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Abstract: Software agent technology has been intensively explored in the past three decades. It is explicitly or implicitly 
applied in many systems. Software agent research covers a wide range of area which makes it challenging for new researchers to 
comprehend the peculiarities and complexities of the technology. Consequently, this paper provides a concise overview of 
software agent research, modeling, and development. It summarizes and analyzes more than 100 sources of publication including 
research papers, articles, and books. The aim of the paper is to provide a quick start to new researchers in software agent and 
multi-agent systems. The paper offers the following contributions: (1) it determines the milestone achievements of software 
agent conceptualization, modeling and development platforms, (2) it defines the related terminologies of the field and reveals 
their redundancies, (3) it summarizes the multi-agent systems technology and finally, (4) it explores the current active research 
topics in software agent and multi-agent systems. 
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1. Introduction 

Conventional software systems are made to perform in 
normal circumstances, e.g., deal with valid data and static 
environments. The performance and the outcomes of these 
systems are straightforward. However, systems that are 
susceptible to uncertainties, work in dynamic environments, 
handle highly complex tasks and incomplete information 
demand advanced models and algorithms [1] [2] [3] [4]. 

Consequently, the cycle of technological development 
progresses at a much rapid pace. Research and development 
efforts introduce new solutions stemmed from the concepts 
and theories of Artificial Intelligence (AI). The AI discipline 
suggests several proposals and one of which is software agent 
technology [5] [6] [7] [8]. Software agent and multi-agent 
systems get their root from Distributed Artificial Intelligence 
(DAI) and distributed computing [7] [9]. Software agents and 

multi-agent systems significantly are facilitated solutions to 
many complex and distributed problems [4] [10]. Figure 1 
shows the scope of software agents and multi-agent systems. 

 

Figure 1. Artificial Intelligence and Software Agents [9]. 
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The motivation behind this contribution is the observed 
difficulties that new researchers of software agent field 
encounter [2] [10]. Software agent and multi-agent systems 
cover a wide scope of the research area. This issue presents a 
challenge of comprehending this technology by the new 
researchers of this field. The research involves many issues 
that are related to software agent and multi-agent systems 
theories, architectures and cognitions and their complex 
notations [11]. This paper is meant to facilitate the 
understanding of software agent and multi-agent system 
concepts and promote their technology.  

This paper presents a concise overview of software agent 
and multi-agent systems research, modeling and development. 
It is divided into five main sections. This section introduces 
the motivation of the paper. Section II reviews the literature on 
software agents. It discusses different aspects of software 
agents including definitions, types, properties, architectures, 
and models. Section III reviews the literature on multi-agent 
systems including communication language and 
agent-oriented programming. Section IV presents agents’ 
commitment, deliberation, situation awareness, adjustable 
autonomy, collective intelligence, norm, emotion, morality, 
and sincerity as active research topics. Finally, Section V 
concludes the paper by deliberating the notions of the research 
milestones.  

2. Software Agent 

Research in software agents has progressed over more than 
three decades due to the demands of dynamic and open 
environments and the complexity of tasks. Agents are capable 
of making autonomous decisions and performing 
goal-directed actions in many applications [1] [5] [11]. 
Software agents’ applications range from personalized small 
systems, e.g., email filters to complex and critical systems, 
e.g., air traffic control [7]. This section reviews and discusses 
the issues and underlying concepts of software agents. It 
includes agents’ definitions, types, properties, terminology, 
architectures, and models. 

2.1. Software Agent Concept 

The concept of agents is first introduced in mid-1950s 
when J. McCarthy and G. Selfridge proposed ‘soft robot’, a 
computer software that has a goal, carries out tasks and seek 
feedback from humans [12]. Hewitt [13] refined the idea and 
introduced the term ‘actor’. An actor “is a computational 
agent which has a mail address and a behavior. Actors 
communicate by message-passing and carry out their actions 
concurrently” [13]. Hewitt proposed that a software agent 
actor is an executing object. It has the characteristics of 
self-contained, encapsulation, and interactivity. 
Subsequently, many views and perceptions of software 
agents are elaborated. 

