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Abstract: Medical data classification is an important factor in improving diagnosis and treatment and
can assist physicians in making decisions about serious diseases by collecting symptoms and medical
analyses. In this work, hybrid classification optimization methods such as Genetic Algorithm (GA),
Particle Swam Optimization (PSO), and Fireworks Algorithm (FWA), are proposed for enhancing the
classification accuracy of the Artificial Neural Network (ANN). The enhancement process is tested
through two experiments. First, the proposed algorithms are applied on five benchmark medical
data sets from the repository of the University of California in Irvine (UCI). The model with the
best results is then used in the second experiment, which focuses on tuning the parameters of the
selected algorithm by choosing a different number of iterations in ANNs with different numbers
of hidden layers. Enhanced ANN with the three optimization algorithms are tested on biological
gene sequence big dataset obtained from The Cancer Genome Atlas (TCGA) repository. GA and
FWA are statistically significant but PSO was statistically not, and GA overcame PSO and FWA in
performance. The methodology is successful and registers improvements in every step, as significant
results are obtained.
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1. Introduction

Medical data classification is an important factor in enhancing diagnosis and treatment. Moreover,
this field continues to grow for computer researchers because of the major role played by medical
data in human life. Classifying medical data can assist physicians in making decisions about serious
diseases by collecting symptoms and medical analyses. Symptoms of patients are used as attributes
for a disease data set, which also considers the number of instances.

The large amount of available medical data might be useful in healthcare. Data mining can be
used in analyses of medical centers for providing sufficient sources, timely detection, and prevention of
diseases, and avoiding high expenses caused by undesired and costly medical tests [1]. Numerous data
mining approaches are implemented by scientists for diagnosing and treating various diseases, such as
diabetes [2], liver disorder [3], Parkinson’s [4], and cancer [5]. The artificial neural network (ANN)
is used widely in disease mining classification and prediction; when performed with conventional
backpropagation training, ANN improves accuracy and efficiency Mandal and Banerjee [6].

Heider et al. proposed a neural network cluster, which consists of four subfamily networks, to
assign a small GTPase to one of the subfamilies and a filter network to identify small GTPases [7].
Desell et al. presented an ant colony optimization algorithm to evolve the structure of deep recurrent
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neural networks. By contrast, ant colony optimization algorithm versions for continuous parameter
optimization have been used to train the weights of neural networks [8]. Mizuta et al. [9] proposed
genetic algorithms to design and train neural networks, in order to obtain the best network structure
and the optimized parameter set concurrently. Meanwhile, a fitness function depending on output
errors and simplicity in the structure of the network is introduced. Blum and Socha initially presented
an ant colony optimization approach for discrete optimization problems [10].

Örkcü et al. developed a hybrid intelligent model (hybrid genetic algorithm and simulated
annealing) for training ANNs that aim to exploit the advantages of the genetic and simulated annealing
algorithms and alleviate their limitations. The model was applied to three benchmark data sets, namely,
Breast Cancer Wisconsin (WDBC), Pima Indians Diabetes (PID), and Liver Disorders (LD) [5].

Seera and Lim proposed a hybrid intelligent system that integrates fuzzy min–max neural
network with classification and regression tree and random forest. This hybrid system aims to
exploit the advantages and reduce the limitations of the constituent models, learn incrementally using
fuzzy min–max neural network, explain its predicted outputs with classification and regression tree,
and achieve high classification performance by random forest [11].

Dutta et al. proposed an improved firework with an ANN model for classifying five benchmark
data sets from the University of California, Irvine (UCI) repository [2,12].

In Zainuddin et al. [13], a wavelet neural network was used as a classifier on two epileptic seizure
benchmark data sets from the UCI repository; an algorithm based on enhanced harmony search was
used for feature selection.

Varma et al. developed an approach to tackling boundaries of decision trees and identifying split
points using the Gini index in diagnosis (PID) [14].

