

Copyright ©2018 Ghaith O. Mahdi, Murtadha M. Hamad. This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering &Technology, 7 (4) (2018) 6175-6180

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

doi: 10.14419/ijet.v7i4.23127

Research paper

Duplicate detection and elimination in

xml data for a data warehouse

Ghaith O. Mahdi 1 *, Murtadha M. Hamad 1

1 College of Computer Sciences and Information Technology, University of Anbar, Ramadi, Iraq

*Corresponding author E-mail: ghaithabdullah85@gmail.com

Abstract

Due to the significant increase in the volume of data in recent decades, the problem of duplicate data has emerged because of the multi-

plicity of resources where the data is collected in different formats. The presence of duplicates comes as a result of the existence of dif-

ferent formulas of data. Thus, it is necessary to clean the duplicate data to access a pure data set. The main concern of this study is to

clean data which Known by its complex hierarchal structure in data warehouse. This can be achieved by detecting duplicate in large data

bases in order to increase the efficiency of data mining. In the current study the proposed system of duplicate elements passes through

three-stages. The first stage (Pre-processing stage) includes two parts: the first part is the elimination of the exact match which, in turn,

works to eliminate many of the identical elements completely. This procedure saves a lot of time and effort by preventing the entrance of

many elements to the processing stage which are usually known by its complexity. In the second part blocking technique is used based

on Levenshtein distance to minimize the number of comparisons and to maximize the accuracy of blocking elements than the traditional

ones. These processes are performed to improve the dataset. The second stage (Processing stage) is taken to compute the similarity ratios

between each pair of elements within each block by using smith waterman similarity algorithm. The third stage is the classification stage

of the elements in which an element is identified whether it is duplicate or non-duplicate. The Artificial Neural Network technique

(Back-Propagation) is used to meet this purpose. The threshold 0.65 has been determined which is relied on the results obtained. The

Artificial Neural Network (Back-Propagation) is used to classify the elements in to duplicate and non-duplicate. The efficiency of the

proposed system is represented by the accuracy obtained which is closer to 100% through reducing the number of "false negatives" and

"false positive" relative to the "true positive".

Keywords: Blocking Technique; Levenshtein Distance; Smith Waterman Similarity; ANN (Back Propagation)

1. Introduction

XML is one of the popular kinds of data in data warehouses. Er-

rors and inconsistences are usually present with such kind of data

hence a need for XML data cleaning is so critical, this can be per-

formed by identifying and eliminating duplicate [1]. Different

representations of the same entity are given in a day thus they

become a problem in the field of duplicate detection. A correct

matching strategy is essentially used for identifying the duplicated

entity because the same logical real world entity sometimes has

multiple representations in the data warehouse. Identifying and

removing duplicated data is not the sole problem in the compre-

hensive area of data cleaning and data quality in thedata ware-

house [2] [3]. XML data hierarchically organized is semi-

structured. The process of duplicate detection in XML data is

labeled by its complication than well-structured data[4].

The process of detecting and eliminating duplicate records in hier-

archical data is one of the important processes to support the con-

cept of data cleaning and data integrating. The existence of more

than one record of the same real world entity has a negative im-

pact on the performance of operations in the data warehouse.

Therefore, it is necessary to find a technique for detecting the

duplicate records and delete it even if these records are not exactly

identical.

2. Related works

In this part, we survey some previous studies on the detection of

duplicates data and approaches to eliminate them. These ap-

proaches have close contact with our work.

S. Chaudhuri et. al. [5] improves an algorithm to eliminate dupli-

cates in dimensional tables in data warehouse names DELPHI

(Duplicate Elimination in the Presence of Hierarchies) that reduc-

es the number of false positives without lost duplicates. Authors

utilize dimensional hierarchy which contains a series of relations

linked by key–foreign key is adopted to improve high quality du-

plicate elimination algorithm and then it evaluates on actual da-

tasets from an operational data warehouses. final duplicate detec-

tion function is a weighted voting of the predictions from using

co-occurrence similarity function and textual similarity function.