2.2. Software Agent Definitions 

The essential definition of software agents comes from 

agency, which is the capability of autonomous and 
self-directed behavior [8] [14]. Software agents like many 
other concepts are defined from different views. The proposed 
definitions highlight some aspects of the agents and ignore 
others and as a result, there is no comprehensive definition of 
what a software agent is [7]. Some of the commonly accepted 
definitions of software agents in the literature are as follows:  

� Wooldridge and Jennings [15] generally described an 
agent as a software or hardware computer system that is 
characterized by the properties of autonomy, social 
ability, reactivity and pro-activeness. They define agent 
as “a computer system, situated in some environment that 

is capable of flexible autonomous action in order to meet 

its design objectives.” 
� Maes [6] defined autonomous agents as “computational 

systems that inhabit some complex dynamic environment, 

sense and act autonomously in this environment, and by 

doing so realize a set of goals or tasks for which they are 

designed.”  
� Nwana and Ndumu [16] defined an agent as a software 

and/or hardware components that are capable of acting in 
order. 

� Franklin and Graesser [17] stated that agents have to 
have the ability to perform domain-oriented reasoning 
and autonomous execution. They define an autonomous 
agent as “a system situated within and a part of an 

environment that senses that environment and acts on it, 

over time, in pursuit of its own agenda and so as to effect 

what it senses in the future.” 
� Shoham [18] “An agent is an entity whose state is 

viewed as consisting of mental components such as 
beliefs, capabilities, choices and commitment.” 

� Bradshaw [19] “An agent is a program that is, to some 

degree, capable of initiating actions, forming its own 

goals, constructing plans of action, communicating with 

other agents, and responding appropriately to events – 

all without being directly controlled by a human.” 
� The International Business Machines (IBM) corporation 

definition of agents is “Intelligent agents are software 

entities that carry out some set of operations on behalf of 

a user or another program with some degree of 

independence or autonomy, and in so doing, employ 

some knowledge or representation of the user's goals or 

desires.” [20]. IBM develops agent-based applications 
for different domains like customer help desk, web 
browser, and personal shopping assistant [21]. 

2.3. Software Agent Types 

Software agent types are identified by their properties and 
each type might have different properties. The properties 
define the nature of an agent’s behaviors. Properties selection 
and setting depend on the environment and the application 
domain specifications. Subsequently, there are some agents 
that have a combination of different types due to their 
behaviors’ specifications. Some of the agent types that are 
proposed by Nwana [22] are as below: 

� Reactive agents 
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� Collaborative agents 
� Interface/Personal agents 
� Information/Internet agents 
� Proactive agents 
� Hybrid agents 
� Mobile agents 

2.4. Software Agent Properties 

An intelligent software agent is an artifact that has the 
properties or some of the properties (also named as attributes 
or characteristics) of an intelligent entity, i.e., autonomy, 
reactivity, goal-directedness, rationality, embodiments and 
sociality [7] [16] [21].  

Agent properties acquire their importance based on the 
specifications of the research domain [11]. It is agreed among 
agent researchers that autonomy is a central property of 
software agents [11] [17] [23]. Some properties emerge from 
agents’ design [14], e.g., situatedness, embodiment, and 
rationality, while others are explicitly formulated to a certain 
depth, e.g., goal-directedness requires formulating a plan. 
However, it is very uncommon to consider all the properties in 
an agent due to the complexity of such consideration. For 
example, many agent studies ignore formulating the learning 
(or adaptation) property of an agent because of its complexity, 
unless there is a need for such formulation [5]. Table 1 details 
the most agreed upon software agents’ properties. 

Table 1. The main properties of software agents. 

Property Synonym Meaning 

autonomy - 
An agent operates without the direct intervention of humans or others and has some kind of control over its actions 
and internal states [11] [23]. 

situatedness - 
An agent is being a part of its environment, observes its surrounding, perceive what observe and act based on its 
perception [7] [14]. 

sociality 
communicative, 
interactive 

An agent interacts with other agents (and possibly humans) via some kind of agent-communication language [7] 
[11] [23]. 

reactivity responsive 
An agent perceives some of its environment and responds in a timely fashion to changes that occur in the 
environment [23] [24]. 

goal-directivity 
proactive, 
purposeful 

An agent takes the initiative to attain a particular goal [21] [24]. 

adaptive learning An agent changes behavior based on its past experience [5] [6] [21] [24]. 
mobility - An agent transports itself from one machine to another and through different platforms [21] [22] [24]. 

rationality - 
An agent is capable of autonomous and goal-directed behaviors and intends to pursue successful performance that 
meets its interest [11] [21]. 

embodiment - An agent interacts through a physical body in an environment [14]. 
inferential - An agent decides based on its prior knowledge and might be beyond the given information [12] [15] [23].  
self-organization - An agent configures its activities according to its environment demands in order to achieve its goal. 
persistence continuous An agent has continuously running thread of processing [24]. 
flexibility - An agent filters its inputs and reason over its actions [24]. 
effective - An agent is successful at eventually achieving its goals [5]. 
efficient - An agent performs better than the conventional autonomic or predetermined reactive systems [5]. 
reproduction cloning An agent is capable of reproducing itself and adapting to changes [12]. 
personality - An agent has human-like nature such as an individual view of the world and emotion [12] [15] [23]. 

