
International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 806
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

A survey of Lightweight Cryptographic Hash
Function

Baraa Tareq Hammad, Norziana Jamil, Mohd Ezanee Rusli and Muhammad Reza Z`aba

Abstract- Lightweight cryptography is developed to enhance the security level in pervasive computing applications such as those charac-
terized by smart but resource-constrained devices. The two main primitives of lightweight symmetric cryptographic are lightweight block
cipher and lightweight hash algorithm. In this paper, a comprehensive survey of some lightweight cryptographic hash functions will be de-
scribed from both hardware and software perspectives. Apart from covering the analyses of these algorithms, the differences of these pri-
mitives in terms of throughput, number of cycle, comprehensive area, power and energy will be outlined. We will provide a classification of
these lightweight hash functions as well.

Index Terms— Lightweight Cryptography, Hash Function, Resource-Constrained.

——————————  ——————————

1 INTRODUCTION
ightweight cryptography is a new branch of cryptography
which is designed to cope with the rapid expansion of
advanced technologies. The implementation of classical

cryptography in these devices is impractical due to the ma-
thematical complexity associated with cryptographic primi-
tives [1]. Typically, classical cryptography requires high
processing power and large memory space. Efforts developed
to decrease the execution time of traditional cryptographic
primitives have been reported [2, 3, 4, 5, 6]. However, the
overall implementation cost increases due to the additional
hardware involved.

Lightweight cryptography is developed to reduce key size,
cycle rate, throughput rate, power consumption and area
(which are measured in Gate Equivalence (GE)).

Recently, Hirotaka Yoshida proposed MAME [7], which is
a lightweight cryptographic hash function. It takes a 256-bit
message block and a 256-bit chaining variable as inputs and
produces a 256-bit output. Its weight is 8.1 kg. Bogdanov et al.
[8] developed Spongent lightweight hash functions based on
the sponge construction instantiated with permutations [9].
This hash function has been implemented in the 4-bit S-box,
and it fulfills the PRESENT design criteria (e.g. differential
and linear properties). Spongent has 13 variants for various
levels of collision/(second) preimage resistance and imple-
mentation constraint. In 2010, Aumasson [10] developed
Quark. It is the first lightweight hash function designed based
on a single security level. In order to minimize the memory
requirements, sponge construction was implemented. Quark
adopts a permutation P based on the stream ciphers Grain [11]
and block cipher KATAN [12]. There are different variants of
Quark, e.g. U-Quark (64-bit security), D-Quark (80-bit securi-
ty) and T-Quark (112-bit security). Poschmann et al. [13] de-
veloped the PHOTON lightweight hash function. It uses a
sponge-like construction and an AES-like primitive as internal
unkeyed permutation. Therefore, it is a compact hash function
with 1120 GE for 64-bit collision resistance security. Also,
PHOTON employs two types of S-boxes, i.e. 4-bit PRESENT S-
box and 8-bit AES S-box. Kavun et al. [14] developed Keccak,

which is indeed a variant of SHA-3 hash function. Again, Kec-
cak is designed based on the sponge construction. Its basic
component is Keccak-f permutation, which consists of numer-
ous simple rounds associated with logical operations and bit
permutations.
Various algorithms have been proposed based on other con-
structions. By using Merkle–Damgård construction, Badel et
al. [15] proposed ARMADILLO2 (advanced version of AR-
MADILLO), which is a multi-application primitive. It is ap-
plied in MAC and digital signatures (PRNG and PRF). As re-
ported by [15], ARMADILLO2 requires 2,923 GE. In order to
complete one computation, a total of 176 clock cycles is re-
quired (consuming 44 µW). A new compression function Q
has been embedded in ARMADILLO2, which is more compact
and secure [16].

DM-PRESENT80, DM-PRESE128 and H-PRESENT128 [17]
are some of the lightweight designs of hash function which are
developed based on Davies–Meyer mode and the block cipher
PRESENT [9]. The feed forward feature of compression func-
tion and the reversible components that can be used as a block
cipher have been removed.

Panasenko et al. [65] designed the lightweight cryptograph-
ic primitives and highlighted some guidelines for implement-
ing these primitives. John [66] reviewed those lightweight cryp-
tographic primitives with two block ciphers and stream ci-
phers. The security features and the hardware performances of
these primitives were analyzed. Katagi et al. [67] highlighted
the standardization status of lightweight cryptography primi-
tives. Batina et al. [63] compared the requirements of some
lightweight block ciphers and the AES algorithm. Juels [41]
examined the approaches for privacy protection and integrity
assurance in RFID systems. Lata et al. [68] reviewed some
lightweight primitives and their potential applications. Apart
from discussing the lightweight stream cipher and lightweight
block cipher primitives, Arora et al. [69] studied the hybrid
model of Hummingbird [70] and other lightweight cryptogra-
phy primitives. Mohd et al. [71] classified the implementations
of lightweight block cipher and showed that energy metrics is
the most important metric in low constrained devices. In this
paper, a more comprehensive survey of lightweight hash algo-

L

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 807
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

rithm will be given.

2. HASH FUNCTION
Hash function takes messages of arbitrary input sizes and

produces output messages with a fixed size. The associated
computation involves Message Authentication Code (MAC),
data integrity and digital signatures. A hash function H is col-
lision-free if it maps messages of any length to strings of fixed
length. The output is known as fingerprint [18, 19, 20]. One
would like to preserve collisions or (second) preimage to be
computationally difficult for the attacker. For an n-bit ideal
hash function, an attacker performs 2n\2 and 2n computations
to obtain a collision and a (second) preimage, respectively [13,
19].