Maddouri and Elloumi [15] presented four separate machine learning approaches for biological
sequences classification. For recent progress of big data applications in the health-care domains the
readers, refer to Luo et al. [16]. Guarracino et al. proposed a feature selection technique to train a
generalized classifier with a significantly smaller subset of points and features of the original data [17].
To help biomarker discovery in cancer Celli et al. [18] studied DNA methylation data.

Nearly all of these proposed methods and algorithms focus on hybridizing ANN with one or
more optimization algorithms [5], or attempt to improve or change the kernel of ANN [19], but does
not bind between the structural change of ANN and the number of iterations of the metaheuristic
algorithm. This limitation led to the idea of studying the impact of selecting different numbers of
iterations for more than one structure of ANN.

This paper is structured as follows. The next section discusses the materials, methodology
(including the algorithms), proposed work, and specifications of the medical datasets. Section 3
presents the results of the experiments. Section 4 discusses the simulation results in detail. Section 5
concludes the paper and presents recommendations for future work.

2. Materials and Methods

2.1. Artificial Neural Network

Essentially, ANN can be used as a classification model by mapping input data to the approximate
desired output and consists of an input layer (the layer that receives inputs), output layer (the layer
that provides outputs), and hidden layer(s) between them according to the model.

In this study, the inputs to the ANN are the attributes from the disease data set. This input
goes through the input layer and is multiplied by weights, which are initialized randomly in the
beginning, with respect to neurons in the hidden layers where the summation is provided to the
activation function, as shown in Equations (1) and (2).

s(x) =
n

∑
i=1

xiwi (1)
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The output of the neuron is specified after examining the summation results obtained with the
activation function. In the proposed model, the sigmoid function is used, as shown in Equation (2).

f =
1

1 + e−s(x)
(2)

In this study, the data set is divided into training (40%), validation (30%), and test (30%) data sets.
The trained neural network structure and the training set weights (w1, . . . , wn) are used to evaluate
the populations and as input to the metaheuristic algorithms, respectively.

2.2. Optimization Algorithms

This study aims to enhance ANN by hybridizing it with three optimization algorithms, namely,
genetic algorithm (GA), particle swarm optimization (PSO), and fireworks algorithm (FWA), which are
considered population-base metaheuristic algorithms.

2.2.1. Genetic Algorithm GA

GA applies evolutionary algorithm on a set of populations to search for optimal solutions
according to fitness functions as in Holland, Mitchell and Goldberg [20–22], and the functionality of
the algorithm is represented in the selection, crossover, and mutation, as shown in Figure 1.
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GA considers population evolutionary algorithms used to search for solutions similar to genetic
evolution in nature.

2.2.2. Particle Swarm Optimization

PSO is a stochastic, organized, and autonomous algorithm Adrian et al. [23] and a decentralized
population-based evolutionary technique Ardjani et al. [24].

The method behind the algorithm is moving particles (population of solution symbols) toward
the solution in the search space.

The set of particle swarms (n) changes its position in each iteration process (i) according to the
velocity vector, which governs the movement direction and distance of each particle, as shown in
Equations (3) and (4).

The PSO process is shown in Figure 2.

velocity(i + 1) = ω ∗ velocity(i) +ϕ1 ∗ (bestLocalPostion − postion(i))
+ϕ2 ∗ (bestGlobalPosition − position(i))

(3)

position(i + 1) = position(i) + velocity(i + 1) (4)

where:

i: number of iterations;
ω: velocity coefficient or scale is normally 1 and decreases during iterations;
ϕ1: fixed scale of difference between current position and local position; and
ϕ2: fixed scale of difference between current position and global position.

2.2.3. Fireworks Algorithm

FWA is an intelligent swarm optimization algorithm created by Tan Ying in 2010 [25].
The algorithm mimics fireworks, which send spark showers that explode around them, Liu et al., Tan,
and Dutta et al. [2,25,26].

In the algorithm, (N) fireworks represent the initial population, and the generated sparks are
potential solutions around the population. Each iteration (firework) generates a number of sparks and
then performs a random mutation for random fireworks to keep variants (diversification).