DELPHI algorithm only applies to 1:N relationship. It cannot

consider structure

F. Naumann et. al.[6] DogmatiX Tracks down Duplicates in XML.

DogmatiX defines a general framework for identifying the dupli-

cates. The records are checked whether they are duplicates or not

based on their values. In real world, records are represented in

several styles for the same object. The dogmatix framework is

flexible to work on various algorithms and can add new methods

to improve the framework. This framework consists of three types,

Duplicate definition: Defines when two objects are duplicates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

6176 International Journal of Engineering & Technology

Candidate definition: Defines which document should be compare.

Duplicate detection: Defines How Duplicates are searched. Dog-

matiX framework not good when dataset is too small or too large.

D. Milano et.al [7] suggested a method for measuring the distance

of each XML data with one another, known as structure aware

XML distance. Using the edit distance measure, similarity meas-

ure can be evaluated. This method compares only a portion of

XML data tree whose structure is similar nature.

Akash R. Petkar and Vijay B. Patil [8]suggested an algorithm to

define whether two records are duplicates or not depend on a giv-

en threshold. For finding the duplicates .The algorithm uses a

Bayesian network. Called as Xml duplication using Xpath that

requires little user interaction, since user just needs to provide the

Xml dataset file and depend on that file the user has to provide the

threshold value. The disadvantage in this technique is “ High

number of pairwise comparisons compromises efficiency”.

Dr. Babasaheb Ambedkar [9]suggested the method that can find

out similarities in the XML data elements. Bayesian network will

determine the probability of two XML elements are similar. The

Bayesian Network is used to configure elements structure which

are being compared with each other and improved the efficiency

and effectiveness. Also Check of typographical error in which two

elements are compared by deleting its white spaces, also check for

the other type of typographical error where spelling of any word is

differing as per pronunciation of that individual. The Bayesian

Network not focused on run time efficiency.

M. Bilenko et. al. [18] suggested adaptive framework for automat-

ically learning blocking functions that are efficient and accurate.

where describe two formulations based on learnable blocking

functions and offer learning algorithms for training them. The

effectiveness of the proposed methods is shown on real and simu-

lated datasets, on which they verify to be more accurate than non-

adaptive blocking methods. Disadvantage of this technique is the

adaptation can increase or reduce number of comparisons, in other

words, does not always ensure the reduction of the number of

comparisons.

3. Literature review

3.1. Definition of duplication

Duplicate is defined as representing the same real entity in more

than one form. The challenge of duplicate detection is to identify

duplicate representation which are not precisely identical as a

result of the existential mistakes in data such as typographical

errors and spelling mistakes or there is no standard formula of data

for example the European date and the American one are differ-

ently represented respectively like (day, month, year)(month/day/

year). Thus, we require complex algorithms to calculate the simi-

larity between pairs of records. Such algorithms are crucial for

data cleansing and integration[10].

3.2. Blocking technique

The computation of similar records are specifically significant in

linkage system. In addition to clustering, data mining task and

schema mapping algorithms. This ascribes to the quadratic in-

creasing growth of the object number with the size of dataset. It is

impractical and prohibitive to calculate similarity between all pairs

specially for large and complex dataset. Blocking methods are

manipulated to alleviate this problem through computing the simi-

larity within the same block solely. Consequently, useless compar-

isons are avoided. The blocking methods which are previously

proposed manually construct an index through relying on similari-

ty function and selecting set of predicates then they are followed

by hand tuning of parameters. Efficiency is regarded as the great

challenge in duplicate detection particularly when the dataset are

huge. Comparing the record pairs which are not duplicated and

similar unique entity keys available in all data bases will waste a

lot of time and will be trivial. In most cases, no shared keys avail-

able between all records to be linked for example (A) and (B) thus

each record from A must be compared with all records from B.