The two main parts of a hash function are construction and
compression functions. The construction function is designed
to iterate the compression function. An ideal hash function
must contain the properties of random oracle. Even though
the random oracle does not exist, a hash function construction
should meet the security criterion. A cryptographic hash func-
tion H with an n-bit output is expected to possess the follow-
ing main security properties [21]:
1. Collision-resistance: It is difficult to find two different mes-
sages m0 and m1 such that H (m0) = H (m1) and this requires at
least 2n/2 work.
2. Preimage-resistance: Given a hash value H (m), it is difficult
to find m, and this requires at least 2n work.
3. Second preimage-resistance: Given m0, it is difficult to find a
different input m1 such that H (m0) = H (m1), and this requires
at least 2n work.

Figure 1. Hash Function

3 GENERIC CONSTRUCTION FOR LIGHTWEIGHT
CRYPTOGRAPHIC HASH FUNCTIONS

In hash function, many construction have been used, e.g.
Sponge construction [22], Merkle Damgård [18], Davies-Mayer
[23], and Haifa [25]. Here, we focus on lightweight crypto-
graphic hash function as it is not fully explored by previous
researchers [24].

3.1 Sponge Construction
The challenge in designing lightweight hash functions lies on
achieving the balance between security and memory require-
ments. Producing an output of size > 256 bits to prevent any

collision is a common approach; however, it is computational-
ly expensive. Sponge construction [26] is commonly adopted
to solve this issue by reducing the (second) preimage security
for the same internal state size [8].

This construction is developed based on b-bit permutation
P with capacity c bits and bit rate r. mi is the r-bit message
block and Zi is part of the hash value (with output length n).
Its width is determined from the size of its internal state b = r
+c ≥ n. Initially, the bits of the state are set to zero. Then, the
input message is padded and divided into blocks of r-bit. The
construction consists of two phases, i.e. absorbing and squeez-
ing phases. In the absorbing phase, the r-bit input message
blocks are XORed with the first r-bit of the state before insert-
ing the function P. After processing all message blocks, the
squeezing phase starts. The first r-bit of the state is returned as
an output block, followed by the inclusion of function P as
shown in Figure 2. The number of output blocks is determined
by the user [10, 14].

Figure 2. Sponge Construction

Seemingly, the sponge construction [27] is the only alternative
to the classical Merkle–Damgård construction due to its
lightweight design. This process depends only on a single
permutation, and the message blocks are then combined with
a simple XOR with the internal state.
In contrast with Davies–Meyer construction, storage of mes-
sage blocks and “feed forward” intermediate values are not
required in sponge construction. Nevertheless, a larger state is
required to achieve traditional security levels [13].

3.2 Merkle- Damgård Construction

The Merkle–Damgård construction has been adopted in
many hash algorithms such as MD5, SHA1/SHA2, STITCH as
well as lightweight hash function algorithm, e.g. ARMADIL-
LO [15]. It is used to construct collision-resistant cryptograph-
ic hash functions from collision-resistant one-way compres-
sion functions. The Merkle–Damgård hash function [23] in-
volves the application of MD-compliant padding function to
create an output of size which is twice as that of a fixed num-
ber due to the fact that compression function is unable to han-
dle inputs of arbitrary sizes. The hash function decomposes
the output into blocks of fixed size and processes them indivi-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 808
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

dually with the compression function. At each time, an input
block is combined with the output obtained from the previous
round. In the current work, we have used a compression func-
tion H mapping {0, 1}n × {0, 1}k to {0, 1}n, a fixed and public IV
of {0,1}n, and a message (m1, m2, …., mt), where each mi is a
block of k bits. Then, a hash function H (see Figure 3) was
built.

Figure 3. Merkle-Damgård construction

3.3 Davies-Meyer Construction

The modern hash functions were used as compression func-
tions. Their theoretical foundations have been given by Merkle
and Damgård [23]. In order to produce a fixed-length output,
the compression function H has a fixed-length input that con-
sists of a chaining variable and a message extract [17].

The Davies–Meyer compression function feeds each mes-
sage block (mi) with a key to the block cipher. Also, it feeds the
previous hash value (Hi-1) with an encrypted plaintext. Also,
the output of ciphertexts is XORed with the previous hash
value (Hi-1) in order to yield the next hash value (Hi). Due to
the absence of the previous hash value in the first round, the
use of a constant pre-specified initial value (H0) [17] is neces-
sary as shown in Figure 4. It is computed via:

Hi= Emi (Hi-1) Hi-1

Figure 4. Davies Meyer Compression Function

4 LIGHTWEIGHT CRYPTOGRAPHIC HASH FUNCTIONS
Some lightweight hash functions have been recently re-
ported. Bogdanov et al. [28] described ways of using

PRESENT block cipher in hashing modes of operation. The
applications of Spongent [8], PHOTON [13] and GLUON
[29] in designing a dedicated lightweight hash function
based on sponge construction have been highlighted as
well. Each algorithm will be described in the next section.

4.1 PHOTON
The PHOTON lightweight hash function was designed by
Guo et al. [13]. It uses a sponge-like construction and an AES-
like primitive as internal unkeyed permutation. Therefore, it is
a compact hash function with 1120 GE for 64-bit collision resis-
tance security [13]. The output size is 64≤ n ≤256, and the input
and output bit rates are r and r`, respectively. Thus, a PHO-
TON hash function can be characterized as PHOTON-n/r/r`.
Its internal state size depends on the hash output size: 100,
144, 196, 256, and 288 bits. The internal permutation P is ap-
plied to an internal state of d2 elements of b bits. Two types of
S-boxes are used, i.e. 4-bit PRESENT S-box and 8-bit AES S-
box.

