EVALUATION OF THE EFFICIENCY OF ALUMINA NANOPARTICLES PREPARED BY PLASMA METHOD AGAINST SOME PATHOGENS OF SKIN INFECTIONS

Ali Mahdi Oudah Haidar Kadum Yakob Ahmed S. Obaid

Abstract

This study included isolating and diagnosing the bacteria causing skin infections and using the plasma method to prepare alumina nanoparticles, testing their activity as an antimicrobial against gram-negative and gram-positive bacteria. Twenty-five samples were collected from different skin infections, and these samples were diagnosed based on culture, microscopic characteristics, and biochemical tests. The positive growth result was 86% distributed among Staphylococcus spp., K. pneumoniae, Proteus mirabilis, and Acinetobacter baumannii. The properties of the prepared nanoparticles were studied using diagnostic devices represented by UV-visible spectroscopy, X-ray diffraction, and field emission scanning electron microscopy. The results of these examinations indicate the formation of pure alumina nanoparticles in a spherical shape with an average size ranging (20-55) nm. Where the peak of the absorption of alumina nanoparticles appeared at (250, 254). The activity of alumina nanoparticles was tested against gram-negative and gram-positive bacteria, it proved its high effectiveness as an anti-bacterial by measuring the diameters of the inhibition zones. Its effectiveness against gram-negative bacteria was greater than Gram-positive bacteria. Also, found alumina nanoparticles have antimicrobial activity greater than Gentamicin (GM).