 

2.5. Software Agent Architectures and Models 

Agent architectures and models vary across initiatives as a 
result of their continuous development by researchers and 
based on the essential needs of the technology. Agent 
development produces a number of models that investigate 
reactive and/or goal-directed behaviors [25]. Some 
well-known models are the reactive model, goal-directed 

model, BDI model and Soar model [7] [26]. This development 
helps the agent technology to embody sophisticated 
autonomous systems [4]. It provides mechanisms that develop 
dynamic autonomous systems for real-world environments [1]. 
Therefore, an agent is seen to be one of the core competences 
that contribute to software systems [2] [20]. Figure 2 presents 
agent models development across the initiatives. 

 

Figure 2. The development of software agent models. 
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2.5.1. Reactive Agent 

At the right side of Figure 2 is the reactive or the executive 
agent model which is a type of agent that can only follow 
directly what it has been explicitly programmed to do. The 
agent is considered primitive and acts without much reasoning 
on the causes and effects of its actions [26]. Hence, it commits 
to a particular plan but the re-planning option does not exist. 
This means, if a system faces failure or has an opportunity, it 
will not proactively act unless it is programmed to do so [11] 
[27]. Practically, the reactive architecture shows great 
successes, especially in the industrial field due to its simplicity 
[7] [28]. An example is the famous subsumption architecture 
that is proposed by Brooks [29] [30]. Figure 3 shows a 
reactive agent architecture. 

 

Figure 3. An abstract reactive architecture [28]. 

Nevertheless, a reactive agent’s deficiencies are its 
dependency on the local information which affects its global 
view especially in the long run; its non-compliance with the 
adaptation and learning from experience; no clear principled 
methodology due to the emergent property of its autonomy 
and intelligence; and sensor data with no reasoning that might 
produce inappropriate actions [7] [26] [28]. For instance, a 
system’s sensors indicate conflict information. This 
contradiction would more likely lead to a wrong conclusion as 
one of the sensors might have a faulty reading. In order to 
determine the faulty sensor, the agent needs to perceive 
additional states and reason on the situation, but the reactive 
model does not have such capability. 

2.5.2. Environmental Agent 

An environmental agent model is a logic-based model that 
adopts the knowledge base system architecture [11]. The agent 
has an inference engine as a reasoning mechanism and is 
situated in an environment that has symbolic representations. 
Its responses are configured based on sensing the changes that 
occur in the environment [31]. The advantages of this model 
are inherited from the knowledge base system adoption such 
as an explicit representation of the world, easy encoding and 
easy understanding [26]. However, in this model, the 
environment dependency stands against the agent’s 
potentiality especially in uncertain and complex environments 
[1]. The symbolic representation of the environment 
constrains the autonomous behavior of the agent as the 
environmental inputs determine the number of possible 

actions. 

2.5.3. Goal-Directed Agent 

In Goal-Directed (GD) models, agents deliberate, plan, 
generate and implement their own goals based on the 
environment’s current situation [28] [32] [33]. Examples of 
GD agents are found in [32], [33], [34] and [35]. The GD 
model transforms the agent from the task-oriented (reactive) 
model to the dynamic goal-oriented model [34]. It enables an 
agent to autonomously respond to unexpected situations using 
some goal reasoning strategies [33]. Hence, it is a key aspect 
of dynamic planning [35]. Figure 4 elucidates a dynamic 
planning GD agent architecture which is an extension of Nau 
[32] model. 

 

Figure 4. A goal-directed agent architecture [35]. 

To explain the GD methodology, consider a robot working 
on completing a task of moving a box from a location A to 
another location B. During the task performance, the robot 
faces a door. In order to be able to open the door, the robot 
needs to put the box down first. If the robot put the box down 
and opens the door it needs to remember to carry the box again 
before proceeding with its movement to the location B. This 
process is associated with a goal-oriented reasoning strategy 
of the GD agent.  