Sparks of various magnitudes and directions are then generated by the fireworks.
The maximum number of sparks (M) is generated from the firework as follows:

Si = M ∗ f(Xi)

∑N
i=1 f(Xi)

(5)

where:

Si: number of sparks for firework (Xi);
M: maximum number of sparks; and
f(Xi): activation function of firework (Xi).

The explosion spark amplitude can be determined as follows:

Ai = A ∗
F(X(N−i+1))

∑N
i=1 F(Xi)

(6)

where:

Ai: explosion spark amplitude for firework (Xi);
A: maximum amplitude; and
F(Xi): activation function of firework (Xi).

Figure 3 show the steps of FWA.
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2.3. Proposed Work

In this study, ANN is hybridized with three metaheuristic methods, namely, GA, PSO,
and FWA, which are constructed by obtaining the best set of weights for ANN to produce improved
accuracy performance.

The set of weights (w1, . . . , wn) is obtained after training and testing ANN in the first phase.
In the second phase, an improved set of weights (wˆ1, . . . , wˆn) is obtained for the trained ANN using
the optimization algorithms. This new set of weights (wˆ1, . . . , wˆn) should perform most accurately
with the proposed ANN structure.
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Figure 4 depicts the general structure of this study. The first training medical data set with ANN
obtains the set of weights.

2.4. Diseases Data sets

Hybridization between classification methods and optimization algorithms are applied to the
following disease data sets [12].

(1) Pima Indian Diabetes (PID)

According to the National Institute of Diabetes and Digestive and Kidney Diseases, patients in
this data set are pregnant females who are at least 21 years old and of Pima Indian heritage.
Number of instances: 768
Number of attributes: 9 (including class attribute)

(2) Wisconsin Breast Cancer (WDBC)

This data set describes characteristics of the cell nuclei present in the image. Features are
computed from a digitized image of a fine needle aspirate of a breast mass by the University
of Wisconsin.
Number of instances: 569
Number of attributes: 32
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(3) Liver Disorder (LD)

This data set contains seven attributes, five of which are blood test results related to liver disorders
caused by alcohol consumption. The sixth attribute is the number of drinks per day. The seventh
attribute represents class and reveals whether a patient has the disorder or not.
Number of instances: 345
Number of attributes: 7 (including class attribute)

(4) Haberman Surgery Survival (HSS)

This data set is from a study conducted by Billings Hospital of the University of Chicago between
1958 and 1970 on the survival of patients who had undergone surgery for breast cancer.
Number of instances: 306
Number of attributes: 4 (including class attribute)

(5) Parkinson’s (PD)

The data set was created by Max Little of the University of Oxford in collaboration with the
National Centre for Voice and Speech in Denver, Colorado and contains 23 attributes, which are
sound measures, and 197 instances that represent sound records for 31 individuals, 23 of whom
have Parkinson’s disease.

(6) Gene expression cancer (RNA-Seq)

RNA-Seq is a random extraction of gene expression of patients with the following tumor types:
BRCA (breast), KIRC (kidney), COAD (colon), LUAD (lung) and PRAD (prostate).
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The dataset is part of The Cancer Genome Atlas Pan-cancer Analysis Project Yuan et al. [27].
RNA-Seq dataset mentioned in literature as in Cestarelli et al. [28].
RNA-Seq gene expression levels measured by the Illumina HiSeq platform (DNA-to-Data
solutions), to cope with gene expressions as numerical sequences inside the dataset.
Number of instances: 801
Number of attributes: 20531
Number of classes: 5

The specifications of the data sets are shown in Table 1.

Table 1. Specifications of disease datasets and their attributes’ and classes’ numbers.

DATA SET NUMBER OF
INSTANCES

NUMBER OF
ATTRIBUTES CLASS 1 (0) Value CLASS 2 (1) Value

Pima Indian Diabetes
(PID) 768 8 (500) not infected (268) infected

Wisconsin Breast
Cancer (WDBC) 569 31 (357) benign (212) malignant

Liver Disorder (LD) 345 7 (145) not (200) disorder

Haberman Surgery
Survival (HSS) 306 3 (225) lived 5 years (81) deceased

Parkinson’s (PD) 195 23 (48) normal (147) abnormal

Gene expression
cancer (RNA-Seq) 801 20531 5 cancer types: BRCA, KIRC, PRAD,

LUAD, COAD

2.5. Problem Solving Strategy

The strategy of the study is tuning the ANN architecture with specific optimization algorithm
parameters and number of iterations.

