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ABSTRACT Sphingomonas wittichii RW1 grows on the two related compounds dibenzo-
furan (DBF) and dibenzo-p-dioxin (DXN) as the sole source of carbon. Previous work by
others (P. V. Bunz, R. Falchetto, and A. M. Cook, Biodegradation 4:171–178, 1993, https://
doi/org/10.1007/BF00695119) identified two upper pathway meta cleavage product hy-
drolases (DxnB1 and DxnB2) active on the DBF upper pathway metabolite 2-hydroxy-6-
oxo-6-(2-hydroxyphenyl)-hexa-2,4-dienoate. We took a physiological approach to deter-
mine the role of these two enzymes in the degradation of DBF and DXN by RW1. Single
knockouts of either plasmid-located dxnB1 or chromosome-located dxnB2 had no effect
on RW1 growth on either DBF or DXN. However, a double-knockout strain lost the ability
to grow on DBF but still grew normally on DXN, demonstrating that DxnB1 and DxnB2
are the only hydrolases involved in the DBF upper pathway. Using a transcriptomics-
guided approach, we identified a constitutively expressed third hydrolase encoded by
the chromosomally located SWIT0910 gene. Knockout of SWIT0910 resulted in a strain
that no longer grows on DXN but still grows normally on DBF. Thus, the DxnB1 and
DxnB2 hydrolases function in the DBF but not the DXN catabolic pathway, and the
SWIT0190 hydrolase functions in the DXN but not the DBF catabolic pathway.

IMPORTANCE S. wittichii RW1 is one of only a few strains known to grow on DXN as
the sole source of carbon. Much of the work deciphering the related RW1 DXN and
DBF catabolic pathways has involved genome gazing, transcriptomics, proteomics,
heterologous expression, and enzyme purification and characterization. Very little
research has utilized physiological techniques to precisely dissect the genes and
enzymes involved in DBF and DXN degradation. Previous work by others identified
and extensively characterized two RW1 upper pathway hydrolases. Our present work
demonstrates that these two enzymes are involved in DBF but not DXN degradation.
In addition, our work identified a third constitutively expressed hydrolase that is
involved in DXN but not DBF degradation. Combined with our previous work (T. Y.
Mutter and G. J. Zylstra, Appl Environ Microbiol 87:e02464-20, 2021, https://doi.org/
10.1128/AEM.02464-20), this means that the RW1 DXN upper pathway involves
genes from three very different locations in the genome, including an initial plas-
mid-encoded dioxygenase and a ring cleavage enzyme and hydrolase encoded on
opposite sides of the chromosome.

KEYWORDS dibenzo-p-dioxin, dibenzofuran, dioxin, Sphingomonas, biodegradation,
degradation

S phingomonas wittichii RW1 was isolated from the Elbe River in northern Germany for
its ability to grow on both dibenzofuran (DBF) and dibenzo-p-dioxin (DXN) as the

sole source of carbon and energy (1). RW1 metabolizes DBF and DXN by similar catabolic
pathways initiated by an angular dioxygenase complex system that dihydroxylates one
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of the aromatic rings forming a highly unstable intermediate that spontaneously decom-
poses to 2,29,3-trihydroxydiphenyl (THD) and 2,29,3-trihydroxydiphenyl ether (THDE),
respectively (1, 2). Ameta cleavage enzyme cleaves the dihydroxylated ring (3, 4) to form
2-hydroxy-6-oxo-6-(2-hydroxyphenyl)-hexa-2,4-dienoate (2OH-HOPDA) from THD and 2-
hydroxy-6-oxo-6-(2-hydroxyphenoxy)-hexa-2,4-dienoate (2OH-O-HOPDA) from THDE.
The alkene chain of the ring cleavage products is cleaved by a hydrolase (5, 6) forming
salicylate (DBF pathway) or catechol (DXN pathway).

