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Abstract- Lightweight cryptography is developed to enhance the security level in pervasive computing applications such as those charac-
terized by smart but resource-constrained devices. The two main primitives of lightweight symmetric cryptographic are lightweight block 
cipher and lightweight hash algorithm. In this paper, a comprehensive survey of some lightweight cryptographic hash functions will be de-
scribed from both hardware and software perspectives. Apart from covering the analyses of these algorithms, the differences of these pri-
mitives in terms of throughput, number of cycle, comprehensive area, power and energy will be outlined. We will provide a classification of 
these lightweight hash functions as well.  
 
Index Terms— Lightweight Cryptography, Hash Function, Resource-Constrained.   

——————————      —————————— 

1 INTRODUCTION 
ightweight cryptography is a new branch of cryptography 
which is designed to cope with the rapid expansion of 
advanced technologies. The implementation of classical 

cryptography in these devices is impractical due to the ma-
thematical complexity associated with cryptographic primi-
tives [1]. Typically, classical cryptography requires high 
processing power and large memory space. Efforts developed 
to decrease the execution time of traditional cryptographic 
primitives have been reported [2, 3, 4, 5, 6]. However, the 
overall implementation cost increases due to the additional 
hardware involved. 

Lightweight cryptography is developed to reduce key size, 
cycle rate, throughput rate, power consumption and area 
(which are measured in Gate Equivalence (GE)). 

Recently, Hirotaka Yoshida proposed MAME [7], which is 
a lightweight cryptographic hash function. It takes a 256-bit 
message block and a 256-bit chaining variable as inputs and 
produces a 256-bit output. Its weight is 8.1 kg. Bogdanov et al. 
[8] developed Spongent lightweight hash functions based on 
the sponge construction instantiated with permutations [9]. 
This hash function has been implemented in the 4-bit S-box, 
and it fulfills the PRESENT design criteria (e.g. differential 
and linear properties). Spongent has 13 variants for various 
levels of collision/(second) preimage resistance and imple-
mentation constraint. In 2010, Aumasson [10] developed 
Quark. It is the first lightweight hash function designed based 
on a single security level. In order to minimize the memory 
requirements, sponge construction was implemented. Quark 
adopts a permutation P based on the stream ciphers Grain [11] 
and block cipher KATAN [12]. There are different variants of 
Quark, e.g. U-Quark (64-bit security), D-Quark (80-bit securi-
ty) and T-Quark (112-bit security). Poschmann et al. [13] de-
veloped the PHOTON lightweight hash function. It uses a 
sponge-like construction and an AES-like primitive as internal 
unkeyed permutation. Therefore, it is a compact hash function 
with 1120 GE for 64-bit collision resistance security. Also, 
PHOTON employs two types of S-boxes, i.e. 4-bit PRESENT S-
box and 8-bit AES S-box. Kavun et al. [14] developed Keccak, 

which is indeed a variant of SHA-3 hash function. Again, Kec-
cak is designed based on the sponge construction. Its basic 
component is Keccak-f permutation, which consists of numer-
ous simple rounds associated with logical operations and bit 
permutations. 
Various algorithms have been proposed based on other con-
structions. By using Merkle–Damgård construction, Badel et 
al. [15] proposed ARMADILLO2 (advanced version of AR-
MADILLO), which is a multi-application primitive. It is ap-
plied in MAC and digital signatures (PRNG and PRF). As re-
ported by [15], ARMADILLO2 requires 2,923 GE. In order to 
complete one computation, a total of 176 clock cycles is re-
quired (consuming 44 µW). A new compression function Q 
has been embedded in ARMADILLO2, which is more compact 
and secure [16]. 

DM-PRESENT80, DM-PRESE128 and H-PRESENT128 [17] 
are some of the lightweight designs of hash function which are 
developed based on Davies–Meyer mode and the block cipher 
PRESENT [9]. The feed forward feature of compression func-
tion and the reversible components that can be used as a block 
cipher have been removed. 