This study attempts to prove that changing the neural network structure by tuning metaheuristic
algorithm parameters and increasing the number of iterations improves the performance of ANN and
provides improved accuracy in disease diagnosis problems.

The proposed study is divided into two experiments. The first experiment determines the best
of the three algorithms using the abovementioned strategy. The selected algorithm is used in the
second experiment, in which the specified algorithm parameters are tuned to achieve improved results.
A statistical t-test was used to find the mean differences between ANN and (ANN + PSO) in the five
bench marks. The conditional probability p value obtained from the t-test was used to determine the
statistical significance of the method. Finally, the hybridized algorithms were tested using the big
dataset with multiclass to determine the algorithms’ performance with this dataset.

After several tests, the algorithm parameters were set as follows:

(1) Genetic algorithm GA

Population = 10
Probability of crossover = 0.7
Probability of mutation = 0.1

(2) Particle swarm optimization PSO

Swarm size = 100
Velocity scalar coefficient (w) = 1.0
Velocity change in each iteration = 0.99
First velocity equation coefficient (c1) = 2.0
Second velocity equation coefficient (c2) = 2.0
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(3) Fireworks Algorithm FWA

Number of fireworks = 50
Number of sparks = 5
Maximum function evaluation = 50,000
Gaussian number for mutation = 5
Probability of mutation = 0.3
Spark upper bound = 10
Spark lower bound = −10

3. Results

3.1. Experiment 1

This experiment tests the change in the ANN structure (number of hidden layers). Two and
three of the hidden layers are tested with 500 and 1000 iterations, respectively, for the three proposed
hybridization algorithms on the five disease benchmark data sets.

The experiment design is as follows:

• Hybrid ANN with (GA, PSO, and FWA) for five data sets (two hidden layers for ANN with
500 iterations) (Table 2);

• Hybrid ANN with (GA, PSO, and FWA) for five data sets (two hidden layers for ANN with
1000 iterations) (Table 3);

• Register the improvements between using 500 and 1000 iterations of (GA, PSO, and FWA) in two
hidden layers for the five datasets;

• Hybrid ANN with (GA, PSO, and FWA) for five data sets (three hidden layers for ANN with
500 iterations) (Table 4);

• Hybrid ANN with (GA, PSO, and FWA) for five data sets (three hidden layers for ANN with
1000 iterations) (Table 5);

• Register the improvements between using 500 and 1000 iterations of (GA, PSO, and FWA) in three
hidden layers for the five datasets.

3.2. Results of Experiment 1

The results of implementing the three proposed algorithms on the benchmarks are shown in Tables 2–5.

Table 2. Two-hidden-layer ANN hybridized with optimization algorithms GA, PSO, and FWA for
500 iterations on UCI datasets: Pima Indian Diabetes PID, Wisconsin Breast Cancer WDBC, Liver
Disorder LD, Haberman Surgery Survival HSS, and Parkinson’s PD.

2 Hidden_ 500 Iteration PID WDBC LD HSS PD

Classical ANN 74.35 97.17 57.10 72.88 75.38

Hybridized
ANN + GA 78.78 97.72 72.75 78.10 90.26
ANN + PSO 79.82 97.89 74.52 78.76 90.77
ANN + FWA 79.56 98.07 73.07 78.76 89.23

Table 3. 2-hidden–layer ANN hybridized with optimization algorithms GA, PSO, and FWA for 1000 iterations.

2 Hidden_1000 Iteration PID WDBC LD HSS PD

Classical ANN 74.35 97.17 57.10 72.88 75.38

Hybridized
ANN + GA 79.40 98.07 74.52 78.10 90.77
ANN + PSO 79.82 98.42 74.52 79.08 91.28
ANN + FWA 79.95 98.07 73.33 78.43 91.28
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Tables 2 and 3 show the following improvements:

• ANN + GA: 4 out of 5 benchmarks are improved.
• ANN + PSO: 4 out of 5 benchmarks are improved.
• ANN + FWA: 3 out of 5 benchmarks are improved.