4.2 SPONGENT
Bogdanov [8] instantiated the Spongent lightweight hash func-
tions with PRESENT-type permutations. The 4-bit S-box,
which is the major block of functional logic in a serial low-area
implementation of Spongent, fulfills the PRESENT design cri-
teria in terms of differential and linear properties [9]. Spon-
gent has 13 variants for each collision/(second) preimage resis-
tance level and implementation constraint. Its round function
is relatively simple; therefore, its logic size is close to the theo-
retically smallest size.

In Spongent, the initial value is b-bit 0. In all Spongent va-
riants, the hash size n is equal to either capacity c or 2c. The
message chunks are XORed into the r rightmost bit positions
of the state. The same r bit positions form parts of the hash
output. Any linear approximation over the S-box (i.e. involves
only single bits in the input and output masks) is unbiased.
This linear approximation is useful in limiting the linear hull
effect discovered in round-reduced PRESENT [8].

4.3 Keccak
Kavun and Yalcin [14] reported the lightweight implementa-
tions of Keccak- f [200] and Keccak- f [400] permutations. Kec-
cak-f [200] and Keccak-f [400] are variants of the SHA-3 hash
function. In fact, Keccak [30] is developed based on the sponge
construction. Its basic component is Keccak- f permutation,
which contains numerous simple rounds with logical opera-
tions and bit permutations. Keccak-f [b] involves permutation
chosen from a set of seven permutations, where b denotes the
width of the permutation {25, 50, 100, 200, 400, 800, 1600} and
the width of the state in the sponge construction.

4.4 Quark

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 809
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Quark was developed by Aumasson in 2010 based on sponge
construction [10]. It is the first lightweight hash function de-
signed based on a single security level in order to minimize
the memory requirement. It employs a permutation P based
on the stream ciphers Grain [11] and block cipher KATAN
[12]. There are three types of Quark: U-Quark (64-bit security),
D-Quark (80-bit security) and T-Quark (112-bit security). U-
Quark gives at least 64-bit security against all attacks [31].
Meanwhile, U-Quark requires 1379 GE and consumes ~2.44
µW at 100 kHz [31]. T-Quark implemented in [31] requires
2296 GE. The internal permutation P contains three nonlinear
Boolean functions, i.e. f, g (similar to that in Grain), and h. Al-
so, it consists of one linear Boolean function p and involves P
processes. All the nonlinear Boolean functions are unique for
each Quark function. The P processes are dependent on three
phases, i.e. initialization, state update and computation of
output.

4.5 Neiva
In [32] Proposed a lightweight hash function based on sponge
construction and PRESENT [33] block cipher. The state b is of
256-bit. The rate and capacity is 32-bit and 224-bit respectively,
and 32 rounds. The process of Neiva is as follow, first the Mes-
sage M is padded and then divided into the 32-bit blocks after
that the first message block M1 is XORed to the state. After
applying the PRESENT S-box in parallel, the updated register
is divided in 16-bit words and apply Feistel structure on every
64-bit. After an 8-bit left rotation, it is added to a round con-
stant. The updated register after modular addition is the out-
put of first round. It keeps feeding to the next round till 32
rounds. In squeezing phase, take the most significant 32-bit of
last register of absorbed phase. Then apply f seven times on
the updated register and every time take out the most signifi-
cant 32-bit. In order to get the 224 bit output, the seven 32 bit
will be concatenated.

4.6 ARMADILLO
Badel et al. [15] proposed ARMADILLO, which is a multi-
application primitive. It was used as MAC and digital signa-
tures such as PRNG and PRF. Its structure is similar to that of
the Merkle–Damgård construction. In general, ARMADILLO
requires 2923 GE. A total of 176 clock cycles is required to
complete one computation (consuming 44 µW power). AR-
MADILLO2, which is a new variant of ARMADILLO, is more
robust than ARMADILLO. It uses a more compact and secure
compression function [15].

4.7 GLUON
Berger et al. developed the GLUON hash function [29] based
on the sponge construction model [34]. The f function was
used to call a filtered feedback with carry shift register (FCSR).
The filtered FCSR was developed based on the F-FCSR-v3
hardware stream cipher [35] and the X-FCSR-v2 software

stream cipher [36]. It is slightly heavier than Quark and PHO-
TON. The lightest instance of GLUON-64 provides the 64-bit
security level and requires 2071 GE [29]. Meanwhile, GLUON-
80 provides the 80-bit security level and GLUON-112 provides
the 112-bit security level and requires 4724 GE [29]. From a
stream cipher with an internal state size of n, one can construct
a function from {0, 1} b as follows:
1. The b-bit input is filled into an initial state size of n bits.
2. The stream cipher is initialized as usual, where the first b
output bits compose the output of the f function.
Assuming that the stream cipher is “perfect,” the function will
mimic a random function which is used to identify siding in
the function (twice of that of stream cipher).