Panasenko et al. [65] designed the lightweight cryptograph-
ic primitives and highlighted some guidelines for implement-
ing these primitives. John [66] reviewed those lightweight cryp-
tographic primitives with two block ciphers and stream ci-
phers. The security features and the hardware performances of 
these primitives were analyzed. Katagi et al. [67] highlighted 
the standardization status of lightweight cryptography primi-
tives. Batina et al. [63] compared the requirements of some 
lightweight block ciphers and the AES algorithm. Juels [41] 
examined the approaches for privacy protection and integrity 
assurance in RFID systems. Lata et al. [68] reviewed some 
lightweight primitives and their potential applications. Apart 
from discussing the lightweight stream cipher and lightweight 
block cipher primitives, Arora et al. [69] studied the hybrid 
model of Hummingbird [70] and other lightweight cryptogra-
phy primitives. Mohd et al. [71] classified the implementations 
of lightweight block cipher and showed that energy metrics is 
the most important metric in low constrained devices. In this 
paper, a more comprehensive survey of lightweight hash algo-
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rithm will be given.  
 

2. HASH FUNCTION  
Hash function takes messages of arbitrary input sizes and 

produces output messages with a fixed size. The associated 
computation involves Message Authentication Code (MAC), 
data integrity and digital signatures. A hash function H is col-
lision-free if it maps messages of any length to strings of fixed 
length. The output is known as fingerprint [18, 19, 20]. One 
would like to preserve collisions or (second) preimage to be 
computationally difficult for the attacker. For an n-bit ideal 
hash function, an attacker performs 2n\2 and 2n computations 
to obtain a collision and a (second) preimage, respectively [13, 
19]. 

The two main parts of a hash function are construction and 
compression functions. The construction function is designed 
to iterate the compression function. An ideal hash function 
must contain the properties of random oracle. Even though 
the random oracle does not exist, a hash function construction 
should meet the security criterion. A cryptographic hash func-
tion H with an n-bit output is expected to possess the follow-
ing main security properties [21]: 
1. Collision-resistance: It is difficult to find two different mes-
sages m0 and m1 such that H (m0) = H (m1) and this requires at 
least 2n/2 work. 
2. Preimage-resistance: Given a hash value H (m), it is difficult 
to find m, and this requires at least 2n work. 
3. Second preimage-resistance: Given m0, it is difficult to find a 
different input m1 such that H (m0) = H (m1), and this requires 
at least 2n work. 

 
Figure 1. Hash Function 

 

3 GENERIC CONSTRUCTION FOR LIGHTWEIGHT 
CRYPTOGRAPHIC HASH FUNCTIONS 

In hash function, many construction have been used, e.g. 
Sponge construction [22], Merkle Damgård [18], Davies-Mayer 
[23], and Haifa [25]. Here, we focus on lightweight crypto-
graphic hash function as it is not fully explored by previous 
researchers [24]. 
 
3.1 Sponge Construction 
The challenge in designing lightweight hash functions lies on 
achieving the balance between security and memory require-
ments. Producing an output of size > 256 bits to prevent any 

collision is a common approach; however, it is computational-
ly expensive. Sponge construction [26] is commonly adopted 
to solve this issue by reducing the (second) preimage security 
for the same internal state size [8]. 

This construction is developed based on b-bit permutation 
P with capacity c bits and bit rate r. mi is the r-bit message 
block and Zi is part of the hash value (with output length n). 
Its width is determined from the size of its internal state b = r 
+c ≥ n. Initially, the bits of the state are set to zero. Then, the 
input message is padded and divided into blocks of r-bit. The 
construction consists of two phases, i.e. absorbing and squeez-
ing phases. In the absorbing phase, the r-bit input message 
blocks are XORed with the first r-bit of the state before insert-
ing the function P. After processing all message blocks, the 
squeezing phase starts. The first r-bit of the state is returned as 
an output block, followed by the inclusion of function P as 
shown in Figure 2. The number of output blocks is determined 
by the user [10, 14]. 

 
Figure 2. Sponge Construction 

 
Seemingly, the sponge construction [27] is the only alternative 
to the classical Merkle–Damgård construction due to its 
lightweight design. This process depends only on a single 
permutation, and the message blocks are then combined with 
a simple XOR with the internal state. 
In contrast with Davies–Meyer construction, storage of mes-
sage blocks and “feed forward” intermediate values are not 
required in sponge construction. Nevertheless, a larger state is 
required to achieve traditional security levels [13]. 
 