While aromatic hydroxylating dioxygenases are key enzymes in initiating the degra-
dation of aromatic compounds, hydrolases are often a bottleneck in the degradation
pathway (7–9). This is especially true for the degradation of compounds with more
than one aromatic ring and for chlorinated compounds such as polychlorinated
biphenyl (PCBs). Based on substrate specificity, bacterial hydrolases can be classified
into three groups. Hydrolases belong to group I and II and are involved in bicyclic and
monocyclic aromatic hydrocarbons, and those in group III are involved in heteroaro-
matics biodegradation (10). Due to their strict substrate specificity (11, 12), hydrolases
limit the degradation of many aromatic hydrocarbons and their chlorinated substitu-
ents. An example is the BphD hydrolase from Burkholderia xenovorans strain LB400
that is a key enzyme in the biodegradation of many PCBs (13). Another important hy-
drolase is CarC from the carbazole-degrading Pseudomonas resinovorans CA10 that
cleaves metabolites from both carbazole and DBF (14). One important example of the
importance of hydrolases is a comparison of the P. putida F1 toluene degradation path-
way and the B. xenovorans strain LB400 biphenyl degradation pathway. While the three
initial enzymes in the F1 toluene pathway are capable of metabolizing biphenyl to
HOPDA, the bottleneck for growth on biphenyl is the TodF hydrolase. Addition of the
LB400 BphD hydrolase to F1 overcomes this bottleneck (8, 15). The catalytic mecha-
nism of aromatic pathway hydrolases has been extensively examined (6, 11, 13, 16–24).
The enzyme specificity is due to the conserved catalytic triad (nucleophile-acid-histi-
dine) found in all alpha/beta superfamily meta cleavage product hydrolases where the
nucleophile is always a serine (16, 19, 23).

Two isofunctional hydrolases (H1/DxnB1/SWIT4895 and H2/DxnB2/SWIT3055) have
been purified from S. wittichii RW1 (5) grown on salicylate. Both of these enzymes hy-
drolyze 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate [HOPDA] (biphenyl metabolite)
and 2OH-HOPDA (DBF metabolite) to benzoate and salicylate, respectively. The two
enzymes belong to the class III meta cleavage product hydrolases (6) but are mono-
meric (5), whereas other aromatic hydrolases are multimeric (11, 24, 25). While RW1
grows on both DBF and DXN, no information has been published on the activity of ei-
ther of these two enzymes toward the DXN metabolite 2OH-O-HOPDA. The difference
between 2OH-HOPDA (from DBF) and 2OH-O-HOPDA (from DXN) is the oxygen atom
between the ring and the six carbon side chain in 2OH-O-HOPDA. SWIT3055/DxnB2
has been extensively studied and is known to hydrolytically cleave both C-C and C-O
bonds (6, 20). Interestingly, dxnB1 (SWIT4895) is localized to pSWIT02 in RW1 and is in
the main DXN degradation locus (dxnA1A2B1Cfdx3) between the genes encoding the
large and small subunits of the oxygenase component (dxnA1A2) and the ferredoxin
component (fdx3) of the DBF/DXN dioxygenase. The dxnB2 (SWIT3055) gene, on the
other hand, is localized to the chromosome.

It is assumed that the DxnB1 and DxnB2 hydrolases are involved in the ability of RW1
to grow on both DXN and DBF. However, this is based on the activities of the purified
enzymes and the constitutive nature of the cognate genes. By our count, the RW1 ge-
nome encodes 35 possible aromatic pathway hydrolases, and an examination of raw
transcriptome sequencing (RNA-seq) data (26, 27) shows that three of these (SWIT0910,
SWIT3055/dxnB1, and SWIT4895/dxnB2) are constitutively expressed. It is our hypothesis
that all three of these constitutively expressed hydrolases are involved in RW1 DXN and/
or DBF degradation. In the present work, we used a combination of gene knockout and
physiological experiments to determine the role, if any, of each of these three hydrolases
in RW1 DXN and DBF degradation.
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RESULTS
DxnB1 (SWIT4895) and DxnB2 (SWIT3055) function in DBF degradation but not

DXN degradation. Bunz et al. (5) previously isolated two isofunctional hydrolases
active against HOPDA (biphenyl metabolite) and 2OH-HOPDA (DBF metabolite).
Comparison of the N-terminal sequence of these two enzymes to the completed ge-
nome sequence (28) identified the genes as SWIT4895 (for H1/DxnB1) and SWIT3055
(for H2/DxnB2). In order to identify the role of each of these enzymes in DBF and DXN
metabolism, we targeted these genes for knockout mutagenesis. As expected,
RW1DdxnB1 and RW1DdxnB2 grew the same as the wild-type RW1 on DBF and DXN as
the sole carbon source (Fig. 1). These data suggest that the enzymes are truly isofunc-
tional under physiological conditions since both single knockouts grew normally. The
double-knockout strain RW1DdxnB1DdxnB2 did not grow on DBF (Fig. 1), further dem-
onstrating that the two hydrolases equally contribute to the third enzymatic step of
DBF degradation and that no other RW1 hydrolase functions in this step of the path-
way. Interestingly, the double-knockout RW1DdxnB1DdxnB2 grows on DXN (Fig. 1) at
the same rate and extent as the wild-type RW1, showing that a third hydrolase must
function in the DXN pathway and that this third hydrolase does not play a role in the
DBF pathway.

