is y-closed.

5 Chromatically unique 6-partite graphs

In this section, we first study the chromatically unique 6-partite graphs with $6n + 3$ vertices and a set S of s edges deleted where the deleted edges induce a star $K_{1,s}$.

Theorem 5.1 If $n \geq s + 2$, then the graphs $K_{i,j}^{-K_{1,s}}(n, n, n, n+1, n+1, n+1)$ are χ -unique for $(i, j) \in$ $\{(1, 2), (1, 4), (4, 1), (4, 5)\}.$

Proof. From Lemma 2.4 and Theorem 4.1, we know that $K_{i,j}^{-K_{1,s}}(n, n, n, n+1, n+1, n+1) = \{K_{i,j}^{-K_{1,s}}(n, n, n, n+1, n+1, n+1, n+1)\}$ $1, n+1, n+1 \mid (i, j) \in \{ (1, 2), (1, 4), (4, 1), (4, 5) \}$ is χ closed if $n \geq s+2$. Note that

 $t(K_{1,2}^{-K_{1,s}}(n, n, n, n+1, n+1, n+1)) = t(K(n, n, n, n+1))$ $1, n + 1, n + 1)$) – $s(4n + 3);$ $t(K_{i,j}^{-K_{1,s}}(n, n, n, n+1, n+1, n+1)) = t(K(n, n, n, n+1))$ $1, n+1, n+1$) – $s(4n+2)$ for $(i, j) \in \{(1, 4), (4, 1)\};$ $t(K_{4,5}^{-K_{1,s}}(n, n, n, n+1, n+1, n+1)) = t(K(n, n, n, n+1))$ $1, n+1, n+1)$) – $s(4n+1)$.

By Lemmas 2.1 and 2.6, we conclude that $\sigma(K_{1,4}^{-K_{1,s}}(n,n,n,n+1,n+1,n+1))$ \neq $\sigma(K_{4,1}^{-K_{1,s}}(n,n,n,n+1,n+1,n+1)).$ Hence, by Lemma 2.1, the graphs $K_{i,j}^{-K_{1,s}}(n, n, n, n+1, n+1, n+1)$ are χ -unique where $n \geq s + 2$ for $(i, j) \in$ $\{(1, 2), (1, 4), (4, 1), (4, 5)\}.$ The proof is now completed.

Similarly to the proof of Theorem 5.1, we can prove Theorems 5.2–5.5.

Theorem 5.2 If $n \geq s+3$, then the graphs $K_{i,j}^{-K_{1,s}}(n-\alpha)$ $1, n, n + 1, n + 1, n + 1, n + 1$ are χ -unique for $(i, j) \in$ $\{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (3, 4)\}.$

Theorem 5.3 If $n > s + 3$, then the graphs $K_{i,j}^{-K_{1,s}}(n,n,n,n,n+1,n+2)$ are χ -unique for (i,j) $\{(1, 2), (1, 5), (5, 1), (1, 6), (6, 1), (5, 6), (6, 5)\}.$

Theorem 5.4 If $n \geq s+5$, then the graphs $K_{i,j}^{-K_{1,s}}(n-$ 2, $n + 1, n + 1, n + 1, n + 1, n + 1$ are χ -unique for $(i, j) \in$ $\{(1, 2), (2, 1), (2, 3)\}.$

Theorem 5.5 If $n \geq s+3$, then the graphs $K_{i,j}^{-K_{1,s}}(n-1)$ 1, *n* − 1, *n* + 1, *n* + 1, *n* + 1, *n* + 2) are χ -unique for $(i, j) \in$ $\{(1, 2), (1, 3), (3, 1), (1, 6), (6, 1), (3, 4), (3, 6), (6, 3)\}.$

Theorem 5.6 If $n \geq s+3$, then the graphs $K_{i,j}^{-K_{1,s}}(n-1)$ $1, n, n, n + 1, n + 1, n + 2$ are χ -unique for $(i, j) \in$ $\{(1, 2), (2, 1), (4, 6), (6, 4)\}.$

Proof. Let $F \in \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+1)\}$ 2)|(*i, j*) ∈ {(1, 2), (2, 1), (4, 6), (6, 4)}} and $H \sim F$. By Theorem 4.2, $H \in \mathcal{K}^{-s}(n-1,n,n,n+1,n+1,n+2)$. Since

 $\alpha(H, 7) = \alpha(F, 7) = \alpha(K(n - 1, n, n, n + 1, n + 1, n +$ 2 , 7) + $2^s - 1$,

from Lemma 2.4, we know that $H \in \{K_{i,j}^{-K_{1,s}}(n-1)\}$ $1, n, n, n + 1, n + 1, n + 2 \mid i \neq j, i, j = 1, 2, 3, 4, 5, 6 \}.$ It easy to see that $H \in \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1)\}$ $1, n + 1, n + 2 \mid i \neq j, \quad i, j = 1, 2, 3, 4, 5, 6$ = ${K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2)|(i,j)} \in$ $\{(1, 2), (2, 1), (1, 4), (4, 1), (1, 6), (6, 1), (2, 3), (2, 4), (4, 2),$ $(2, 6), (6, 2), (4, 5), (4, 6), (6, 4)\}.$