3.2 Merkle- Damgård Construction 

The Merkle–Damgård construction has been adopted in 
many hash algorithms such as MD5, SHA1/SHA2, STITCH as 
well as lightweight hash function algorithm, e.g. ARMADIL-
LO [15]. It is used to construct collision-resistant cryptograph-
ic hash functions from collision-resistant one-way compres-
sion functions. The Merkle–Damgård hash function [23] in-
volves the application of MD-compliant padding function to 
create an output of size which is twice as that of a fixed num-
ber due to the fact that compression function is unable to han-
dle inputs of arbitrary sizes. The hash function decomposes 
the output into blocks of fixed size and processes them indivi-
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dually with the compression function. At each time, an input 
block is combined with the output obtained from the previous 
round. In the current work, we have used a compression func-
tion H mapping {0, 1}n × {0, 1}k to {0, 1}n,  a fixed and public IV 
of {0,1}n, and a message (m1, m2, …., mt), where each mi is a 
block of k bits. Then, a hash function H (see Figure 3) was 
built. 
 

 
Figure 3. Merkle-Damgård construction 

 
3.3 Davies-Meyer Construction 
 
The modern hash functions were used as compression func-
tions. Their theoretical foundations have been given by Merkle 
and Damgård [23]. In order to produce a fixed-length output, 
the compression function H has a fixed-length input that con-
sists of a chaining variable and a message extract [17]. 

The Davies–Meyer compression function feeds each mes-
sage block (mi) with a key to the block cipher. Also, it feeds the 
previous hash value (Hi-1) with an encrypted plaintext. Also, 
the output of ciphertexts is XORed with the previous hash 
value (Hi-1) in order to yield the next hash value (Hi). Due to 
the absence of the previous hash value in the first round, the 
use of a constant pre-specified initial value (H0) [17] is neces-
sary as shown in Figure 4. It is computed via:   
 

Hi= Emi (Hi-1)  Hi-1 
 

 
Figure 4. Davies Meyer Compression Function 

 

4 LIGHTWEIGHT CRYPTOGRAPHIC HASH FUNCTIONS 
Some lightweight hash functions have been recently re-
ported. Bogdanov et al. [28] described ways of using 

PRESENT block cipher in hashing modes of operation. The 
applications of Spongent [8], PHOTON [13] and GLUON 
[29] in designing a dedicated lightweight hash function 
based on sponge construction have been highlighted as 
well. Each algorithm will be described in the next section. 
 
4.1 PHOTON 
The PHOTON lightweight hash function was designed by 
Guo et al. [13]. It uses a sponge-like construction and an AES-
like primitive as internal unkeyed permutation. Therefore, it is 
a compact hash function with 1120 GE for 64-bit collision resis-
tance security [13]. The output size is 64≤ n ≤256, and the input 
and output bit rates are r and r`, respectively. Thus, a PHO-
TON hash function can be characterized as PHOTON-n/r/r`. 
Its internal state size depends on the hash output size:  100, 
144, 196, 256, and 288 bits. The internal permutation P is ap-
plied to an internal state of d2 elements of b bits. Two types of 
S-boxes are used, i.e. 4-bit PRESENT S-box and 8-bit AES S-
box. 
 
4.2 SPONGENT 
Bogdanov [8] instantiated the Spongent lightweight hash func-
tions with PRESENT-type permutations. The 4-bit S-box, 
which is the major block of functional logic in a serial low-area 
implementation of Spongent, fulfills the PRESENT design cri-
teria in terms of differential and linear properties [9]. Spon-
gent has 13 variants for each collision/(second) preimage resis-
tance level and implementation constraint. Its round function 
is relatively simple; therefore, its logic size is close to the theo-
retically smallest size. 

In Spongent, the initial value is b-bit 0. In all Spongent va-
riants, the hash size n is equal to either capacity c or 2c. The 
message chunks are XORed into the r rightmost bit positions 
of the state. The same r bit positions form parts of the hash 
output. Any linear approximation over the S-box (i.e. involves 
only single bits in the input and output masks) is unbiased. 
This linear approximation is useful in limiting the linear hull 
effect discovered in round-reduced PRESENT [8]. 
 
4.3 Keccak 
Kavun and Yalcin [14] reported the lightweight implementa-
tions of Keccak- f [200] and Keccak- f [400] permutations. Kec-
cak-f [200] and Keccak-f [400] are variants of the SHA-3 hash 
function. In fact, Keccak [30] is developed based on the sponge 
construction. Its basic component is Keccak- f permutation, 
which contains numerous simple rounds with logical opera-
tions and bit permutations. Keccak-f [b] involves permutation 
chosen from a set of seven permutations, where b denotes the 
width of the permutation {25, 50, 100, 200, 400, 800, 1600} and 
the width of the state in the sponge construction. 
 