Identification of a third hydrolase functional for DXN but not DBF degradation.
By our count, the RW1 genome sequence contains genes encoding 35 potential aro-
matic compound pathway hydrolases (Fig. 2). There have been multiple transcriptomic
and proteomic studies examining RW1 during growth on DXN, DBF, and related com-
pounds (26, 27, 29–31). However, transcriptomic and proteomic studies typically report
differences (ratios) in gene expression between growth on one substrate versus another.
Since the RW1 DXN and DBF catabolic pathways are constitutively expressed (1), we
examined the raw RNA-seq data from a transcriptomic study comparing DXN, DBF, and
succinate grown RW1 (26). As expected, dxnB1/SWIT4895 and dxnB2/SWIT3055 are con-
stitutively expressed with some slight variation (no more than 3 times) between the
three growth substrates (Fig. 2). In addition, the SWIT0886 and SWIT0910 genes, encod-
ing potential aromatic pathway hydrolases, were reported (26) to be constitutively
expressed (Fig. 2). Raw SWIT0886 and SWIT0910 RNA-seq counts were about the same
for growth on succinate and DXN but were down by approximately half for growth on

FIG 1 Growth of RW1, RW1DdxnB1, RW1DdxnB2, RW1D0910, RW1DdxnB1DdxnB2, RW1DdxnB1D0910,
and RW1DdxnB2D0910 on dibenzofuran (DBF; left) and dibenzo-p-dioxin (DXN; right). Data are the
averages of triplicates, and error bars indicate standard deviations.
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DBF. Interestingly, SWIT0886 and SWIT0910 are nearly identical to each other, with 13 in-
ternal base pair differences out of 753 bases (changing only three amino acids) plus a
nine-base “tail” on SWIT0910 (adding three amino acids to the end of the enzyme).
Given that the two genes are 98.27% identical and that many RNA-seq software pro-
grams incorrectly assign RNA-seq reads to multiple gene copies, we reanalyzed the raw
RNA-seq data in Chai et al. (26) for genes SWIT0886 and SWIT0910. RNA-seq reads with
an exact (100%) match to SWIT0886 and/or SWIT0910 were binned into three categories,
matching both SWIT0886 and SWIT0910, matching only SWIT0886, and matching only

FIG 2 Diversity of RW1 hydrolase enzymes with corresponding RNA-seq counts following growth on
different substrates. In the amino acid sequence dendrogram, the ABQ number is the protein ID, and
the SWIT number is the gene ID in the GenBank database. The gene designation for SWIT4895 is
dxnB1 and that for SWIT3055 is dxnB2. The RNA-seq numbers for each gene following growth on
succinate (SUC), dibenzofuran (DBF), and dibenzo-p-dioxin (DXN) are extracted from Chai et al. (26)
with GEO accession number GSE74831 and are the averages of multiple normalized replicates under
each growth condition. Constitutive genes are highlighted in yellow.
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SWIT0910. The data (Table 1) show that SWIT0886 was not expressed on any of the three
growth substrates (SWIT0886-only reads were 0.0% to 0.6% of the total reads) and that
SWIT0910 was expressed on all three growth substrates (SWIT0910-only reads were 12%
to 21% of the total reads). We therefore targeted SWIT0910 for gene knockout to exam-
ine its role in RW1 DXN and DBF metabolism. RW1D0910 grows the same as the wild-
type strain RW1 on DBF (Fig. 1). This fact, coupled with the fact that RW1DDxnB1DDxnB2
does not grow on DBF, indicates that SWIT0910 plays no role in DBF degradation by
RW1. Surprisingly, however, RW1D0910 does not grow on DXN (Fig. 1) and accumulates
an orange-colored compound in the culture medium with a UV-visible (UV-Vis) spectrum
consistent with 2OH-O-HOPDA. These data prove that SWIT0910 is the only RW1 hydro-
lase involved in growth of RW1 on DXN. The DBF pathway hydrolases DxnB1/SWIT4895,
and DxnB2/SWIT3055 cannot take the place of SWIT0910 during growth on DXN even
though they are constitutively expressed (Fig. 2). We also constructed the double-mutant
strains RW1DDxnB1D0910 and RW1DDxnB2D0910 with the expected results: the dou-
ble-knockout strains do not grow on DXN but do grow normally on DBF (Fig. 1).