Now let's determine the number of triangles in H and F . Then we obtain that

 $t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2)) = t(K(n-1,n,n,n+1,n+1))$ $1, n, n, n + 1, n + 1, n + 2)$ – $s(4n + 4)$ for $(i, j) \in$ $\{(1, 2), (2, 1)\},\$ $t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2)) = t(K(n-1,n,n,n+1,n+1))$ $(1, n, n, n + 1, n + 1, n + 2)) - s(4n + 3)$ for $(i, j) \in$ $\{(1, 4), (4, 1), (2, 3)\},\$ $t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2)) = t(K(n-1,n,n,n+1,n+1))$ $1, n, n, n + 1, n + 1, n + 2)$) – $s(4n + 2)$ for $(i, j) \in$ $\{(1,6), (6, 1), (2, 4), (4, 2)\},\$ $t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2)) = t(K(n-1,n,n,n+1,n+1))$ $1, n, n, n + 1, n + 1, n + 2)$) – $s(4n + 1)$ for $(i, j) \in$ $\{(2,6),(6,2),(4,5)\},\$ $t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2)) = t(K(n-1,n,n,n+1,n+1))$ $1, n, n, n+1, n+1, n+2)$) – 4sn for $(i, j) \in \{(4, 6), (6, 4)\}.$

Recalling

 $F \in \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2) | (i,j) \in \{(1,2),$ $(2, 1), (4, 6), (6, 4)\}$

and $t(H) = t(F)$, thus we have $H, F \in \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2) | (i,j) \in$ $\{(1, 2),$ $(2, 1)$ }

or

$$
H, F \in \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2)|(i,j) \in \{(4,6), (6,4)\}\}.
$$

It follows from Lemmas 2.1 and 2.6 that

$$
P(K_{1,2}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2),\lambda) \neq
$$

\n
$$
P(K_{2,1}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2),\lambda);
$$

\n
$$
P(K_{4,6}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2),\lambda) \neq
$$

\n
$$
P(K_{6,4}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2),\lambda).
$$

Hence, by Lemma 2.1, we conclude that the graphs $K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1,n+2)$ are χ -unique where $n \geq s + 3$ for each $(i, j) \in 1, 2$, $(2, 1)$, $(4, 6)$, $(6, 4)$.

Let $K_{i,j}^{-sK_2}(n_1, n_2, n_3, n_4, n_5, n_6)$ denotes the graph obtained from $K(n_1, n_2, n_3, n_4, n_5, n_6)$ by deleting a set of s edges that forms a matching in $\langle A_i \cup A_j \rangle$. We now investigate the chromatically unique 6-partite graphs with $6n + 3$ vertices and a set S of s edges deleted where the deleted edges induce a matching sK_2 .

Theorem 5.7 If $n \geq s + 3$, then the graphs $K_{1,2}^{-sK_2}(n 1, n, n+1, n+1, n+1, n+1$) are χ -unique.

Proof. Let $F \sim K_{1,2}^{-sK_2}(n-1,n,n+1,n+1,n+1,n+1)$. It is sufficient to prove that $F = K_{1,2}^{-sK_2}(n-1,n,n+1,n+1)$ $1, n+1, n+1$). By Theorem 4.2 and Lemma 2.4, we have $F \in \mathcal{K}^{-s}(n-1, n, n+1, n+1, n+1, n+1)$ and $\alpha'(F) = s$. Let $F = G - S$ where $G = K(n - 1, n, n + 1, n + 1, n +$ $1, n + 1$). Next we consider the number of triangles in F. Let $e_i \in S$ and $t(e_i)$ be the number of triangles in G containing the edge e_i . It is easy to see that $t(e_i) \leq 4n+4$. As $n - 1 \le n < n + 1 \le n + 1 \le n + 1 \le n + 1$, we know that $t(e_i)=4n + 4$ if and only if e_i is an edge in the subgraph $\langle A_1 \cup A_2 \rangle$ in G. So we have

$$
t(F) \ge t(G) - \sum_{i=1}^{s} t(e_i) \ge t(G) - s(4n + 4);
$$

and the equality holds if and only if each edge e_i in S is an edge of the subgraph $\langle A_1 \cup A_2 \rangle$ in G.

Note that $t(F) = t(G) - s(4n + 4)$ and $\alpha'(F) = s$. By Lemma 2.4, we know that $F = K_{1,2}^{-sK_2}(n-1, n, n+1, n+1)$ $1, n+1, n+1$). This completes the proof.

Similarly to the proof of Theorem 5.7, we can prove Theorem 5.8.