4.4 Quark 
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Quark was developed by Aumasson in 2010 based on sponge 
construction [10]. It is the first lightweight hash function de-
signed based on a single security level in order to minimize 
the memory requirement. It employs a permutation P based 
on the stream ciphers Grain [11] and block cipher KATAN 
[12]. There are three types of Quark: U-Quark (64-bit security), 
D-Quark (80-bit security) and T-Quark (112-bit security). U-
Quark gives at least 64-bit security against all attacks [31]. 
Meanwhile, U-Quark requires 1379 GE and consumes ~2.44 
µW at 100 kHz [31]. T-Quark implemented in [31] requires 
2296 GE. The internal permutation P contains three nonlinear 
Boolean functions, i.e. f, g (similar to that in Grain), and h. Al-
so, it consists of one linear Boolean function p and involves P 
processes. All the nonlinear Boolean functions are unique for 
each Quark function. The P processes are dependent on three 
phases, i.e. initialization, state update and computation of 
output. 
 
4.5 Neiva 
In [32] Proposed a lightweight hash function based on sponge 
construction and PRESENT [33] block cipher. The state b is of 
256-bit. The rate and capacity is 32-bit and 224-bit respectively, 
and 32 rounds. The process of Neiva is as follow, first the Mes-
sage M is padded and then divided into the 32-bit blocks after 
that the first message block M1 is XORed to the state. After 
applying the PRESENT S-box in parallel, the updated register 
is divided in 16-bit words and apply Feistel structure on every 
64-bit. After an 8-bit left rotation, it is added to a round con-
stant. The updated register after modular addition is the out-
put of first round. It keeps feeding to the next round till 32 
rounds. In squeezing phase, take the most significant 32-bit of 
last register of absorbed phase. Then apply f seven times on 
the updated register and every time take out the most signifi-
cant 32-bit. In order to get the 224 bit output, the seven 32 bit 
will be concatenated. 
 
4.6 ARMADILLO 
Badel et al. [15] proposed ARMADILLO, which is a multi-
application primitive. It was used as MAC and digital signa-
tures such as PRNG and PRF. Its structure is similar to that of 
the Merkle–Damgård construction. In general, ARMADILLO 
requires 2923 GE. A total of 176 clock cycles is required to 
complete one computation (consuming 44 µW power). AR-
MADILLO2, which is a new variant of ARMADILLO, is more 
robust than ARMADILLO. It uses a more compact and secure 
compression function [15]. 
 
4.7 GLUON 
Berger et al. developed the GLUON hash function [29] based 
on the sponge construction model [34]. The f function was 
used to call a filtered feedback with carry shift register (FCSR). 
The filtered FCSR was developed based on the F-FCSR-v3 
hardware stream cipher [35] and the X-FCSR-v2 software 

stream cipher [36]. It is slightly heavier than Quark and PHO-
TON. The lightest instance of GLUON-64 provides the 64-bit 
security level and requires 2071 GE [29]. Meanwhile, GLUON-
80 provides the 80-bit security level and GLUON-112 provides 
the 112-bit security level and requires 4724 GE [29]. From a 
stream cipher with an internal state size of n, one can construct 
a function from {0, 1} b as follows: 
1. The b-bit input is filled into an initial state size of n bits. 
2. The stream cipher is initialized as usual, where the first b 
output bits compose the output of the f function. 
Assuming that the stream cipher is “perfect,” the function will 
mimic a random function which is used to identify siding in 
the function (twice of that of stream cipher). 
 
4.8 DM-PRESENT and H-PRESENT 
DM-PRESENT80, DM-PRESE128 and H-DM-PRESENT80, 
DM-PRESE128 and H-PRESENT128 [17] are some of the 
lightweight hash functions developed based on the block ci-
pher PRESENT [9]. The feed forward feature of the compres-
sion function and the reversible components that can be used 
as a block cipher are discarded. 
The DM-PRESENT [17] hash functions rely on a compression 
function in order to take input from some words of the chain-
ing variable (represented by Hi) and some words of the for-
matted message extract (represented by Mi). A single 64-bit 
chaining variable Hi is then updated from the Davies–Meyer 
operation by using a message extract Mi:  