The number of comparisons consequently come from A*B. For

example A and B are 200,000 consecutively. Therefore, the total

outcome will be (Forty billions) [11]. Blocking algorithms mean

the use of some blocking keys to classify a set of records into

disjoint blocks. Here the number of comparisons are highly mini-

mized as a result of the comparisons within the same block. The

good partitioning predicate should be carefully selected which

determines the number and the size of partitions namely duplicate

should be grouped in the same partition e.g. a typical partitioning

of CRM application is zip code while if the same zip code availa-

ble in same partition they are realized as duplicate records. Other

partitioning may be grouped according to the last name or some

fixed prefixes. The use of blocking technique effects execution

time totally.

 In some cases, the existence of erroneous values in certain attrib-

utes utilized to create the blocking keys lies behind grouping du-

plicate pairs in various blocks so it is no considered as

duplicate[12].

Fig. 1: Blocking Technique.

3.3. Levenshtein distance

Levenshtein distance is one of the prime algorithms which is uti-

lized to measure the similarity between two strings: the first string

is widely known as source string (s) and the second one is also

known as a target string(t). The distance is the number of deletions,

insertions, or substitutions which are lacked to transform s into t.

The highly different strings are usually characterized by their hav-

ing for greater Levenshtein distance[14].

Algorithm: Levenshtein Distance (Edit Distance)

Goal: Compute the distance between two strings

Input: Two string Source & Target

Output: Distance between Source & Target

1) Start

2) Input (Source, Target) Where Source = string1 & Target =

string2

3) Compute the Source length & Target length

4) If (Source length=0)

5) Return (Target length) & Exit

6) Else if (Target length=0)

7) Return (Source length) & Exit

8) Else construct a matrix containing (0...Source length) as

rows & (0. Target length) as columns

9) For i= 1: Source length

10) For j= 1: Target length

11) If Source[i] = Target[j],

12) put above diagonal value in the cell (d [i, j]:= d[i-1, j-1]).

13) If Source[i] <> Target[j]

14) Set cell d [i, j] of the matrix equal to the minimum of:

a) d [i-1, j] + 1.

b) d [i, j-1] + 1.

c) d [i-1, j-1] +1.

15) End For

16) End For

17) Return (Distance [source length, Target length])

18) End.

International Journal of Engineering & Technology 6177

Fig. 2: Show How the Levenshtein Distance Work in Simple Example.

3.4. Smith waterman algorithm

The Smith waterman similarity algorithm such the edit distance is

defined the sequence of processes necessary to convert one string

to another, but assigns lower weights to conversions between

similar sounding characters and uses a specialized logic to deal

with alignment gaps," i.e. there is a ‘gap start’ penalty correspond-

ing to the beginning of a string of unmatched characters, and a

separate ‘gap continuation’ penalty for its continuation". As with

n-gram, similarities can be obtained through calculating the result-

ing value through the length of the shorter and the longer string, or

the average length [15]. The Smith-Waterman similarity is a dy-

namic programming which gets the best local alignment between

strings. The optimal local alignment acquired by the algorithm is

accomplished in two phases. First, the alignment matrix is com-

puted depend on the relationship between the characters. The op-

timal local alignment is initiated by finding the maximum element

in the alignment matrix, which links the degree to the similarity

between the two sequences, and tracing back the alignment matrix

until a zero element is obtained [16]. When the local alignment is

computed, a matrix Hi,j is utilized to keep track of score of similar-

ity between two sequences to be aligned (Ai and Bj). Each ele-

ment of the matrix Hi,j is computed according to the equation be-

low:

Where Si,j is the similarity score of comparing sequence Ai to se-

quence Bj and d is the penalty for a mismatch. The algorithm in-

cludes the three steps below:

a) Initialization step

b) Matrix fill step

c) Trace back step

The matrix is firstly initialized with Hi,0 = 0 and H0,j = 0, for all i

and j. This is indicated as the initialization step. After the initiali-

zation, a matrix fill step is executed employing the above Equation,

which includes all entries in the matrix. The trace back step is the

final step, where the scores in the matrix are traced back to inspect

for optimal local alignment. The trace back starts at the cell with

the highest score in the matrix and continues up to the cell, where

the score falls down to a predefined minimum threshold. In order

to start the trace back, the algorithm requires to find the cell with

the maximum value, which is done by traversing the entire

matrix[17]. In this research we doesn't need to trace back phase.