Complementation. In order to prove that the growth effects described above are due
to the specific gene knockout and not due to an effect on downstream genes, complemen-
tation experiments were performed. For the double-knockout RW1DdxnB1DdxnB2, addi-
tion of either plasmid pRK_dxnB1 or pRK_dxnB2 restored wild-type growth on DBF (Fig. 3),
indicating that lac promoter-mediated expression of either of these two genes was suffi-
cient to provide enough enzyme for complementation and that the knockout mutation
only affected the dxnB1 or dxnB2 gene. For the knockout RW1D0910, complementation to
wild-type growth on DXN (Fig. 3) was achieved not only with the pRK_0910 plasmid but
also the pRK_0886 plasmid. As mentioned above, SWIT0886 and SWIT0910 are almost iden-
tical, but SWIT0886 is not expressed when RW1 is growing with succinate, DXN, or DBF as
the carbon source. This means that both enzymes, despite their minor amino acid sequence
differences, are capable of cleaving 2OH-O-HOPDA.

DISCUSSION

The work presented here demonstrates the value and culmination of a multifaceted
approach to aromatic hydrocarbon degradation by a number of researchers over the
last 29 years. S. wittichii RW1 was isolated in 1992 for the ability to grow on DBF and
DXN (1). Two aromatic pathway hydrolases were purified (5), characterized in-depth (6,
22, 23), and their genes identified (28). The underlying physiology of RW1 DXN and
DBF degradation has been probed using transcriptomic (26, 27, 31), proteomic (29, 30),
and transposon insertion sequencing (Tn-seq) (32) methodologies. In the present work,
we established that three different meta cleavage product hydrolases are involved in
DXN and DBF degradation. Two of these hydrolases, DxnB1/SWIT4895 and DxnB2/
SWIT3055, were previously isolated for the ability to cleave HOPDA (biphenyl pathway)
and 2OH-HOPDA (DBF pathway). Surprisingly, neither of these two enzymes is capable

TABLE 1 Reanalysis of raw RNA-seq data for the nearly identical genes SWIT0886 and
SWIT0910 following growth of RW1 on DXN, DBF, and succinate

Growth
substrate SRA accession no.

No. of shared
sequences

No. of sequences
unique to SWIT0886

No. of sequences
unique to SWIT0910

DXN SRR2925812 1,827 0 266
SRR2925813 2,459 5 349
SRR2925814 1,511 3 206

DBF SRR2925815 2,527 2 658
SRR2925816 969 2 147
SRR2925817 1,475 4 218

SUCa SRR2925820 2,789 20 704
SRR2925821 2,335 3 567

aSUC, succinate.
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of functioning in the RW1 DXN pathway, and both enzymes contribute equally to the
RW1 DBF pathway. The single-knockouts RW1DDxnB1 and RW1DDxnB2 grow normally
on DBF, and the double-knockout RW1DDxnB1DDxnB2 does not grow on DBF. All
three knockout mutant strains grow on DXN. Using a combined genomic and tran-
scriptomic approach, SWIT0910 was postulated to be the DXN pathway hydrolase, and
a strain (RW1D0910) knocked out for this gene did not grow on DXN and grew nor-
mally on DBF. Based on these facts, we postulate that SWIT0910 has little or no activity
toward the DBF metabolite 2OH-HOPDA and that DxnB1/SWIT4895 and DxnB2/
SWIT3055 have little or no activity toward the DXN metabolite 2OH-O-HOPDA. Since
the only difference between these two compounds is the oxygen linking the aromatic
ring to the side chain, the oxygen must play a significant role in the ability (or inability)
of the three hydrolases to cleave the compound. Based on this hypothesis, it is not sur-
prising that the SWIT0910 hydrolase enzyme was not identified by Bunz et al. (5) since
they did not screen using 2OH-O-HOPDA as the substrate. The three enzymes are suffi-
ciently different from each other, with DxnB1 and DxnB2 sharing 44% amino acid iden-
tity over the full length of the protein and SWIT0910 showing less than 26% amino
acid identity to DxnB1 and DxnB2 (Fig. 4). The DxnB2 enzyme has been extensively
studied (6, 20–23) and the hydrolase catalytic triad (nucleophile-acid-histidine) identi-
fied as Ser105, Asp227, and His255. Interestingly, an alignment (Fig. 4) of the three
enzymes DxnB1, DxnB2, SWIT0886, and SWIT0910 shows that Ser105 and Asp227 of
DxnB2 are conserved in the other three enzymes but that the His255 is only conserved
in DxnB1 but not in SWIT0886 and SWIT0910. Since the His255 is part of the catalytic
triad in DxnB2, another amino acid must take its place in SWIT0886 and SWIT0910.