4.8 DM-PRESENT and H-PRESENT
DM-PRESENT80, DM-PRESE128 and H-DM-PRESENT80,
DM-PRESE128 and H-PRESENT128 [17] are some of the
lightweight hash functions developed based on the block ci-
pher PRESENT [9]. The feed forward feature of the compres-
sion function and the reversible components that can be used
as a block cipher are discarded.
The DM-PRESENT [17] hash functions rely on a compression
function in order to take input from some words of the chain-
ing variable (represented by Hi) and some words of the for-
matted message extract (represented by Mi). A single 64-bit
chaining variable Hi is then updated from the Davies–Meyer
operation by using a message extract Mi:

Hi = E (Hi, M) Hi
In this case, E denotes encryption with either PRESENT-80 or
PRESENT-128, which can provide 64-bit security level.
Each iteration of compression function involves the compres-
sions of 64 bits of chaining variable and 80 bits of message-
related input. Therefore, DM-PRESENT-80 and DM-
PRESENT-128 are able to give a compromise between space
and throughput. Replacing PRESENT with a different block
cipher will definitely augment the space required during the
implementation stage.
H-PRESENT-128 compression function treats two 64-bit chain-
ing variables and one 64-bit message extract as inputs (de-
noted by the triple (H1, H2, M)). A pair of updated chaining
variables ,) is then produced (output) based on the fol-
lowing computation:

 = E (H1, H2, M) H1 and
 = E (H1 c, H2, M) H1

Where E denotes PRESENT-128 and c is a nonzero constant
(fixed). Thus, the chaining variable H1 || H2 is 128 bits long,
and 64 bits of message-related input are hashed per iteration.
Hirose proved that an adversary of at least 2n queries is re-
quired in an ideal cipher model in order to obtain a collision
with non-negligible advantage. Here, n is the block size of the
cipher. Similar analysis can be done for preimage resistance to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 810
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

show that adversary of at least 22n queries is required in order
to identify a preimage.

4.9 Lesamnta-LW
Hirose et al. [37] proposed a lightweight 256-bit hash function
called Lesamnta-LW. They claimed that its security level was
at least 2120 with respect to collision, preimage, and second
preimage attacks. Lesamnta-LW was designed based on the
Merkle-Damgård as domain extension. It employs AES as the
compression function. The weight of Lesamnta-LW hardware
is 8.24 KG on 90 nm technology. Lesamnta-LW offers 50 bytes
of RAM and deals with short messages on 8-bit CPUs.

4.10 Tav-128
Peris-Lopez et.al. [38] developed the Tav-128 lightweight hash
function based on Merkle- Damgård construction. The output
was 128 bit and the input message was split into 32-bit blocks.
The compression function uses two filter functions (A and B)
and two expansion functions (C and D). The internal state
consists of five 32-bit words and the final output consists of
four 32-bit state registers. The finalization function g truncates
the state and the outputs to 128 least significant bits. The au-
thors analyzed the statistical properties of its output and esti-
mated that the required hardware footprint was approximate-
ly 2.6K GEs.

5 APPLICATIONS OF LIGHTWEIGHT CRYPTOGRAPHIC
HASH FUNCTION

Lightweight cryptographic hash functions are widely applied
in cryptography and programming practice. We will describe
several scenarios, which can be used as models for evaluating
the security levels of practical applications.

5.1 Digital signatures
Hash functions are applied in digital signature schemes [39].
Digital signature is a generic mechanism that transforms any
signature scheme for signing messages of a fixed length and a
collision-resistant hash function into a signature scheme that
can handle messages of arbitrary length. The mechanism is
called the hash-and-sign paradigm and it is the basis for all
modern practical signature schemes.

Adida et al. [40] described several ways to use digital sig-
nature in Email application. One of the techniques is using
lightweight cryptographic hash function as the Single Server
Key Algorithm. Lightweight cryptographic hash function can
be used as a digital signature. According to Ari Juels [41],
many American companies such as Texas Instruments and
VeriSign Inc. have proposed a “chain-of-custody” approach to
apply RFID in their industries. The model involves digital
signing of tag data to provide integrity assurance. Hanaoka et
al. [42] proposed the Light-Weight Secure Electronic Transac-

tion Protocol (LITESET) and applied the signcryption scheme
for verification purpose.

5.2 MAC and HMAC
MAC and HMAC Message-Authentication Code (MAC) are
keyed hash functions satisfying certain cryptographic proper-
ties. MAC generates a tag from a message and a secret key in
order to verify the authenticity and the integrity of the mes-
sage.

Typically, MAC can be generated based on a collision-
resistant keyless hash function. In fact, the most commonly
used MAC construction is HMAC. For certain applications,
occasionally accepting an inauthentic message may delimit the
security level of an application; therefore, shorter tags are rec-
ommended [43]. Many researchers have worked on
lightweight HMAC such as Shen [44] Chaskey [45, 46], TuLP
[47], SipHash [48] and LightMAC [49].

5.3 Authenticated Encryption
Recently, permutation-based constructions [22] are applied in
a wide range of platforms such as lightweight devices.
Lightweight permutation-based hash functions include Gluon
[29], Photon [13], Quark [10, 31], and Spongent [8].
Lightweight cryptographic hash functions are used in hash
function application. It is employed to provide Authenticated
Encryption (AE) as well. AE is a cryptographic primitive that
guarantees privacy and integrity [50]. Usually, it is built from
block cipher [51, 52, 53]. Many permutation-based AE schemes
have been proposed recently, e.g. deterministic key-wrap
scheme [54] and SpongeWrap [55, 56]. Many researchers de-
signed their primitives based on hash functions such as ALE
[57], LAMP [58], JHAE [59] and Humenberidg [60].

6 COMPARATIVE ANALYSIS OF EXISTING LIGHTWEIGHT
CRYPTOGRAPHIC HASH FUNCTIONS

Comparison of lightweight cryptographic primitives is chal-
lenging because many characteristics should be considered
and these primitives are technology-dependent. In general, a
fair comparison can be made if the utilized tools and libraries
are similar.