Table 4. 3–hidden-layer ANN hybridized with optimization algorithms GA, PSO, and FWA for
500 iterations.

3 Hidden_ 500 Iteration PID WDBC LD HSS PD

Classical ANN 76.48 95.39 56.81 73.57 80.51

Hybridized
ANN + GA 78.39 97.89 71.59 77.78 90.77
ANN + PSO 79.82 98.24 73.91 78.43 89.74
ANN + FWA 78.39 98.42 70.14 77.78 89.28

Table 5. Three-hidden-layer ANN hybridized with optimization algorithms GA, PSO, and FWA for
1000 iterations.

3 Hidden_ 1000 Iteration PID WDBC LD HSS PD

Classical ANN 76.48 95.39 56.81 73.57 80.51

Hybridized
ANN + GA 78.91 98.07 71.59 78.10 90.77
ANN + PSO 80.21 98.07 75.65 78.76 91.28
ANN + FWA 79.82 98.42 73.91 78.10 90.77

Tables 4 and 5 show the following improvements:

• ANN + GA: Three out of five benchmarks are improved.
• ANN + PSO: Four out of five benchmarks are improved.
• ANN + FWA: Four out of five benchmarks are improved.

Figure 5, shows the performance of each proposed algorithm in enhancing the ANN with three
hidden layers using 1000 iterations. PSO with 3-hidden-layer ANN and 1000 iterations performed
the best in most cases. Therefore, hybridized PSO with ANN is approximately the most promising
algorithm in terms of enhancement.
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Figure 5. Shows experiment 1, the classification performance of the three proposed hybrid algorithms
GA, PSO, and FWA applied on the five diseases data sets: (a) PID; (b) WDBC; (c) LD; (d) HSS; (e) PD.

3.3. Experiment 2

In Experiment 1, PSO obtained the best results on the five benchmark disease data sets except
WDBC, which had the most attributes among the data set’s 30 features. In Experiment 2, ANN was
enhanced with only PSO by tuning parameters with different ANN architectures.

Experiment 2 involved changing the initialize condition of PSO and the swarms fully initialized
around the set of weights obtained from the first ANN training to enforce PSO to start searching locally
in order to increase intensification. Hybridization was performed according to the following strategy
in order to explore search space and guarantee diversification.

• Three hidden layers for ANN with 1000 iterations and 100 swarms.
• Four hidden layers for ANN with 1000 iterations and 100 swarms.
• Four hidden layers for ANN with 1000 iterations and 200 swarms.

3.4. Results of Experiment 2

The results of Experiment 2 are shown in Table 6. Figure 6 show the performances of PSO with
4 hidden layers using 1000 iterations and 200 swarms (PSO population) applied on the five disease data sets.

Table 6. Experiment 2 results, 3- and 4-hidden-layer ANN hybridized with PSO algorithm for
1000 iterations.

Experiment 2 PID WDBC LD HSS PD

Classical ANN 74.35 95.39 57.10 72.88 75.38

Hybridized
ANN + PSO(3,1000), 100 swarm 80.21 98.42 74.49 78.43 90.26
ANN + PSO(4,1000), 100 swarm 79.56 97.01 76.52 78.43 91.28
ANN + PSO(4,1000), 200 swarm 80.34 98.42 76.52 79.41 92.31
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Figure 6. The performances of PSO with four hidden layers using 1000 iterations and 200 swarms
(PSO population) applied on the five disease data sets: (a) PID; (b) WDBC; (c) LD; (d) HSS; (e) PD.

A t-test is a statistical hypothesis test that compares the means of two algorithms. T-test uses
correlation and regression to determine how two algorithms vary. The t-test statistic is converted to a
conditional probability called p-value. The p-value answers the question, ‘If the null hypothesis is true,
what is the probability of observing the current data or data that is more extreme?’