Sphingomonads are well-known for their ability to degrade a large number of com-
pounds. This is correlated by the fact that their genomes encode many different degra-
dative enzymes (28, 33) whose genes are not often organized in the typical operonic
structure (34, 35). Soil organisms such as S. wittichii RW1 are constantly evolving to
take advantage of changing environmental conditions and growth substrates (36, 37).
Only a very few organisms are known to grow on DXN (1, 38–41). S. wittichii RW1 is the
only one of these organisms that has been extensively studied. In contrast to DXN deg-
radation, many strains have been isolated for the ability to degrade DBF, and many of
these strains can partially metabolize DXN after growth (induction) on DBF. In RW1, the

FIG 3 Complementation of the double dxnB1 and dxnB2 knockout strain by either cloned dxnB1 or
dxnB2 on dibenzofuran (DBF; left) and complementation of the SWIT0910 knockout by either cloned
SWIT0910 or SWIT0886 on dibenzo-p-dioxin (DXN; right).
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genes encoding the upper pathway for DBF degradation are located in multiple loca-
tions on the plasmid pSWIT02. This plasmid is also found in other strains that can de-
grade DBF but not DXN (42). We previously showed (3) that DXN degradation abso-
lutely depends on a THDE meta ring cleavage enzyme encoded by the chromosome.
The DBF degradation pathway THD meta ring cleavage enzyme encoded by pSWIT02
does not function for THDE ring cleavage to allow RW1 growth on DXN. Now, in our
current work, an analogous situation is discovered. There are two RW1 DBF degrada-
tion pathway 2OH-HOPDA hydrolases, one encoded by the chromosome and one
encoded by pSWIT02 (Fig. 5). They are equally active in the catabolic pathway; deletion
of one or the other does not affect RW1 growth on DBF. However, the DXN degrada-
tion pathway 2OH-O-HOPDA hydrolase is encoded by the RW1 chromosome and is
absolutely required for growth (Fig. 5). Thus, the mystery of the complicated nature of
RW1 DXN degradation is solved. The DXN catabolic pathway requires an initial ring
hydroxylating dioxygenase encoded by pSWIT02. The remaining enzymes in the upper
catabolic pathway, the THDE meta cleavage dioxygenase and the 2OH-O-HOPDA hy-
drolase, are encoded on opposite sides of the chromosome, over 2.3 megabases apart.
Therefore, in order for nature to evolve an organism that grows on DXN, it was neces-
sary to combine the pSWIT02 DBF degradative plasmid with the appropriate host-
encoded genes.

MATERIALS ANDMETHODS
Bacterial strains, plasmids, media, and growth conditions. Strains and plasmids utilized in this

study are listed in Table 2. Mineral salts basal medium (MSB) (43) was used as minimal medium and was
supplemented with either L-phenylalanine (10 mM), DBF (3 mM), or DXN (3 mM) when needed. The in-
soluble DBF and DXN were added to MSB as described earlier (3). Amberlite IRA-400 chloride resin
(Sigma-Aldrich, St. Louis, MO) was added at 2 mg/ml MSB broth when needed to prevent accumulation
of 2OH-HOPDA or 2OH-O-HOPDA. RW1 and derivatives were grown aerobically at 30°C, and Escherichia
coli strains were aerobically grown at 37°C. Tetracycline, kanamycin, gentamicin, and ampicillin were
added to the medium when needed at 15, 50, 15, or 100mg/ml, respectively. Growth curves were gener-
ated as described previously (3).