In order to assess the implementation of a lightweight hash
function, the following metrics should be considered:
• Area: Measured in GE.
• Cycles: The number of clock cycles used to compute and

read out the ciphertexts.
• Time: The ratio of the number of cycles to the operating

frequency in seconds.
• Throughput: The rate at which new output is produced

with respect to time.
• Power: The estimated power consumption on the gate

level by using the Power Compiler.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 811
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

• Efficiency: Hardware efficiency is measured by dividing
the throughput to area ratio.

A basic RFID tag may have a total gate count of between
1000 and 10000 gates [13]. No more than 2,000 GE are available
for security in low-cost RFID tags [61, 28, 35, 62]. A common
metric to measure the efficiency of the proposed algorithm is
the number of GE. Basically, the GE can be calculated by di-
viding the silicon area that is used for a cipher with a given
standard cell library by the area of a two-input NAND gate
[63]]. In addition, the power required for 100 KHz RFIDs must
be less than 27 µW power [36, 64]. Therefore, we can conclude
that the area metric is more important than the power, espe-
cially when we want to measure the efficiency of the primi-
tives. Table 2 shows the comparison of the performances of
lightweight hash functions of different hash functions based
on the direct application of sponge-based construction. In
principle, comparing the performances of designs imple-
mented in different platforms is not easy. Nevertheless, the
results shown in the table are calculated based on measure-
ments as reported in the references.

First, the DM-PRESENT-80 consumes 6.28µW at a clock
frequency of 100 KHz in the round-based implementation
with a total area of 2213 GE, whereas the serialized implemen-
tation consumes 1.83µW and requires 1600 GE. We observed
that the parallel design needs more area than the serialized
design. However, the parallel design is faster because it needs
fewer clock cycles and consumes less power than the seria-
lized design. A similar finding can also be observed when the
Parallel Keccak-f and the Serial Keccak- f were compared. In
terms of power consumption of the serialized implementation
of PHOTON-80/20/16, PHOTON-128/16/16, PHOTON-
160/36/36, PHOTON-224/32/32, and PHOTON-256/32/32, each

of these variants of PHOTON consumes 1.59µW, 2.29µW,
2.74µW, 4.01µW, and 4.55µW of power, respectively.

By contrast, the parallel implementations of the same hash
functions require 2.7µW, 3.45µW, 4.35µW, 6.5µW, and 8.38µW
of power, respectively. These values are higher than the seria-
lized implementation. We also observed that parallel imple-
mentation of PHOTON generally requires a higher number of
GE than serialized implementations. A similar observation was
also observed when Spongent and Quark were compared.

The most recently published hash families like Keccak,
SPONGENT, PHOTON and Quark is based on a sponge con-
struction. The sponge construction can be seen as an alterna-
tive to the classical Merkle-Damgård construction. It rather
relies on a single permutation, and message blocks are inte-
grated with a simple XOR with the internal state. There is No
feed-forward necessary for the sponge construction as in Da-
vies- Meyer constructions, however they need a larger state to
achieve traditional security levels that compromises memory
savings. Using sponge functions as operating mode is another
step towards compactness. Avoiding any feed-forward such as
that in sponge construction saves a lot of memory registers at
the cost of an invertible iterative process that induces a lower
(second)-preimage security for the same internal state size.
The sponge construction keeps the internal memory size as
low as possible. This can be seen when we compare the result
of all sponge construction functions with Merkle-Damgård
construction (ARMADELO) and Davies-Meyer mode (DM-
PRESENTS).

Table 1 Comparison of Performances of Lightweight Hash Functions.

Primitives

 Hash
output
size

Data
path
size

Cycles per
block

Through-
put at 100
KHz

Power

µW

Logic
process

µm

GE

DM-PRESENT-80 [21]. Davies-Meyer mode 64 4 4547 14.63 6.28 0.18 1600

64 64 45 242.42 1.83 0.18 2213

DM-PRESENT-128 [21] 64 4 559 22.9 7.49 0.18 1886

64 128 74 387.88 2.94 0.18 2530

PHOTON-80/20/16 [9] sponge-like construc-
tion

80 4 708 2.82 1.59 0.18 865

80 20 132 2.82 2.7 0.18 1168

PHOTON-128/16/16 [9] 128 4 996 1.61 2.29 0.18 1122

128 24 156 15.15 3.45 0.18 1708

PHOTON-160/36/36 [9] 160 4 1332 2.70 2.74 0.18 1396

160 28 180 10.26 4.35 0.18 2117

PHOTON-224/32/32 [9] 224 4 1716 1.86 4.01 0.18 1735

224 32 204 15.69 6.5 0.18 2786

PHOTON-256/32/32 [9] 256 4 996 3.21 4.55 0.18 2177

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 812
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