To compute the similarity score between two string we apply the

following Equations:

Algorithm: Smith waterman algorithm

Goal: Compute the similarity between two strings

Input: Two string str1, str2 and (match, mismatch, gap) value

Output: similarity score between str1 and str2

1) Start

Compute n, m where n= length (Str1), m=length (Str2)

2) For i= 1 to n

3) Return (n)

4) For j= 1 to m

5) Return (m)

Compute Max-distance

6) Max-distance=min (n, m) *max (match value, gap value)

Construct a matrix H and initialize the first column and first row.

The matrix size is (n+1) *(m+1) .

7) For i= 1 to n

8) Matrix[i][0] = 0

9) For j= 1 to m

10) Matrix[0][j] =0

11) End Loop i

12) End Loop j

Filling the matrix.

13) For i= 1 to n

14) For j= 1 to m

15) letter1 = substr(Str1, j-1, 1)

16) letter2 = substr(Str2, i-1, 1)

17) If letter1 equal letter2

18) Diagonal value = Matrix[i-1] [j-1] + match value

Else

19) Diagonal value = Matrix[i-1] [j-1] +mismatch value

20) End If

21) Up value = Matrix[i-1] [j] + gap value

22) Left value = Matrix[i][j-1] + gap value

23) Current value= max (0, Diagonal value, Up value, Left val-

ue)

24) Matrix[i][j] = Current value

25) Current value=max (Current value, Matrix[i][j-1])

26) End Loop i

27) End Loop j

Compute the similarity score between str1 and str2

28) Similarity score= Current value/Max-distance

29) Return (similarity score)

30) End

Simple example: Compute the similarity score between GHA and

GAS Use match value =+3, mismatch value= -3, gap value= 2

6178 International Journal of Engineering & Technology

4. Proposed method

In this section, we commence to manifest the basic phases of the

proposed work "Duplicate records detection and eliminations".

The parts of the system will be clarified in the following sub seg-

ment of this part with some illustrations and proposed calculations.

In this paper, the blocking technique is developed to classify the

XML data into groups. Traditional blocking technique cannot be

used because XML data is semi-structured and there is no field in

which the data is divide as it is in structured data

In this paper, we suggest utilize a blocking technique to improve

the quality of grouping which is based on the text similarity calcu-

lation in the duplicate detection system. Furthermore, the quality

of grouping is enhanced by averting any record which is not relat-

ed to the block. This algorithm produces a most accurate group

which has a closely related object by using Levenshtein distance.

we split the dataset into several blocks depending on a linear equa-

tion to extract the first element as a base then we extract the rest of

the base elements as well as Levenshtein distance algorithm is

applied to calculate the distance between each element and all

base elements. The distribution of the elements on the groups is

relied on the minimum distance. After dividing the data set into

groups, a similarity algorithm is used to calculate the similarity

ratio between all elements within each group. This procedure does

not only reduce the number of comparisons but also increases

accuracy.

Smith waterman algorithm and artificial neural network (ANN)

are used to detect and eliminate the duplicate record.

Fig. 4: Flowchart for Proposed Work.

5. Artificial neural network (ANN)

In this work, the researcher uses the Back-propagation (BP) Neu-

ral Network to perform the classification task of duplicate records

by taking the similarity values for four attributes(publication-id,

author, title, venue). The smith waterman algorithm is applied to

compute the similarity values for the records within each block.