DNA techniques. Total genomic DNA was isolated with the Ultra Clean microbial kit (Qiagen,
Germantown, MD), plasmids were isolated with the NucleoSpin plasmid kit (Macherey-Nagel,
Bethlehem, PA), and DNA fragments isolated from gels with the GeneClean III kit (MP Biomedicals, Santa

FIG 4 Alignment of SWIT0886, SWIT0910, DxnB1/SWIT4895, and DxnB2/SWIT3055 (top to bottom). Amino acid residues matching the
best studied DxnB2/SWIT3055 are shaded in green. Three red arrows point to Ser105, Asp227, and His255 catalytic triad in DxnB2/
SWIT3055, respectively.
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Ana, CA). Restriction digests, ligations, and PCRs were performed following standard protocols (New
England Biolabs, Ipswich, MA). All cloned PCR products were sequenced to verify integrity of the final
product. DNA sequencing was conducted by Genewiz (South Plainfield, NJ). PCR primers utilized in this
study are listed in Table 3.

RNA-seq analysis. The RNA-seq raw data of Chai et al. (26, 27) were reanalyzed to accurately deter-
mine the sequence counts assigned to genes SWIT0886 and SWIT0910. The Magic-BLAST program (44)
was used to query the Sequence Read Archive accession numbers SRR2925812 to SRR2925814 (DXN-
grown RW1), SRR2925815 to SRR2925817 (DBF-grown RW1), and SRR2925820 to SRR2925821 (succinate-
grown RW1) for exact (100%) matches to either SWIT0886 or SWIT0910. To calculate the unique
sequence reads for each gene and those sequence reads in common, the matching sequence lists were
compared with the online Venn diagram program (45) provided by Yves Van de Peer at the University of
Ghent.

Construction of hydrolase knockout mutants and complementation. The three hydrolases were
PCR amplified from RW1 gDNA using the Phusion high-fidelity PCR kit (NEB, Ipswich, MA). The dxnB1
gene was PCR amplified with flanking regions of 0.60 kb upstream of the gene start codon and 0.47 kb
downstream of the gene stop codon using the primers GGGGAATTCCGAAAGGCGCTCACTTCGAGGAC
and GGGAATTCGAAGTTGCCGTGACACCG containing EcoRI restriction site on both ends. The resulting
1.92-kb DNA fragment was ligated into pGEM7Z (Promega, Madison, WI) after digestion with EcoRI to
form pGEM7_dxnB1. The p34S-Km3 (46) kanamycin cassette was digested with SalI and ligated into simi-
larly digested pGEM7_dxnB1 to form pGEM7_dxnB1-Km. The latter plasmid was digested with EcoRI and
ligated into similarly digested pRK415 to make the final construct pRK_dxnB1KO-Km.

SWIT3055 (dxnB2) was PCR amplified with flanking regions of 0.54 kb upstream of the gene start
codon and 0.42 kb downstream of the gene stop codon with the primers GGAAGCTTCTGGGTCACGCC
TGCTTCG and GGTCTAGACCTAGCAGCTTGCCGTCATG containing HindIII and XbaI restriction sites,
respectively. The resulting 1.8-kb fragment was TA cloned into pGEM-T Easy (Promega, Madison, WI) to
form pGEMT_dxnB2. A gentamicin cassette was used to disrupt dxnB2 in the unique BclI site after diges-
tion of p34S-Gm (46) with BamHI (compatible end with BclI) to form pGEMT_dxnB2-Gm. The latter con-
struct was digested with HindIII and XbaI and ligated into similarly digested pRK415 to form the final
construct pRK_dxnB2KO-Gm.