GD agents have been applied in simulation domains as in 
[33], games as in [36] and Unmanned Systems (US) as in [1], 
[34] and [35]. In GD agents, however, goal revision 
mechanism is still an active research topic [36]. Foremost, 
there is an insufficiency in responding to unanticipated events 
and dealing with discrepancies of the environment as a result 
of the absence of retrospective process associated with the 
generated plans.  

2.5.4. Belief-Desire-Intention Agent 

The Belief-Desire-Intention (BDI) model is a goal-directed 
model but with specific architecture [10]. The BDI agent 
model is introduced in Georgeff and Lansky [37] and Rao and 
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Georgeff [38]. It espouses the philosophical human practical 
reasoning model that is proposed by Bratman [39]. The BDI is 
considered as the best-known architecture to model practical 
reasoning agent as it is synonymous to humans’ practical 
reasoning [26] [27] [38] [40]. Agents’ mental attitudes of the 
BDI represent respectively, the informational, the 
motivational, and the deliberation states of the agents [8] [38]. 
These mental attitudes determine the agents’ behaviors and are 
critical for achieving adequate or optimal performance when 
deliberation is subject to resource bounds.  

The BDI architecture supports agents’ autonomous 
capabilities via enabling an agent to select a task based on its 
beliefs and decides what actions are needed to be performed to 
complete the tasks [41] [42]. The four important procedures in 
the BDI agent practical reasoning are summarized in the 
following and illustrated in Figure 5 [11] [41]: 

1. observe the world and update beliefs; 
2. deliberate desires to pursue: 
� determine the available options; 
� filters the options; 

3. select intentions to satisfy the desires; 
4. execute the selected intentions. 
An agent’s beliefs are its knowledge about the world, its 

internal state, and other agents shared states [42]. A belief 
defines a world state in some forms, e.g., a variable, data 
structure or logical expression [27]. When the agent observes 
the world, it perceives some of its states. The perceived states 
are represented in beliefs’ forms [21]. The beliefs can be 
updated based on the continuous observation of the world. 
Beliefs and their updates are susceptible to constraints and two 
of which are world dynamism and uncertainty [1]. 

A desire is a representation of a goal. It defines an agent’s 
state of the world in some forms, e.g. variables, data structure 
or logical expressions [38]. Going back to the robot example, 
the goal of moving the box from location A to location B 
represents the robot’s desire. While dropping the box to open 
the door and carrying the box after opening the door represent 
other desires. However, the robot needs to have a repository of 
possible actions that can be performed in its environment to 
satisfy its desires, i.e., a plan.  

 

Figure 5. An abstract BDI architecture. 

One formalization of plans is a task orientation in which 
each desire is allocated to a task [27]. A task accomplishment 
requires the agent to perform some actions. The actions define 
an agent’s ability in an environment [43]. A rational BDI agent 
would select the best sequence of actions from the set of 
possible actions to perform based on its beliefs about the 
world [40] [44]. Since the agent is not being able to achieve all 
its desires, it must decide on some subset of its desires and 
commit resources to achieve them [8].  

Intentions are chosen desires through deliberation process 
to achieve goals, i.e., the committed plans [42]. Georgeff et al. 
[27] proposed that an intention is computationally defined as 
an executing thread in a process of performing actions. 
However, in the BDI agent as well as some other models, there 
is a challenge of modeling an efficient commitment strategy to 
control agent’s commitment to its intention. Agent 
commitment is detailed in Section IV. A. The following 
algorithm is an abstract representation of the BDI agent: 
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1. sense the environment 
2. update beliefs 
3. select a plan 
4. if there is no plan  
� choose a desire to pursue 
� find a plan to achieve the desire 

5. decide on the actions of the plan 
6. execute actions 
7. validate the plan 

2.5.5. Hybrid Agent 

The hybrid model or integrated model provides an 
architecture that has a combination of a reactive and 
deliberative agent [28]. It attempts to exploit the advantages of 
the reactive and the deliberative models [26] [34]. The layered 
concept is applied in the agent’s architecture to organize its 
behavior. A layer is a link that connects a sensor input with an 
action output as in the subsumption architecture of Brooks 
[29], i.e., the reactive part. The layers interact with each other 
to shape the agent’s global behavior, i.e., the deliberative part 
[28] [31]. Ferguson [45] proposed a horizontal layered 
architecture and Müller et al. (1996) proposed a vertical 
layered architecture as shown in Figure 6. In the horizontal 
layered architecture, the layers are arranged horizontally and a 
layer represents an agent by itself while in the vertical layered 
architecture, the layers are arranged vertically and a layer 
forms a behavior of the agent [26] [31]. The vertical layering 
architecture enhances the layered agent via improving its 
deliberativeness and actions’ consistency. 