256 48 156 20.51 8.38 0.18 4362

Parallel Keccak-f[1600] [47] 256 64 24 4533 315.1 0.18 4763

Serial Keccak-f[1600] [47] 256 64 1200 90.66 44.9 0.18 2079

Parallel Keccak-f[400] [47] 128 16 20 720 78.1 0.18 1056

Serial Keccak-f[400] [47] 128 16 1000 14.4 11.5 0.18 509

Parallel Keccak-f[200] [47] 64 8 18 400 27.6 0.18 409

Serial Keccak-f[200] [47] 64 8 900 8 5.6 0.18 252

U-Quark [19] 128 1 544 1.47 2.44 0.18 1379

128 8 68 11.76 4.07 0.18 2392

D-Quark [19] 160 1 704 2.27 3.10 0.18 1702

160 8 88 18.18 4.67 0.18 2819

T-Quark [19] 224 1 1024 3.13 4.35 0.18 2296

224 16 64 50 8.39 0.18 4640

GLUON-64 [46] 128 8 66 12.12 N/A 0.13 2071

GLUON-80 [46] 160 16 50 32 N/A 0.13 2799.3

GLUON-112 [46] 224 32 55 58.18 N/A 0.13 4724

spongent-88/80/8 [20] 88 4 990 0.81 1.57 0.13 738

88 88 45 17.78 2.31 0.13 1127

spongent-128/128/8 [20] 128 8 2380 0.34 2.20 0.13 1060

128 136 70 11.43 3.58 0.13 1687

spongent-160/160/16 [20] 160 4 3960 0.40 2.85 0.13 1329

160 176 90 17.78 4.74 0.13 2190

spongent-224/224/16 [20] 224 4 7200 0.22 3.74 0.13 1728

224 240 120 13.33 5.97 0.13 2903

spongent-256/256/16 [20] 256 4 9520 0.17 4.21 0.13 1950

256 272 140 11.43 6.62 0.13 3281

Neiva [55] 224 32 12067 4.99 - -

ARMADILLO [48] Merkle–Damgård 48 80 176 272 44 0.18 2,923

Lesamnta-LW [37]

256 20 188.3 125.55 - 90 nm 8,24

7 CONCLUSION
In this paper, we provide a comprehensive survey of
lightweight cryptographic hash algorithms. These classifica-
tions are very useful because these primitives have various
characteristics. Also, this paper highlights the security levels of
lightweight cryptographic hash functions. The structures show
that primitive designs with hardware-friendly operations give
a smaller GE. Also, parallel design gives better performance;
however, its GE is higher than that of the serial design. The
classification would assist researchers to optimize the design
of lightweight cryptographic primitive in order to achieve the
compromise between the security level and the resource con-
straint.

REFERENCES
[1] I. Vanda, L. Buttyán et al., “Lightweight authentication protocols for low-cost

RFID tags,” in Second Workshop on Security in Ubiquitous Computing–
Ubicomp, vol. 2003, 2003.

[2] J. H.-F. Constantin, A. P. Burg, and F. K. Gurkaynak, “Investigating the poten-
tial of custom instruction set extensions for sha-3 candidates on a 16-bit mi-
crocontroller architecture,” 2012.

[3] A. J. Elbirt, “Fast and efficient implementation of aes via instruction set exten-
sions,” in Advanced Information Networking and Applications Workshops,
2007, AINAW’07. 21st International Conference on, vol. 1. IEEE, 2007, pp.
396–403.

[4] P. Grabher, J. Großschädl, and D. Page, “Light-weight instruction set exten-
sions for bit-sliced cryptography,” in International Workshop on Crypto-
graphic Hardware and Embedded Systems. Springer, 2008, pp. 331–345.

[5] A. Hodjat and I. Verbauwhede, “Interfacing a high speed crypto accelerator to
an embedded cpu,” in Signals, Systems and Computers, 2004. Conference
Record of the Thirty-Eighth Asilomar Conference on, vol. 1. IEEE, 2004, pp.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 813
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

488–492.
[6] S. O’Melia and A. J. Elbirt, “Instruction set extensions for enhancing the per-

formance of symmetric-key cryptography,” in Computer Security Applica-
tions Conference, 2008. ACSAC 2008. Annual. IEEE, 2008, pp. 465–474.

[7] H. Yoshida, D. Watanabe, K. Okeya, J. Kitahara, H. Wu, Ö. Küçük, and B.
Preneel, “Mame: A compression function with reduced hardware require-
ments,” in CHES, vol. 4727. Springer, 2007, pp. 148–165.

[8] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauw-
hede, “Spongent: The design space of lightweight cryptographic hashing,”
IEEE Transactions on Computers, vol. 62, no. 10, pp. 2041–2053, 2013.

[9] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Rob-
shaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight block ci-
pher,” in International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2007, pp. 450–466.

[10] J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia, “Quark: A
lightweight hash,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2010, pp. 1–15.

[11] M. Hell, T. Johansson, and W. Meier, “Grain: a stream cipher for constrained
environments,” International Journal of Wireless and Mobile Computing, vol.
2, no. 1, pp. 86–93, 2007.

[12] C. De Canniere, O. Dunkelman, and M. Kneževi´c, “Katan and ktantan—a
family of small and efficient hardware-oriented block ciphers,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems. Sprin-
ger, 2009, pp. 272–288.

[13] J. Guo, T. Peyrin, and A. Poschmann, “The photon family of lightweight hash
functions,” in Annual Cryptology Conference. Springer, 2011, pp. 222–239.

[14] E. B. Kavun and T. Yalcin, “A lightweight implementation of keccak hash
function for radio-frequency identification applications,” in International
Workshop on Radio Frequency Identification: Security and Privacy Issues.
Springer, 2010, pp. 258–269.

[15] S. Badel, N. Da˘gtekin, J. Nakahara Jr, K. Ouafi, N. Reffé, P. Sepehrdad, P.
Sušil, and S. Vaudenay, “Armadillo: a multi-purpose cryptographic primitive
dedicated to hardware,” in International Workshop on Cryptographic Hard-
ware and Embedded Systems. Springer, 2010, pp. 398–412.

[16] D. Hankerson, A. J. Menezes, and S. Vanstone, “Guide to elliptic curve cryp-
tography,” 2006.