Theorem 5.8 If $n \geq s + 3$, then the graphs $K_{1,2}^{-sK_2}(n -$

 $1, n-1, n+1, n+1, n+1, n+2$ are χ -unique.

We end this paper with the following problems:

[1.] Study the chromaticity of the graph $K_{i,j}^{-K_{1,s}}(n 1, n, n, n+1, n+1, n+2$) where $n \geq s+3$ for each $(i, j) \in$ $\{(1, 4), (4, 1), (2, 3), (1, 6), (6, 1), (2, 4), (4, 2), (2, 6),\}$ $(6, 2), (4, 5)\}.$

[2.] Study the chromaticity of the following graphs: (i) $K_{1,2}^{-sK_2}(n, n, n, n+1, n+1, n+1)$ where $n \geq s+2$, (ii) $K_{1,2}^{-sK_2}(n, n, n, n, n+1, n+2)$ where $n \geq s+3$, (iii) $K_{1,2}^{-sK_2}(n-2,n+1,n+1,n+1,n+1,n+1)$ where $n \geq s+5$, and (iv) $K_{1,2}^{-sK_2}(n-1,n,n,n+1,n+1,n+2)$ where $n > s + 3$.

References

- [1] Bondy, J.A., Murty, U.S.R., Graph Theory with Application, London: Macmillan, 1976.
- [2] Brenti, F., Expansions of Chromatic Polynomials and Log-concavity, Trans. Amer. Math. Soc. 332(2)(1992), pp. 729–756.
- [3] Chen, X.E., Chromaticity on 6-partite graphs with $6n+5$ vertices, *Pure and Applied Math.* $21(2)(2005)$, pp. 134–141.
- [4] Chia, G.L., Goh, B.H., Koh, K.M. Koh, The chromaticity of some families of complete tripartite graphs, Scientia, Series A: Math.Sci. 2(1988), pp. 27–37.
- [5] Dong, F.M., Koh, K.M., Teo, K.L., Sharp bounds for the number of 3-independent partition and chromaticity of bipartite graphs, J. Graph Theory 37(2001), pp. 48–77.
- [6] Dong, F.M., Koh, K.M., Teo, K.L., Chromatic Polynomials and Chromaticity of Graphs, Word Scientific, 2005.
- [7] Koh, K.M., Teo, K.L., The search for chromatically unique graphs, Graphs Combin. 6(1990), pp. 259– 285.
- [8] K.M. Koh, K.L. Teo, The search for chromatically unique graphs II, Discrete Math. **172** (1997), pp. 59–78.
- [9] Lau, G.C., Peng, Y.H., Chromaticity of complete 3-partite graphs with certain star and matching deleted, submitted.
- [10] Lau, G.C. Lau, Peng, Y.H., Chromaticity of complete 4-partite graphs with certain star and matching deleted, submitted.
- [11] Read, R.C. Read, Tutte, W.T., Chromatic Polynomials, In: L.W. Beineke and R.J. Wilson, eds. Selected Topics in Graph Theory (II), New York: Academic Press,(1988), pp. 15-42.
- [12] Roslan, H., Ameen, A. Sh., Peng, Y. H., Zhao, H.X., Chromaticity of complete 5-partite graphs with certain star and matching deleted, submitted.
- [13] Roslan, H., Ameen, A. Sh., Peng, Y. H., Zhao, H.X., Chromaticity of complete 5-partite graphs with certain star and matching deleted II, submitted.
- [14] Roslan, H., Ameen, A. Sh., Peng, Y. H., Zhao, H.X., On Chromatic Uniqueness of certain 5-partite graphs, Journal of Applied Mathematics and Computing, 2009, DOI 10.1007/s12190-009-0374-y.
- [15] Roslan, H., Ameen, A. Sh., Peng, Y. H., Zhao, H.X., Chromaticity of complete 6-partite graphs with certain star and matching deleted deleted, submitted.
- [16] Roslan, H., Ameen, A. Sh., Peng, Y. H., Zhao, H.X., Chromaticity of complete 6-partite graphs with certain star and matching deleted deleted II, submitted.
- [17] Roslan, H., Ameen, A. Sh., Peng, Y. H., On chromatic uniqueness of certain 6-partite graphs, submitted.
- [18] Zhao, H.X. Zhao, Liu, R.Y., Zhang, S.G., Classification of complete 5-partite graphs and chromaticity of 5-partite graphs with 5n vertices, Appl. Math. J.Chinese Univ. Ser. B. 19(1) (2004), pp. 116–124.
- [19] Zhao. H.X., On the chromaticity of 5-partite graphs with 5n+4 vertices , J. of Lanzhou Univ. (Natural Sciences) 40(3)(2004), pp. 12–16 (in Chinese).
- [20] Zhao, H.X., Chromaticity and adjoint polynomials of graphs, Ph.D. Thesis University of Twente (2005) Netherland.