The third hydrolase, SWIT0910, was PCR amplified with flanking regions of 0.70 kb upstream of the

FIG 5 Metabolic map showing the role of the SWIT4895/DxnB1, SWIT0910, and SWIT3055/DxnB2
hydrolases in dibenzofuran and dibenzo-p-dioxin degradation by S. wittichii RW1. The SWIT4897/
dxnA1, SWIT4896/dxnA2, SWIT4894/dxnC, and SWIT4893/fdx3 genes encode the DXN/DBF oxygenase
alpha and beta subunits, a TonB-like protein, and a dioxygenase ferredoxin, respectively. Genes
SWIT0910, SWIT0911, and SWIT0912 encode a hydrolase and two nonidentical fumarylacetoacetate
hydrolase family proteins. Genes SWIT3055 to SWIT3060 encode (in order) the DxnB2 hydrolase,
oxygenase alpha and beta subunits, a putative maleylacetoacetate isomerase, a putative gentisate
1,2-dioxygenase, and a putative fumarylacetoacetate hydrolase. The chemical abbreviations are THD,
2,29,3-trihydroxydiphenyl; THDE, 2,29,3-trihydroxydiphenyl ether; 2OH-HOPDA, 2-hydroxy-6-oxo-6-(2-
hydroxyphenyl)-hexa-2,4-dienoate; and 2OH-O-HOPDA, 2-hydroxy-6-oxo-6-(2-hydroxyphenoxy)-hexa-
2,4-dienoate.

Mutter and Zylstra Applied and Environmental Microbiology

November 2021 Volume 87 Issue 22 e01067-21 aem.asm.org 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

em
 o

n 
19

 O
ct

ob
er

 2
02

2 
by

 1
94

.3
1.

93
.7

2.

https://www.ncbi.nlm.nih.gov/sra/SRR2925812
https://www.ncbi.nlm.nih.gov/sra/SRR2925814
https://www.ncbi.nlm.nih.gov/sra/SRR2925815
https://www.ncbi.nlm.nih.gov/sra/SRR2925817
https://www.ncbi.nlm.nih.gov/sra/SRR2925820
https://www.ncbi.nlm.nih.gov/sra/SRR2925821
https://aem.asm.org


gene start codon and 0.42 kb downstream of the gene stop codon with the primers GGAAGCTTGCAA
CATCGTCCTGGTCG and GGAATTCGCAGGGCATAAGCGACGCAGTC containing HindIII and EcoRI restric-
tion sites, respectively. The resulting 1.89-kb fragment was purified and digested with HindIII and EcoRI
and ligated into similarly digested pET30a (Sigma, St. Louis, MO) to form pET_0910. A gentamicin or
kanamycin cassette was used to disrupt SWIT0910 in the unique SalI site after digestion of pET_0910
and the antibiotic resistance cassette with SalI to form pET_0910-Gm or pET_0910-Km. The latter con-
structs were digested with HindIII and EcoRI and ligated into similarly digested pRK415 to form the final
constructs pRK_0910KO-Gm or pRK_0910KO-Km.

The final knockout constructs in the unstable pRK415 vector were transferred into RW1 by triparental
mating using the helper pRK2013 (47) with selection on MSB supplemented with phenylalanine and tet-
racycline. Knockouts resulting from homologous recombination were then selected by screening for loss
of tetracycline resistance and retention of kanamycin or gentamicin resistance as described previously
(3, 34).

SWIT0886 is nearly identical to SWIT0910. A 0.83-kb fragment of SWIT0886 was PCR amplified using
the primers GGTTCTAGACCCAGGGCGACCGGCTATGTC and GAATTCGACGATGGCGGTCTTCATCGCG con-
taining XbaI and EcoRI restriction sites (underlined), respectively. The PCR product was purified and
cloned into the pGEM-T Easy vector to form pGEMT_0886. The gene was removed from pGEM_0886
with XbaI and EcoRI and ligated into similarly digested pRK415 to form pRK_0886. The final construct
was transferred into RW1D0910 by triparental mating and transconjugants selected on MSB supple-
mented with phenylalanine and tetracycline.

Complementation of the mutations was performed by cloning the corresponding gene into pRK415

TABLE 2 List of strains and plasmids used in this study

Strain or plasmid Description Source and/or reference
RW1 Sphingomonas wittichii RW1 wild-type strain DSMZ (1)
RW1DdxnB1 RW1 with a kanamycin resistance cassette inserted into dxnB1 (SWIT4895) This study
RW1DdxnB2 RW1 with a gentamycin resistance cassette inserted into dxnB2 (SWIT3055) This study
RW1D0910 RW1 with a kanamycin resistance cassette inserted into SWIT0910 This study
RW1DdxnB1DdxnB2 RW1 with a kanamycin resistance cassette inserted into dxnB1 (SWIT4895) and a

gentamycin resistance cassette inserted into dxnB2 (SWIT3055)
This study

RW1DdxnB1D0910 RW1 with a kanamycin resistance cassette inserted into dxnB1 (SWIT4895) and a
gentamycin resistance cassette inserted into SWIT0910