[17] A. Poschmann, “Lightweight cryptography,” Ph.D. dissertation, 2009.
[18] I. Damgård, “A design principle for hash functions,” in Advances in Cryptol-

ogy, CRYPTO’89 Proceedings. Springer, 1990, pp. 416–427.
[19] A. Kahate, “Cryptography and network security,” 2013.
[20] M. R. S. Abyaneh, “Security analysis of lightweight schemes for rfid sys-

tems,” 2012.
[21] E. Andreeva, B. Mennink, and B. Preneel, “Security properties of domain

extenders for cryptographic hash functions.” JIPS, vol. 6, no. 4, pp. 453–480,
2010.

[22] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Sponge functions,”
in ECRYPT hash workshop, vol. 2007, no. 9, 2007.

[23] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, “Handbook of ap-
plied cryptography,” 1996.

[24] S. Bakhtiari, R. Safavi-Naini, J. Pieprzyk et al., “Cryptographic hash func-
tions: A survey,” Centre for Computer Security Research, Department of
Computer Science, University of Wollongong, Australie, 1995.

[25] O. Dunkelman and E. Biham, “A framework for iterative hash functions:
Haifa,” in 2nd NIST cryptographich hash workshop, vol. 22, 2006.

[26] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Cryptographic
sponges,” online] http://sponge. noekeon. org, 2011.

[27] M. Feldhofer, S. Dominikus, and J.Wolkerstorfer, “Strong authentication for
RFID systems using the AES algorithm,” in International Workshop on Cryp-
tographic Hardware and Embedded Systems. Springer, 2004, pp. 357–370.

[28] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw, and Y.
Seurin, “Hash functions and rfid tags: Mind the gap,” in International Work-
shop on Cryptographic Hardware and Embedded Systems. Springer, 2008,
pp. 283– 299.

 [29] T. Berger, J. D’Hayer, K. Marquet, M. Minier, and G. Thomas, “The gluon
family: a lightweight hash function family based on fcsrs,” Progress in Cryp-
tology- AFRICACRYPT 2012, pp. 306–323, 2012.

[30] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak sponge func-
tion family main document,” Submission to NIST (Round 2), vol. 3, p. 30,
2009.

[31] J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia, “Quark: A
lightweight hash,” Journal of cryptology, pp. 1–27, 2013. [32] K. Bussi, D.
Dey, M. K. Biswas, and B. Dass, “Neiva: A lightweight hash function.” IACR
Cryptology ePrint Archive, vol. 2016, p. 42, 2016.

[33] M. R. Z’aba, N. Jamil, M. E. Rusli, M. Z. Jamaludin, and A. A. M. Yasir, “I-
present tm: An involutive lightweight block cipher,” Journal of Information
Security, vol. 2014, 2014.

[34] F. Arnault, T. Berger, C. Lauradoux, M. Minier, and B. Pousse, “A new ap-
proach for fcsrs,” in International Workshop on Selected Areas in Cryptogra-
phy. Springer, 2009, pp. 433–448.

[35] A. Juels and S. A. Weis, “Authenticating pervasive devices with human pro-
tocols,” in Annual International Cryptology Conference. Springer, 2005, pp.
293–308.

[36] X. Guo and P. Schaumont, “The technology dependence of lightweight hash
implementation cost,” in ECRYPT Workshop on Lightweight Cryptography,
2011.

[37] S. Hirose, K. Ideguchi, H. Kuwakado, T. Owada, B. Preneel, and H. Yoshida,
“A lightweight 256-bit hash function for hardware and low-end devices: le-
samntalw,” in International Conference on Information Security and Cryptol-
ogy. Springer, 2010, pp. 151–168.

[38] H. Martin, P. P. Lopez, E. San Millan, and J. E. Tapiador, “A lightweight
implementation of the tav-128 hash function,” IEICE Electronics Express,
vol. 14, no. 11, pp. 20 161 255–20 161 255, 2017.

[39] R. Gennaro and P. Rohatgi, “How to sign digital streams,” Advances in Cryp-
tology— CRYPTO’97, pp. 180–197, 1997.

[40] B. Adida, S. Hohenberger, and R. L. Rivest, “Lightweight encryption for
email.” in SRUTI, 2005.

[41] A. Juels, “Rfid security and privacy: A research survey,” IEEE journal on
selected areas in communications, vol. 24, no. 2, pp. 381–394, 2006.

[42] G. Hanaoka, Y. Zheng, and H. Imai, “Liteset: A light-weight secure electronic
transaction protocol,” in Information Security and Privacy. Springer, 1998,
pp. 215–226.

[43] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, “Report on
lightweight cryptography,” NIST DRAFT NISTIR, vol. 8114, 2016.

[44] M. M. Fouda, Z. M. Fadlullah, N. Kato, R. Lu, and X. S. Sheen, “A
lightweight message authentication scheme for smart grid communications,”
IEEE Transactions on Smart Grid, vol. 2, no. 4, pp. 675–685, 2011.

[45] N. Mouha, B. Mennink, A. Van Herrewege, D. Watanabe, B. Preneel, and I.
Verbauwhede, “Chas key: an efficient mac algorithm for 32-bit microcontrol-
lers,” in International Workshop on Selected Areas in Cryptography. Springer,
2014, pp. 306–323.

[46] K. Mahmood, S. A. Chaudhry, H. Naqvi, T. Shon, and H. F. Ahmad, “A
lightweight message authentication scheme for smart grid communications in
power sector,” Computers & Electrical Engineering, vol. 52, pp. 114–124,
2016.

[47] Z. Gong, P. Hartel, S. Nikova, S.-H. Tang, and B. Zhu, “Tulp: A family of
lightweight message authentication codes for body sensor networks,” Journal
of computer science and technology, vol. 29, no. 1, p. 53, 2014.