 

Figure 6. The layered agent architectures. 

Three-layered architectures are used in many robotic 
systems. Ceballos et al. [34] proposed a three-layered 
architecture of agent that consists of a deliberative layer, a 
decision layer and a function layer to balance the deliberative 
and the reactive behavior of the agent and provide better 
performance. Kong and Xiao [47] proposed a typical 
three-layered architecture. The lowest is the execution or the 
reactive layer, which provides the inputs and processes the 
outputs. The middle layer is the detailed control layer that 
handles tasks’ operations, such as finding the possible and the 
alternative procedures to carry out a task, tasks’ timing and 
performance synchronization and adjustment. Finally, the top 
layer is the global control layer that is responsible for the 

planning aspect and deals with the agent’s goals. Figure 7 
shows the three-layered control architecture proposed by 
Kong and Xiao [47] including the environment.  

 

Figure 7. The three-layered agent architecture [47]. 

2.6. Other Models and Architectures 

Some other popular agent models are the Soar model, PRS 
model, Sensible model and utility-based model. They are 
detailed in the following: 

2.6.1. Soar Agent 

The Soar agent model is a goal-directed rule base reasoning 
model. It adopts the reactive agent’s use of operators and has a 
means-end reasoning strategy (chunking). A hierarchy of 
operators’ execution leads to achieving a goal. It uses a 
forward chaining search engine for operators’ selection in 
order to reach the goal state [48]. The satisfaction of the 
preconditions is determined by an operator that detects current 
states. The states represent the agent’s goals and beliefs. The 
Soar and the BDI agent models are similar in the current states 
that correspond to the beliefs, the goals that correspond to the 
desires, the selected operators that correspond to the intentions 
and the existence of the commitment strategy in both models 
[27]. 

2.6.2. PRS Agent 

The Procedural Reasoning System (PRS) is an agent-based 
application development platform [37]. The PRS agent adopts 
the BDI model and it is designed to work in a dynamic 
environment [27]. In the PRS agent, beliefs are the perception 
of the environment; desires are the tasks allocated to the agent; 
intentions are committed desires or tasks to be completed; 
plans are courses of actions that have a specific configuration 
and can complete the task. Tasks’ accomplishment achieves 
the goal [26]. The beliefs, desires, intentions and plans are 
managed and revised by an interpreter. The interpreter 
processes the perceptions and updates the beliefs; generates 
new desires in the form of tasks based on the updated beliefs; 
selects a task as intentions and apply procedural knowledge to 
perform the actions that complete the task. The PRS is 
considered a successful model of the BDI agent. It is used in 
many applications, e.g. air-combat simulation and is able to 
perform in incomplete or incorrect conditions. Figure 8 shows 
the PRS agent architecture. 
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Figure 8. The PRS agent. 

2.6.3. Sensible Agent 

Barber [49] proposed a Sensible agent architecture to 
demonstrate flexible, receptive and adaptive automated 
systems. The Sensible model is designed to operate in 
dynamic environments. The model allows an agent to 
dynamically configure its autonomy level based on its 
understanding of the situations. The autonomy configuration 
for a particular situation is obtained through a predictive 
process of an autonomy reasoning module. In the Sensible 
model, the agent reasons about situation handling through two 
decision-making phases, which are tasks selection and tasks 
delegation. In the model, determining which agent can decide 
on the current goal is made via a voting scheme, whereby the 
agent needs to gain a certain number of votes in order to 
qualify for decision making. The agent behavior is, however, 
hard to predict as the autonomy configuration is based on the 
agent’s internal states. 