This study

RW1DdxnB2D0910 RW1 with a gentamycin resistance cassette inserted into dxnB2 (SWIT3055) and a
kanamycin resistance cassette inserted into SWIT0910

This study

pGEM7_dxnB1 pGEM7 containing dxnB1 with flanking regions This study
pGEM7_dxnB1-Km pGEM7_dxnB1 with a kanamycin resistance cassette cloned into dxnB1 This study
pRK_dxnB1KO-Km pRK415 with a kanamycin resistance cassette cloned into dxnB1 for constructing the

dxnB1 knockout mutation
This study

pGEMT_dxnB2 pGEMT containing dxnB2 with flanking regions This study
pGEMT_dxnB2-Gm pGEMT_dxnB2 with a gentamycin resistance cassette cloned into dxnB2 This study
pRK_dxnB2KO-Gm pRK415 with a gentamycin resistance cassette cloned into dxnB2 for constructing the

dxnB2 knockout mutation
This study

pET_0910 pET30a containing SWIT0910 with flanking regions This study
pET_0910-Gm pET_0910 with a gentamycin resistance cassette cloned into SWIT0910 This study
pET_0910-Km pET_0910 with a kanamycin resistance cassette cloned into SWIT0910 This study
pRK_0910KO-Gm pRK415 with a gentamycin resistance cassette cloned into SWIT0910 for constructing the

SWIT0910 knockout mutation
This study

pRK_0910KO-Km pRK415 with a kanamycin resistance cassette cloned into SWIT0910 for constructing the
SWIT0910 knockout mutation

This study

pGEMT_0886 pGEMT containing SWIT0886 This study
pRK_0886 pRK415 containing SWIT0886 for complementation This study
pCR_dxnB1 pCR2.1 containing dxnB1 This study
pCR_dxnB2 pCR2.1 containing dxnB2 This study
pCR_0910 pCR2.1 containing SWIT0910 This study
pRK_dxnB1 pRK415 containing dxnB1 for complementation This study
pRK_dxnB2 pRK415 containing dxnB2 for complementation This study
pRK_0910 pRK415 containing SWIT0910 for complementation This study
pGEM-T Easy TA cloning vector Promega
pGEM7Z Cloning vector Promega
pET30a Cloning vector Sigma
pCR2.1 TOPO pCR2.1 vector Thermo Fisher
pRK415 Unstable broad-host-range cloning vector 48
pRK2013 Helper plasmid for conjugation experiments 47
p34S-Km3 Source of the kanamycin resistance cassette 46, 49
p34S-Gm Source of the gentamycin resistance cassette 46
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under lac promoter expression. Gene cassettes for the three hydrolase genes were constructed by clon-
ing appropriate PCR fragments into the TOPO pCR2.1 vector (Thermo Fisher, Waltham, MA). Forward pri-
mers incorporated an EcoRI or a SalI site and reverse primers incorporated a HindIII site. A 0.87-kb
SWIT4895/dxnB1 PCR fragment was amplified using the primers GGGAATTCGGGGAATCGTGAGGAT
AGAAATGACCCAGC and CCCAAGCTTGCATGCTAGAATTTCCGAGCG, a 0.82-kb PCR fragment containing
SWIT0910 was amplified using the primers GAATTCGGAGGACGGATTGGGGATCG and AAGCTTATCGCT
GGCGAGGGGAGGAT, and a 0.89-kb PCR fragment containing SWIT3055/dxnB2 was amplified using the
primers GTCGACGACGGCATTGCCGGTCGGTG and AAGCTTCGGCCATCGATCAATCCAGC. The three hydro-
lases were digested with XbaI and KpnI from pCR_dxnB1, pCR_dxnB2, and pCR_0910, gel purified, and
ligated into similarly digested pRK415 to form pRK_dxnB1, pRK_dxnB2, and pRK_0910, respectively. The
resulting constructs were transferred into the mutant strains by triparental mating with selection on
MSB supplemented with phenylalanine and tetracycline.
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