A small p-value provides evidence against the null hypothesis because the observed data are
unlikely when the null hypothesis is true (Afifi and Azen 2014) [29].

We considered the default value (0.05) as an indicator to test significance, and (p < 0.05) was
considered significant.

The formula involved in the computation of p-value, which is integral to the t-distribution
probability density function, is detailed below in Equation (7):

1√
dfβ( 1

2 , df
2 )

∫ t

−t

(
−x2

df

)
− df + 1

2
dx (7)
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where df is the degree of freedom and β is the beta function [30].
Table 7 shows that the statistical test on the five UCI benchmarks are significant according to

finding the differences between ANN and optimized ANN + PSO.

Table 7. Statistical test and of 5 University of California in Irvine (UCI) datasets: Pima Indian Diabetes
PID, Wisconsin Breast Cancer WDBC, Liver Disorder LD, Haberman Surgery Survival HSS, and
Parkinson’s PD, between ANN and ANN + PSO.

PIMA WDBC LD HSS PD

Mean difference 0.02889000 0.00929500 0.17477500 0.02254000 0.03258000
T score 16.3009 9.9128 64.9535 30.3677 5.3323

standard error of difference 0.002 0.001 0.003 0.001 0.006
Difference verdict Significant Significant Significant Significant Significant

Testing the Hybridized Algorithms with RNA-Seq

Large medical datasets were used in the proposed study and tested with the Cancer RNA-Seq
Data Set as in Cestarelli et al. [28], which is a random extraction of gene expression of patients with the
following tumor types: BRCA, KIRC, COAD, LUAD and PRAD.

GA, PSO and FWA registered enhancements when hybridized with ANN-4 hidden layers
and applied on the RNA-Seq for classification, as shown in Table 8. GA overcame the other
optimization algorithms.

Table 8. Accuracy of RNA-Seq in ANN and the three algorithms.

ANN ANN + PSO ANN + GA ANN + FWA

RNA-Seq 93.68 95.03 98.75 96.31

The statistical test shows that GA and FWA are statistically significant, whereas PSO was not
significant, as shown in Table 9.

Table 9. Statistical test of RNA-Seq between ANN and the three algorithms GA, FWA, and PSO.

ANN + GA ANN + FWA ANN + PSO

Mean difference 0.004328 0.033836 −0.007176
T score 2.9800 7.6776 0.4819

standard error of difference 0.001 0.004 0.015
Difference verdict Significant Significant Not Significant

4. Discussion

The number of hidden layers is one of the most effective factors in ANN learning because
increasing the number of these layers will increase the complexity of ANN and cause overfitting in its
learning. Moreover, increasing this number allows the model to obtain precise classification results.
To address the overfitting problem and improve the classification, metaheuristic algorithms are used
for the ANN generalization.

Metaheuristic algorithms are search algorithms that optimize mathematical models to obtain
better solutions [31,32]. These algorithms iteratively employ different strategies. For instance, tuning
the parameters accurately within a single iteration of the algorithm will prevent algorithm divergence,
and increasing the number of iterations will enable the mathematical model (the ANN model in this
paper) to dive deeper and search for better solutions within the search space.

In experiment 1, we observe the following:
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• As shown in Tables 2 and 3, increasing the number of iterations in two hidden layers from 500 to
1000 will produce the following effects:

(1) ANN + GA: four out of five benchmarks are improved.
(2) ANN + PSO: four out of five benchmarks are improved.
(3) ANN + FWA: three out of five benchmarks are improved.

• As shown in Tables 2 and 3, increasing the number of iterations in three hidden layers from 500 to
1000 will produce the following effects:

(1) ANN + GA: four out of five benchmarks are improved.
(2) ANN + PSO: four out of five benchmarks are improved.
(3) ANN + FWA: three out of five benchmarks are improved.

The results of experiment 1 prove that the hybrid ANNPSO algorithm is the most suitable
methodology for this paper.