[48] J.-P. Aumasson and D. J. Bernstein, “Siphash: A fast short-input prf.” in
INDOCRYPT, vol. 7668. Springer, 2012, pp. 489–508.

[49] A. Luykx, B. Preneel, E. Tischhauser, and K. Yasuda, “A mac mode for
lightweight block ciphers,” in International Conference on Fast Software En-
cryption. Springer, 2016, pp. 43–59.

[50] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha, and
K. Yasuda, “Ape: authenticated permutation-based encryption for lightweight
cryptography,” in International Workshop on Fast Software Encryption.
Springer, 2014, pp. 168–186.

[51] D. A. McGrew and J. Viega, “The security and performance of the ga-
lois/counter mode (gcm) of operation.” in Indocrypt, vol. 3348. Springer,
2004, pp. 343–355. [52] D. Whiting, N. Ferguson, and R. Housley, “Counter
with cbc-mac (ccm),” 2003.

[53] P. Rogaway, M. Bellare, and J. Black, “Ocb: A block-cipher mode of opera-
tion for efficient authenticated encryption,” ACM Transactions on Informa-
tion and System Security (TISSEC), vol. 6, no. 3, pp. 365–403, 2003.

[54] D. Khovratovich, “Key wrapping with a fixed permutation.” in CT-RSA,
2014, pp. 481–499.

[55] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Duplexing the
sponge: single-pass authenticated encryption and other applications,” in In-
ternational Workshop on Selected Areas in Cryptography. Springer, 2011, pp.
320–337.

[56] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Permutation-based
encryption, authentication and authenticated encryption,” Directions in Au-
thenticated Ciphers, 2012.

[57] A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. Tischhauser,
“ALE: AES-based lightweight authenticated encryption,” in International
Workshop on Fast Software Encryption. Springer, 2013, pp. 447–466.

 [58] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estévez-Tapiador, and A.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 814
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Ribagorda, “Lmap: A real lightweight mutual authentication protocol for low-
cost RFID tags,” in Proc. of 2nd Workshop on RFID Security, 2006, p. 06.

[59] J. Alizadeh, M. R. Aref, N. Bagheri, and A. Rahimi, “Jhae: A novel permuta-
tionbased authenticated encryption mode based on the hash mode jh,” Journal
of Computing and Security, vol. 2, no. 1, 2016.

[60] D. Engels, X. Fan, G. Gong, H. Hu, and E. M. Smith, “Hummingbird: ultra-
lightweight cryptography for resource-constrained devices,” in International
Conference on Financial Cryptography and Data Security. Springer, 2010, pp.
3–18.

[61] M. Katagi and S. Moriai, “Lightweight cryptography for the internet of
things,” Sony Corporation, pp. 7–10, 2008.

[62] Z. Shi, S. Ren, F. Wu, and C. Wang, “The vulnerability analysis of some
typical hash-based rfid authentication protocols,” Journal of Computer and
Communications, vol. 4, no. 08, p. 1, 2016.

[63] L. Batina, A. Das, B. Ege, E. B. Kavun, N. Mentens, C. Paar, I. Verbauw-
hede, and T. Yalçın, “Dietary recommendations for lightweight block ciphers:
power, energy and area analysis of recently developed architectures,” in In-
ternational Workshop on Radio Frequency Identification: Security and Priva-
cy Issues. Springer, 2013, pp. 103–112.

[64] M.-J. O. Saarinen and D. W. Engels, “A do-it-all-cipher for RFID: Design
requirements,” IACR Cryptology EPrint Archive, vol. 2012, p. 317, 2012.

[65] Panasenko, Sergey, and Sergey Smagin. (2011). Lightweight Cryptography:
Underlying Principles and Approaches. International Journal of Computer
Theory and Engineering, 3(4).

[66] John, J. (2012). Cryptography for Resource Constrained Devices: A Survey.
International Journal on Computer Science & Engineering, 4(11).

[67] Katagi, Masanobu, and Shiho Moriai. (2008). Lightweight cryptography for
the Internet of Things. Sony Corporation, 7-10.

[68] Lata, Manju, and Adarsh Kumar. (2014). Survey on Lightweight Primitives
and Protocols for RFID in Wireless Sensor Networks. International Journal of
Communication Networks and Information Security (IJCNIS), 6(1).

[69] Arora, Nikita, and Yogita Gigras (2013). LIGHT WEIGHT CRYPTO-
GRAPHIC ALGORITHMS: A SURVEY, IJRDTM – Kailash | ISBN No. 978-
1-63041-994-3| Vol.20 | Issue 08.

[70] Fan, X., Hu, H., Gong, G., Smith, E. M., & Engels, D. (2009, November).
Lightweight implementation of Hummingbird cryptographic algorithm on 4-
bit microcontrollers. In Internet Technology and Secured Transactions, 2009.
ICITST 2009. International Conference for (pp. 1-7). IEEE.

[71] Mohd, B.J., Hayajneh, T. and Vasilakos, A.V., 2015. A survey on lightweight
block ciphers for low-resource devices: Comparative study and open issues.
Journal of Network and Computer Applications, 58, pp.73-93.

IJSER

http://www.ijser.org/

	1 Introduction
	2. Hash Function
	3 Generic Construction for Lightweight Cryptographic Hash Functions
	4 Lightweight Cryptographic Hash Functions
	5 Applications of Lightweight Cryptographic Hash Function
	6 Comparative Analysis of Existing Lightweight Cryptographic Hash Functions
	7 Conclusion
	REFERENCES