2.6.4. Utility-Based Agent 

As mentioned earlier, a goal-directed agent has a set of 
goals to be achieved and its satisfaction is implicitly 
represented by the goals’ achievement. The utility-based 
model directs an agent’s behavior towards the specific level of 
satisfaction based on some explicit utility measures. Often, the 
utility measurement criterion is represented by agent’s 
performance evaluation [31]. A utility function measures the 
agent’s action choice towards maximizing its utility. The 
utility function is an efficient method to manipulate the agent’s 
preferences and setup its commitment to delegated objectives 
[11]. A utility-based agent can be a convenient approach to a 
model rational agent. It is widely adopted in game theory to 
form worth-oriented decisions. 

2.7. Software Agent and Game Theory 

Game theory and software agent disciplines share many 
characteristics, hence, each of which adopts the other concepts. 

Game theory is another decision science discipline that studies 
strategic decision-making using mathematical and 
computational algorithms. It is used in computer science, logic, 
political science, economics, biology, and psychology. Game 
theory as software agents target complex, distributed and 
constrained problems that are attributed with cooperation, 
negotiation, optimization and conflict. However, game theory 
or decision theory is not good enough to some researchers and 
they argue that it cannot satisfy the introspection process and 
prefer human-like intuitive approaches, e.g., BDI. Moreover, 
in game theory some strategies are exhaustive and of high 
computational cost, e.g., dynamic planning ensues after 
performing every action. 

3. Multi-Agent Systems 

A Multi-agent system is defined as a loosely coupled 
network of agents that interact to achieve a common goal that 
is beyond an individual agent’s achievement [31] [36] [50]. A 
multi-agent system provides a variety of agents’ capabilities 
which facilitates flexibility to solving problems [21]. 
Individual agents’ goals represent solving local problems and 
a multi-agent system’s goal represents solving distributed 
problems via establishing agent groups [7]. Each agent in a 
group is equipped with communication, coordination, 
cooperation and/or negotiation capabilities [11] [51]. 
Communication is performed via Agent Communication 
Language (ACL) like KQML or FIPA ACL [12] [26]. 
Coordination is a process of aligning and synchronizing 
agents group activities in order to work together using 
coordination algorithms such as join intention or partial global 
planning. Cooperation is a group of agents working together to 
perform a task that solves a particular problem via sharing 
some information, i.e., cooperative distributed problem 
solving. Negotiation or bargaining is a process of reaching an 
agreement about a particular negotiation set according to some 
rules, strategies and protocols such as negotiating about tasks 
or resources [11]. According to Jennings et al. [7], multi-agent 
systems in general share the following foundations: 

� The existence of complex distributed problems that 
cannot be solved by individual agents due to their lack of 
knowledge and/or capability about the problem; 

� There is no global control agent of the system; 
� The appropriateness of a decentralized data distribution;  
� There exists coordination between the agents. 
Subsequently, there is no standard multi-agent architecture 

and its formulation depends on the nature of the distributed 
problem that the system attempts to solve [31] [50]. Some 
examples of multi-agent architectures are centralized 
multi-agent architecture with facilitator or mediator agent and 
decentralized multi-agent architecture [51]. The multi-agent 
system is deployed to cater for complex distributed problems 
such as air-traffic control and design and manufacturing 
problems [7] [51]. 

3.1. Agent Communication Language 

The Agent Communication Language (ACL) provides a 
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means of sharing or exchanging information between the 
agents in a multi-agent system. An ACL provides a 
transmission approach (e.g., signaling, message passing or 
speech act) that consists of a set of agreed upon transmission 
rules or protocols. The transmitted context must be 
understandable by the agents in order to be able to perceive its 
meaning.  

The Knowledge Query and Manipulation Language 
(KQML) is an ACL, developed as part of DARPA Knowledge 
Sharing Effort (KSE) [26]. KQML provides the facility for 
agents sharing knowledge during run-time. It uses 
performatives (i.e., descriptive utterances that are not true or 
false) of the speech acts theory as agent communication 
framework [12]. The performatives are classified into nine 
categories that define agents’ speech acts sets [23]. The 
message structure of the KQML is layered into the content 
layer which includes the actual content of the message, the 
message layer which includes the performatives set and the 
communication layer which includes sender, receiver, 
message identities and message passing parameters. The 
KQML efforts are adopted by the Foundation of Intelligent 
Physical Agent (FIPA) which provides an enhanced and 
standardized ACL [26]. It added new parameters including 
user-defined message parameters.  

Finally, the Knowledge Interchange Format (KIF) is 
another agent communication formal language [12]. KIF is 
formalized based on the first order logic that describes the 
syntax and the semantics of the message. It can be used as a 
meta-language and enables the communications between 
agents with different languages. 