In experiment 2, we use the best algorithm identified in experiment 1 and fine-tune the parameters
of the PSO algorithm. We start from population initialization. In experiment 1, the population
initialization for the three algorithms was two halves, first half constructed from ANN set of weights
(w1, . . . ,wn) and around neighbors, and the second half initialized randomly. In experiment 2, all of
the initial population are taken from the ANN set of weights and neighbors.

Population density is useful in finding better solutions in the hyperspace. Therefore, we test
100 and 200 swarms as discussed in Section 3.3, experiment 2, and Table 6. The empirical results of
experiment 2 revealed the following:

• ANN + PSO (3 hidden layers, 100 swarms): 2 out of 5 medical datasets are improved.
• ANN + PSO (4 hidden layers, 100 swarms): 2 out of 5 medical datasets are improved.
• ANN + PSO (4 hidden layers, 200 swarms): all medical datasets are improved.

These results indicate that PSO is the best of all algorithms tested in this study. The results of this
algorithm also compete well with those of some state-of-the-art algorithms as reported in Table 10.
Figure 7, shows PSO algorithm enhancement on ANN in the five medical datasets.

Table 10. Comparative results.

Pima Indian Diabetes (PID)

77.60% (Au et al., 2001) [33]
75.29% (P. Luuka, 2009) [34]

77.60% (Örkcü, 2015) [5]
80.34% (proposed)

Wisconsin Breast Cancer (WDBC)

94.00% (Örkcü, 2011) [35]
97.49% (P. Luuka, 2011) [36]

97.29% (Seara & Lim, 2014) [11]
98.42% (proposed)

Liver Disorder (LD)
70.25% (Luuka, 2009) [34]

74.86% (Lee and Mangasarian,
2001) [37]

76.52% (proposed)

Haberman Surgery Survival (HSS)
72.70% (Pham, 2011) [38]

51.96% (Yang et al., 2017) [39]
79.41% (proposed).

Parkinson’s (PD)

85.03% (p. Luuka, 2011) [36]
81.34% (Rustempasic & Can 2013) [40]

93.60% (Shrivastava 2017) [4]
92.31% (proposed).
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Figure 7. Bar charts show accuracy enhancement of experiment 2.

The statistical test clearly shows that the differences between accuracies in ANN and ANN + PSO
are significant in the five UCI datasets.

The above results did not mean that hybridized PSOANN is a general universal approach, and this
notion is incorrect. The No Free Lunch theorem [27,35] declares that no superior optimization algorithm
exists for all problems. This finding emerged from applying the same optimization algorithms on
RNA-Seq dataset, and we can note that PSO, which was competitive in first five datasets, failed with
big data in the RNA-Seq.

The aim of this study was to discuss the effect of population-metaheuristic number of iterations
on different ANN structures and the influence of tune-metaheuristic parameters. We tested the
performance of the population algorithms in classifying the large biomedical dataset, which allowed
us to experiment with the No Free Lunch theorem. Future work can extend the findings of this study to
different fields and applications. For instance, future research can study the impact of choosing different
ANN kernel functions on hybridization or on selecting different types of metaheuristic algorithms,
such as trajectory algorithms. The metaheuristic mathematical model for balancing exploration with
explanation can be effectively improved by hybridizing metaheuristic and machine learning.

5. Conclusions

This paper investigates the hybridization of ANN with three optimization algorithms, namely,
GA, PSO, and FWA. PSO is used to hybridize ANN with different layer structures, and the algorithm
parameters are tuned. Comparisons of results on the five utilized medical data sets indicate that
PSO is competitive in comparison with most of the other approaches in the literature (Table 10).
The RNA-Seq classification experiment was a practical application of the No Free Lunch theorem,
which establishes that a no universal optimization algorithm is found in all other algorithms for all
optimization problems. In future studies, our approach can be applied to different medical problems.

Author Contributions: I.S. and K.S. formulated the concept and developed the algorithms; I.S. performed the
experiments and coded the algorithms; O.N.U., in his advisory role, evaluated and supervised the study; I.S. and
O.B. arranged the results; O.B. reviewed the study and made significant improvements.

Conflicts of Interest: The authors declare no conflict of interest.
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