The similarity values which are larger than the predefined thresh-

old are sent to neural network to classify the Record as duplicate

or not. Before this step, the similarity ratios of records are deter-

mined when the data is in comparison with other records within

the same block. The Smith waterman similarity algorithm is em-

ployed to compare each of pair records in the same block. The

output of this process contains percentages of matching. The re-

searcher builds the artificial neural network that learns from the

resulting values of the similarity algorithm previously mentioned.

These values represent the similarity ratios of duplicated and non-

duplicated elements where the artificial neural network is fed by a

set of similarity values for the purpose of training. In this work,

the neural network was fed by four similarity values and the target

(+1) for positive states (duplicate element), similarity values and

(-1) for negative states (non-duplicate element). The nutrition

process continues until the neural network learns (stability stage) ,

In other words, when it reaches the stability stage, it can classify

all the elements which are sent. The back-propagation algorithm

was used to train the neural network in this work. For example:

assuming the following two records fall within the same block:

First element of xml:

<publication id="fahlman1990a">

 <author id="117">S.E. Fahlman and C. Lebiere. </author>

 <title>The</title>

 <title>cascade-correlation</title>

 <title>learning</title>

 <title>architecture. </title>

 <venue>

 <venue pubid="fahlman1990a" id="29">

 <name>Advances in Neural Information Processing Sys-

tems</name>

 <vol>volume 2</vol>

 <date> 1990. </date>

 </venue>

 </venue>

 </publication>

Second element of xml:

<publication id=" fahlman1990">

 <author id="1">Aha</author>

 <author id="1"> D. W.</author>

 <author id="44"> Kibler</author>

 <author id="5"> D. and Albert</author>

 <title>"Instance-based</title>

 <title>learning</title>

 <title>algorithms",</title>

 <venue>

 <venue pubid=" fahlman1990" id="65">

 <name>Machine Learning 6(1)</name>

 <vol> 2</vol>

 <date> 1990. </date>

 </venue>

 </venue>

 </publication>

Table 1: Smith Waterman Similarity between Two Elements of Xml

 Publication- id Authors Title Venue

(PM) of Xml1 and Xml2 95.28 15 17.64 70.04

Here, a neural network is initiated to learn similarity values from

examples of duplicate and non-duplicate records. The above ex-

amples are fed to the neural network (Back Propagation). Thus, it

can learn from them. Each example includes four values which

represent similarity score and a target. The target is the proposed

result (duplicate or not). As an example, if one regards the above

two elements duplicate then the example consists of similarity

values and the target (+1). Such example is called a positive ex-

ample (duplicate elements). While the example which consists of

similarity values and the target (-1) is called a negative example

(non-duplicate elements). The feeding process continues until the

neural network learns completely (stability stage). In other words,

when it reaches the stability stage, it can classify all the elements

which are sent.

International Journal of Engineering & Technology 6179

Algorithm: ANN(Back-Propagation) algorithm.

Goal: Training the Neural Network back-propagation.

Input: Similarity score for four attribute

Output: Duplicate (1), non-duplicate(-1).

1) Begin

2) Create the network [input: 4 neurons, output: 1 neuron and

activation function (log sigmoid)].

3) Set biases and weights as random value.

4) Apply the Back-propagation training.

5) Initialization epoch =1.

6) Train the data (input pair, target, and output).

7) Training the network.

8) Simulate the network.

9) If the output predicted equal actual output

 Display the result

 Else update biases and weight

 Go to step (6), epoch=epoch +1.

10) End begin

The Back Propagation neural network algorithm consists of multi-

ple layers: the first layer uses for input units 4 neurons, the second

layer (hidden layer) consists of 10 neurons, while the last layer

(output layer) produces 1 neuron that represents the duplication

state (duplicated and non-duplicated).

A result of smith waterman algorithm is exported to the Neural

Network in order to classify the duplicated and non-duplicated

elements depending on the training of the artificial neural network.

The artificial neural network is trained by sampling comparison

results of the dataset elements. In this method, the technique com-

poses of two steps (training data and testing data). Figure 5 shows

the best training performance at epoch 7, which characterizes the

performance at the 5.3686e-09 and the gradient at 2.79e-06.