3.2. Agent-Oriented Programming 

The diversity of agents’ and multi-agent systems’ 
architectures mandates the production of a number of tools to 
cover the implementation of the architectures. Different 
programming languages are used as a development platform 
for the tools, e.g., Java and Prolog. The availability of the 
technologies facilitates the success of multi-agent systems 
development [7] [52]. However, selecting a suitable 
programming language and tool is constrained by the adopted 
agent and multi-agent system architectures and the application 
domain [18]. In this section, we study the well-known agent 
development programming languages and tools that 
implement successful agent-based applications. The study’s 
main aim is to guide researchers to select suitable 
programming languages and tools in order to carry out their 
research. 

The concepts of programming languages have been 
improved with time. Program architectures are enhanced from 
the monolithic non-modular programming languages to the 
object-oriented programming languages [53]. The modular 
programming concept offers reusable behaviors (e.g., loops 
and subroutines) and reduces the memory space. 
Object-oriented programming further introduces new 
properties including message passing, encapsulation, and 
inheritance. Object-oriented programming languages like C++, 
Java, and Smalltalk improves the modular concept by 

maintaining the subroutines, i.e., methods, and improving the 
structure of the method’s local control over its variables, i.e., 
public, private and protected method options [12] [52]. 

The agent concept is close to the object concept as they 
share many properties [18] [53]. Therefore, object-oriented 
languages pave the way for agent-oriented programming [11] 
[19]. However, the objects produce passive behaviors and 
their methods are controlled based on some received messages 
[52]. But agents have the characteristics of autonomy, 
instructiveness, goal-directedness, reasoning and independent 
thread of control [18] [26]. Figure 9 shows the evaluation of 
programming languages from non-modular to the 
agent-oriented programming concepts. 

 

Figure 9. Evolution of programming concepts [52]. 

Some agent-oriented programming tools and platforms are 
summarized as follows: 

3.2.1. AGENT10 

It is the first agent-oriented programming language. The 
agent in AGENT10 consists of sets of capabilities, 
commitments, and beliefs. It uses a number of commitment 
rules, message conditions, and mental conditions to determine 
the committed action [11]. Agent execution cycle functions 
via reading messages, updating beliefs, setting commitments, 
selecting an action based on the capability conditions and 
executing the action. 

3.2.2. Concurrent MetateM 

It is a multi-agent system programming language that is 
developed by Fisher [54]. The Concurrent MetateM agent 
architecture has a computational engine which uses a number 
of temporal logic sets to specify agents’ behaviors and 
interface for interaction. 

3.2.3. KAoS 

Knowledgeable Agent-oriented System (KAoS) is a fully 
object-oriented agent framework that works based on the 
distributed object technology and written in Java [55]. The 
agent architecture has knowledge, desires, intentions, and 
capabilities and provides a dynamic agent lifecycle that starts 
with agent birth and ends with agent death as shown in Figure 
10. An agent has resistance capability via retaining and 
retrieving some aspects of its run cycle, i.e., cryogenic state. 
KAoS enhances the scalability, security of agent architecture, 
semantics, and extensibility of agent communication 
languages. 
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Figure 10. The structure and dynamics of KAoS agents [55]. 

3.2.4. JACK 

JACK Intelligent Agents is a third-generation framework 
that is written in Java for a multi-agent system platform [56]. 
It is developed by Agent-Oriented Software (AOS) Pty. Ltd., a 

company in Melbourne, Australia, for research and industry 
applications.  

JACK combines the Procedural Reasoning System (PRS) 
and Distributed Multi-Agent Reasoning System (dMARS) 
architectures. It adopts the BDI agent model for its agent 
architecture. It is not bound to any particular ACL and can 
implement KQML or FIPA.  

JACK facilitates the planning process via providing JACK 
Plan Language (JPL) and graphical planning tools. However, 
it is not an open source software and licensed by the sponsored 
company. 

3.2.5. RETSINA 

It is developed via the Intelligent Software Agents Lab at 
Carnegie Mellon University [57]. RETSINA is a multi-agent 
system infrastructure that engineers heterogeneous 
autonomous agents. It is designed to cover a wide range of 
application domains. The types of agents in RETSINA are 
interface agent, task agent, information agent and middle 
agent. Figure 11 shows the architecture of RETSINA agent. 

 

Figure 11. RETSINA agent architecture [57]. 