Hi = E (Hi, M) Hi 
In this case, E denotes encryption with either PRESENT-80 or 
PRESENT-128, which can provide 64-bit security level. 
Each iteration of compression function involves the compres-
sions of 64 bits of chaining variable and 80 bits of message-
related input. Therefore, DM-PRESENT-80 and DM-
PRESENT-128 are able to give a compromise between space 
and throughput. Replacing PRESENT with a different block 
cipher will definitely augment the space required during the 
implementation stage. 
H-PRESENT-128 compression function treats two 64-bit chain-
ing variables and one 64-bit message extract as inputs (de-
noted by the triple (H1, H2, M)). A pair of updated chaining 
variables , ) is then produced (output) based on the fol-
lowing computation: 

 = E (H1, H2, M) H1 and 
 = E (H1  c, H2, M) H1 

 
Where E denotes PRESENT-128 and c is a nonzero constant 
(fixed). Thus, the chaining variable H1 || H2 is 128 bits long, 
and 64 bits of message-related input are hashed per iteration. 
Hirose proved that an adversary of at least 2n queries is re-
quired in an ideal cipher model in order to obtain a collision 
with non-negligible advantage. Here, n is the block size of the 
cipher. Similar analysis can be done for preimage resistance to 
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show that adversary of at least 22n queries is required in order 
to identify a preimage. 
 
4.9 Lesamnta-LW 
Hirose et al. [37] proposed a lightweight 256-bit hash function 
called Lesamnta-LW. They claimed that its security level was 
at least 2120 with respect to collision, preimage, and second 
preimage attacks. Lesamnta-LW was designed based on the 
Merkle-Damgård as domain extension. It employs AES as the 
compression function. The weight of Lesamnta-LW hardware 
is 8.24 KG on 90 nm technology. Lesamnta-LW offers 50 bytes 
of RAM and deals with short messages on 8-bit CPUs. 
 
4.10 Tav-128 
Peris-Lopez et.al. [38] developed the Tav-128 lightweight hash 
function based on Merkle- Damgård construction. The output 
was 128 bit and the input message was split into 32-bit blocks. 
The compression function uses two filter functions (A and B) 
and two expansion functions (C and D). The internal state 
consists of five 32-bit words and the final output consists of 
four 32-bit state registers. The finalization function g truncates 
the state and the outputs to 128 least significant bits. The au-
thors analyzed the statistical properties of its output and esti-
mated that the required hardware footprint was approximate-
ly 2.6K GEs. 
 

5 APPLICATIONS OF LIGHTWEIGHT CRYPTOGRAPHIC 
HASH FUNCTION 

Lightweight cryptographic hash functions are widely applied 
in cryptography and programming practice. We will describe 
several scenarios, which can be used as models for evaluating 
the security levels of practical applications. 
 
5.1 Digital signatures  
Hash functions are applied in digital signature schemes [39]. 
Digital signature is a generic mechanism that transforms any 
signature scheme for signing messages of a fixed length and a 
collision-resistant hash function into a signature scheme that 
can handle messages of arbitrary length. The mechanism is 
called the hash-and-sign paradigm and it is the basis for all 
modern practical signature schemes. 

Adida et al. [40] described several ways to use digital sig-
nature in Email application. One of the techniques is using 
lightweight cryptographic hash function as the Single Server 
Key Algorithm. Lightweight cryptographic hash function can 
be used as a digital signature. According to Ari Juels [41], 
many American companies such as Texas Instruments and 
VeriSign Inc. have proposed a “chain-of-custody” approach to 
apply RFID in their industries. The model involves digital 
signing of tag data to provide integrity assurance. Hanaoka et 
al. [42] proposed the Light-Weight Secure Electronic Transac-

tion Protocol (LITESET) and applied the signcryption scheme 
for verification purpose. 
 
5.2 MAC and HMAC 
MAC and HMAC Message-Authentication Code (MAC) are 
keyed hash functions satisfying certain cryptographic proper-
ties. MAC generates a tag from a message and a secret key in 
order to verify the authenticity and the integrity of the mes-
sage. 

Typically, MAC can be generated based on a collision-
resistant keyless hash function. In fact, the most commonly 
used MAC construction is HMAC. For certain applications, 
occasionally accepting an inauthentic message may delimit the 
security level of an application; therefore, shorter tags are rec-
ommended [43]. Many researchers have worked on 
lightweight HMAC such as Shen [44] Chaskey [45, 46], TuLP 
[47], SipHash [48] and LightMAC [49]. 
 