Fig. 5: Represent the Best Training Regression.

6. Experimental result

This section gives a concise depiction of the test performed utiliz-

ing the dataset. The test was done on the same set of data that is

usually used in the process of detecting duplicates (Cora da-

taset).To measure the effectiveness of the proposed work three

parameters are used: recall, precision and F-score. By execution

the designed application and implementing the proposed algo-

rithms. We obtained the outcomes which will be viewed in next

table.

Recall is the ratio of the number of relevant records retrieved to

the total number of relevant records in the database. It is usually

expressed as a percentage.

Recall(R) = TP/(TP + FP)

Precision is the ratio of the number of relevant records retrieved to

the total number of irrelevant and relevant records retrieved. It is

usually expressed as a percentage.

Precision(P) = TP/(TP + FN)

F-Score is the harmonic mean of the precision and recall values.

𝐅 − 𝐒𝐜𝐨𝐫𝐞 = 𝟐 ∗ (𝐏 ∗ 𝐑)/(𝐏 + 𝐑)

TP (True Positive) is the correct detection of duplicate FP (False

Positive) is the record is not duplicate but detected as duplicate

FN(False Negative) is the records that are duplicate but not detect-

ed as duplicate. The proposed work was implemented in Microsoft

visual studio 2017 and MATLAB(R2012a). It was run on a PC

with an Intel(R) core (TM) processor and 8GB RAM and the op-

erating system is windows 10 professional.

Table 2: Performance Achieved Using Proposed Method on Real Dataset

File Precision Recall F-Score

Cora dataset 98.5% 97.8% 98.1%

Chart 1: Performance of Proposed Work.

To measure the effectiveness of the proposed method it is com-

pared with XMLDup and Dogmatix.

Table 3: Comparison of Results of Dogmatix, Xmldup and Proposed

Work

File Proposed work Dogmatix XMLDup

Cora Dataset P R P R P R

0.98 0.97 0.81 0.93 0.87 0.99

Chart 2: Comparison of Results.

7. Conclusion and future work

In this paper, we introduced a new effective method of grouping

data that improved the quality of grouping based on the Le-

venshtein distance. The new method offers high accuracy in block-

ing the data closest to each other and this leads to avoiding unnec-

essary comparison. We also used artificial neural network tech-

nique (Back-Propagation) technique in the classification of dupli-

cated elements and this method achieved high efficiency in terms

of precision and recall. In future work, we want to use cheap simi-

larity function such as cosine similarity for blocking the dataset to

save time and another technique to classify duplicate elements in

XML data such as the decision tree.

0.974

0.976

0.978

0.98

0.982

0.984

0.986

Precision

Recall

F-Score

0

0.2

0.4

0.6

0.8

1

1.2

Proposed
work

Dogmatix XMLDup

Precision

Recall

6180 International Journal of Engineering & Technology

References

[1] M. R. Pawar, “Efficient Duplicate Detection and Elimination in

Hierarchical Multimedia Data,” vol. 122, no. 12, pp. 15–21, 2015.
https://doi.org/10.5120/21751-5018.

[2] A. A. Abraham and S. D. Kanmani, “A Novel Approach for the

Effective Detection of Duplicates in XML Data,” Int. J. Comput.
Eng. Res., vol. 4, pp. 82–87, 2014.

[3] M. M. Hamad and S. S. Sami, “Using Q-Gram and Fuzzy Logic

Algorithms for Eliminating Data Warehouse Duplications,” 2016.
[4] S. Gaikwad and N. Bogiri, “Levenshtein distance algorithm for

efficient and effective XML duplicate detection,” IEEE Int. Conf.
Comput. Commun. Control. IC4 2015, 2016.

https://doi.org/10.1109/IC4.2015.7375698.