5.3 Authenticated Encryption  
Recently, permutation-based constructions [22] are applied in 
a wide range of platforms such as lightweight devices. 
Lightweight permutation-based hash functions include Gluon 
[29], Photon [13], Quark [10, 31], and Spongent [8]. 
Lightweight cryptographic hash functions are used in hash 
function application. It is employed to provide Authenticated 
Encryption (AE) as well. AE is a cryptographic primitive that 
guarantees privacy and integrity [50]. Usually, it is built from 
block cipher [51, 52, 53]. Many permutation-based AE schemes 
have been proposed recently, e.g. deterministic key-wrap 
scheme [54] and SpongeWrap [55, 56]. Many researchers de-
signed their primitives based on hash functions such as ALE 
[57], LAMP [58], JHAE [59] and Humenberidg [60]. 
 

6 COMPARATIVE ANALYSIS OF EXISTING LIGHTWEIGHT 
CRYPTOGRAPHIC HASH FUNCTIONS 

Comparison of lightweight cryptographic primitives is chal-
lenging because many characteristics should be considered 
and these primitives are technology-dependent. In general, a 
fair comparison can be made if the utilized tools and libraries 
are similar. 

In order to assess the implementation of a lightweight hash 
function, the following metrics should be considered: 
• Area: Measured in GE. 
• Cycles: The number of clock cycles used to compute and 

read out the ciphertexts. 
• Time: The ratio of the number of cycles to the operating 

frequency in seconds. 
• Throughput: The rate at which new output is produced 

with respect to time. 
• Power: The estimated power consumption on the gate 

level by using the Power Compiler. 
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• Efficiency: Hardware efficiency is measured by dividing 
the throughput to area ratio. 

A basic RFID tag may have a total gate count of between 
1000 and 10000 gates [13]. No more than 2,000 GE are available 
for security in low-cost RFID tags [61, 28, 35, 62]. A common 
metric to measure the efficiency of the proposed algorithm is 
the number of GE. Basically, the GE can be calculated by di-
viding the silicon area that is used for a cipher with a given 
standard cell library by the area of a two-input NAND gate 
[63]]. In addition, the power required for 100 KHz RFIDs must 
be less than 27 µW power [36, 64]. Therefore, we can conclude 
that the area metric is more important than the power, espe-
cially when we want to measure the efficiency of the primi-
tives. Table 2 shows the comparison of the performances of 
lightweight hash functions of different hash functions based 
on the direct application of sponge-based construction. In 
principle, comparing the performances of designs imple-
mented in different platforms is not easy. Nevertheless, the 
results shown in the table are calculated based on measure-
ments as reported in the references. 

First, the DM-PRESENT-80 consumes 6.28µW at a clock 
frequency of 100 KHz in the round-based implementation 
with a total area of 2213 GE, whereas the serialized implemen-
tation consumes 1.83µW and requires 1600 GE. We observed 
that the parallel design needs more area than the serialized 
design. However, the parallel design is faster because it needs 
fewer clock cycles and consumes less power than the seria-
lized design. A similar finding can also be observed when the 
Parallel Keccak-f and the Serial Keccak- f were compared. In 
terms of power consumption of the serialized implementation 
of PHOTON-80/20/16, PHOTON-128/16/16, PHOTON- 
160/36/36, PHOTON-224/32/32, and PHOTON-256/32/32, each 

of these variants of PHOTON consumes 1.59µW, 2.29µW, 
2.74µW, 4.01µW, and 4.55µW of power, respectively. 

By contrast, the parallel implementations of the same hash 
functions require 2.7µW, 3.45µW, 4.35µW, 6.5µW, and 8.38µW 
of power, respectively. These values are higher than the seria-
lized implementation. We also observed that parallel imple-
mentation of PHOTON generally requires a higher number of 
GE than serialized implementations. A similar observation was 
also observed when Spongent and Quark were compared. 

The most recently published hash families like Keccak, 
SPONGENT, PHOTON and Quark is based on a sponge con-
struction. The sponge construction can be seen as an alterna-
tive to the classical Merkle-Damgård construction. It rather 
relies on a single permutation, and message blocks are inte-
grated with a simple XOR with the internal state. There is No 
feed-forward necessary for the sponge construction as in Da-
vies- Meyer constructions, however they need a larger state to 
achieve traditional security levels that compromises memory 
savings. Using sponge functions as operating mode is another 
step towards compactness. Avoiding any feed-forward such as 
that in sponge construction saves a lot of memory registers at 
the cost of an invertible iterative process that induces a lower 
(second)-preimage security for the same internal state size. 
The sponge construction keeps the internal memory size as 
low as possible. This can be seen when we compare the result 
of all sponge construction functions with Merkle-Damgård 
construction (ARMADELO) and Davies-Meyer mode (DM-
PRESENTS). 
 
 

 

Table 1 Comparison of Performances of Lightweight Hash Functions. 

 

Primitives  

 Hash 
output 
size 

Data 
path 
size 

Cycles per 
block 

Through-
put at 100 
KHz 

Power 

µW 

Logic 
process 

µm 

GE 

DM-PRESENT-80 [21]. Davies-Meyer mode 64 4 4547 14.63 6.28 0.18 1600 

64 64 45 242.42 1.83 0.18 2213 

DM-PRESENT-128 [21] 64 4 559 22.9 7.49 0.18 1886 

64 128 74 387.88 2.94 0.18 2530 

PHOTON-80/20/16 [9] sponge-like construc-
tion 

80 4 708 2.82 1.59 0.18 865 

80 20 132 2.82 2.7 0.18 1168 

PHOTON-128/16/16 [9] 128 4 996 1.61 2.29 0.18 1122 

128 24 156 15.15 3.45 0.18 1708 

PHOTON-160/36/36 [9] 160 4 1332 2.70 2.74 0.18 1396 

160 28 180 10.26 4.35 0.18 2117 

PHOTON-224/32/32 [9] 224 4 1716 1.86 4.01 0.18 1735 

224 32 204 15.69 6.5 0.18 2786 

PHOTON-256/32/32 [9] 256 4 996 3.21 4.55 0.18 2177 
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256 48 156 20.51 8.38 0.18 4362 

Parallel Keccak-f[1600] [47] 256 64 24 4533 315.1 0.18 4763 

Serial Keccak-f[1600]   [47] 256 64 1200 90.66 44.9 0.18 2079 

Parallel Keccak-f[400]  [47] 128 16 20 720 78.1 0.18 1056 

Serial Keccak-f[400]     [47] 128 16 1000 14.4 11.5 0.18 509 

Parallel Keccak-f[200]  [47] 64 8 18 400 27.6 0.18 409 

Serial Keccak-f[200]     [47] 64 8 900 8 5.6 0.18 252 

U-Quark [19] 128 1 544 1.47 2.44 0.18 1379 

128 8 68 11.76 4.07 0.18 2392 

D-Quark [19] 160 1 704 2.27 3.10 0.18 1702 

160 8 88 18.18 4.67 0.18 2819 

T-Quark [19] 224 1 1024 3.13 4.35 0.18 2296 

224 16 64 50 8.39 0.18 4640 

GLUON-64 [46] 128 8 66 12.12 N/A 0.13 2071 

GLUON-80 [46] 160 16 50 32 N/A 0.13 2799.3 

GLUON-112 [46] 224 32 55 58.18 N/A 0.13 4724 

spongent-88/80/8 [20] 88 4 990 0.81 1.57 0.13 738 

88 88 45 17.78 2.31 0.13 1127 

spongent-128/128/8 [20] 128 8 2380 0.34 2.20 0.13 1060 

128 136 70 11.43 3.58 0.13 1687 

spongent-160/160/16 [20] 160 4 3960 0.40 2.85 0.13 1329 

160 176 90 17.78 4.74 0.13 2190 

spongent-224/224/16 [20] 224 4 7200 0.22 3.74 0.13 1728 

224 240 120 13.33 5.97 0.13 2903 

spongent-256/256/16 [20] 256 4 9520 0.17 4.21 0.13 1950 

256 272 140 11.43 6.62 0.13 3281 

Neiva [55] 224 32 12067 4.99 -  -  

ARMADILLO [48] Merkle–Damgård  48 80 176 272 44 0.18 2,923  

 

Lesamnta-LW [37]  

256 20 188.3 125.55 - 90 nm 8,24 

 
 

7 CONCLUSION 
In this paper, we provide a comprehensive survey of 
lightweight cryptographic hash algorithms. These classifica-
tions are very useful because these primitives have various 
characteristics. Also, this paper highlights the security levels of 
lightweight cryptographic hash functions. The structures show 
that primitive designs with hardware-friendly operations give 
a smaller GE. Also, parallel design gives better performance; 
however, its GE is higher than that of the serial design. The 
classification would assist researchers to optimize the design 
of lightweight cryptographic primitive in order to achieve the 
compromise between the security level and the resource con-
straint. 
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