[5] R. Ananthakrishna, S. Chaudhuri, and V. Ganti, “Eliminating Fuzzy
Duplicates in Data Warehouses,” VLDB ’02 Proc. 28th Int. Conf.

Very Large Databases, pp. 586–597, 2002.

https://doi.org/10.1016/B978-155860869-6/50058-5.
[6] M. Weis and F. Naumann, “DogmatiX Tracks down Duplicates in

XML,” Proc. 2005 ACM SIGMOD Int. Conf. Manag. data,ACM,

pp. 431–442, 2005. https://doi.org/10.1145/1066157.1066207.

[7] L. Leitão, P. Calado, and M. Weis, “Structure-based inference of

xml similarity for fuzzy duplicate detection,” 16th ACM Conf. Inf.

Knowl. Manag., pp. 293–302, 2007.
https://doi.org/10.1145/1321440.1321483.

[8] A. R. Petkar and V. B. Patil, “Duplicate Detection in Hierarchical

Data Using XPath,” IOSR J. Comput. Eng. Ver. I, vol. 17, no. 6, pp.
2278–661, 2015.

[9] A. N. Mehta, “Similarity Detection for XML Data,” Int. J. Adv.

Reserch Sci. Eng., vol. 5, no. 1, pp. 152–157, 2016.
[10] P. B. K. P. M. Bhavana Dhake1, Dr.S.S.Lomte2,

Prof.Y.R.Nagargoje3,Prof.R.A.Auti4,“DuplicatDetection in

Hierarchical Data Using Improved Network Pruning Algorithm,”
Compusoft, vol.4, no. 6, pp. 7838–7850, 2015.

[11] A. Thesis, “Performance Evaluation of Blocking Methods for

Duplicate Record Detection,” 2010.
[12] U. Draisbach and F. Naumann, “A generalization of blocking and

windowing algorithms for duplicate detection,” Proc. - 2011 Int.

Conf. Data Knowl. Eng. ICDKE 2011, pp. 18–24, 2011.
https://doi.org/10.1109/ICDKE.2011.6053920.

[13] J.ARUNA, “Identification of Duplication Records For Query

Results from Real Time Databases,” B.S.Abdur Rahman University,
2012.

[14] R. Haldar and D. Mukhopadhyay, “Levenshtein Distance

Technique in Dictionary Lookup Methods: An Improved Approach,”
arXiv:1101.1232, no. Ld, pp. 286–293, 2011.

[15] G. Recchia and M. Louwerse, “A Comparison of String Similarity

Measures for Toponym Matching,” no. c, 2013.
[16] C. Ling, K. Benkrid, and T. Hamada, “A parameterisable and

scalable smith-Waterman algorithm implementation on CUDA-

compatible GPUs,” 2009 IEEE 7th Symp. Appl. Specif. Process.
SASP 2009, pp. 94–100, 2009.

https://doi.org/10.1109/SASP.2009.5226343.

[17] L. Hasan, Z. Al-Ars, and Z. Nawaz, “A Novel Approach for
Accelerating the Smith-Waterman Algorithm using Recursive

Variable Expansion,” Proc. 19th Annu. …, 2008.

https://doi.org/10.1109/IDT.2008.4802483.
[18] M. Bilenko, M. View, and R. J. Mooney, “Adaptive Blocking :

Learning to Scale Up Record Linkage,” Proc. Sixth IEEE Int. Conf.

Data Min., no. December, pp. 87–96, 2006.

https://doi.org/10.1109/ICDM.2006.13.

https://doi.org/10.5120/21751-5018
https://doi.org/10.1109/IC4.2015.7375698
https://doi.org/10.1016/B978-155860869-6/50058-5
https://doi.org/10.1145/1066157.1066207
https://doi.org/10.1145/1321440.1321483
https://doi.org/10.1109/ICDKE.2011.6053920
https://doi.org/10.1109/SASP.2009.5226343
https://doi.org/10.1109/IDT.2008.4802483
https://doi.org/10.1109/ICDM.2006.13