3.2.6. AnyLogic 

AnyLogic is a multi-method tool that supports agent-based 
simulation modeling. It also supports the simulation of system 
dynamics and discrete event simulation methodologies. 
AnyLogic is developed by XJ Technologies and it is free for 
the use of educational purposes [58]. It is widely used as a 
research and development tool for different fields including 
optimization, strategic planning, logistics, forecasting and 
project management. Figure 12 shows AnyLogic modeling 
and simulation architecture. 

 

Figure 12. AnyLogic architecture [58]. 

AnyLogic is written in Java and 7.3.1 is its last version. It 
works based on a graphical modeling language and compiles 
the designed models into Java codes. It allows users to extend 
some of its simulation models by adding in Java codes. The 
extensions include modifying its agents and multi-agent 
system architectures and the simulation statistical outputs. The 
anyLogic architecture consists of Windows platform that 
contains the development environment and Java platform that 
handles the Windows platform.  

The structure of AnyLogic projects consists of three core 
classes: The Main class, Agent classes, and Experiment classes. 
These classes hold the user contributions that include defining 
the environment, objects and assumptions of a project. Finally, 
AnyLogic is supported by many standard libraries that facilitate 
the simulated environment to users including Road Traffic, 
Pedestrian, Fluid and Rail environments. 

3.2.7. JADE 

Java Agent DEvelopment (JADE) framework is one of the 
widely-used platforms to develop agent-based applications. 
JADE is developed via the Research and Development 
department of Telecon Italia. It is purely written in Java and 
inherits features like the flexibility to work with other 
platforms via the aid of Java Virtual Machine [26]. JADE is in 
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compliance with the FIPA specifications. It is an open source, 
well-documented and easy to use the tool.  

JADE provides an abstract agent architecture that flexibly 
engineers different agent architectures on top of it. JADE 
architectural elements include the main container, which is the 
bootstrap point of JADE that registers other containers in a 
platform, distributable containers that join to the main container 
and host to execute the agents. Figure 13 schematizes JADE 
main architectural elements in a UML diagram. 

 

Figure 13. JADE main architectural elements [26]. 

4. Software Agents Research 

Agents research is meant to find solutions to many modern 
systems challenges. This results in many areas that are 
covered by software agent research and development. Hence, 
software agent challenges are replicating over time. This 
section presents a number of software agents’ active research 
topics. They include commitment, deliberation, situation 
awareness, adjustable autonomy, collective intelligence, norm, 
emotion, morality, and sincerity. They are illustrated in the 
following subsections. 

4.1. Commitment 

A goal-directed agent commits to a plan in order to achieve 
goals. Apparently, there is no optimal strategy to design an 
agent’s commitment and its reconsideration is constrained as it 
is influenced by different factors such as agents’ mental ability, 
accessibility to environments, determinism of actions 
successfulness and environment dynamism [31] [41]. There 
are three main commitment strategies [27] [41] [59]: 

� Bold commitment: agents never reconsider its 
commitment to the committed plan. The agent that used 
this strategy is called a bold agent. The bold agent has a 
reactive architecture. The bold agent is found to be more 
efficient in a less dynamic environment. 

� Cautious commitment: agents reconsider their plan for 
every new option’s occurrence. The agent that used this 
strategy is called a cautious agent. The cautious agent 
has a deliberative architecture. The cautious agent is 
more efficient in a highly dynamic environment. 

� Balanced commitment: agents balance between the 
boldness and the cautiousness of the commitment. The 
agent that used this strategy is called a balanced agent. 
The balanced agent has a deliberative architecture with a 
reactive controlling mechanism. The balanced agent has 
the flexibility to efficiently perform in environments 
with different levels of dynamism. 

 

Figure 14. A BDI agent control loop [41]. 

Different mechanisms are proposed to achieve a balanced 
commitment strategy. Kinny and George [59] used a plan 
utility function to measure the commitment degree in order to 
balance the commitment. Schut et al. [41] proposed a BDI 
agent that performs observation, deliberation, planning, and 
execution functions of a control loop [31]. The agent is 
supported by a commitment strategy that consists of 
reconsider function to decide on the deliberation state as 
shown in Figure 14. Ermon et al. [60] used the Markov 
decision processes and non-linear utility maximization 
function with the rewards strategy to determine planning 
preferences of agents. Other works that illustrate agents’ 
commitment are McBurney & Luck [10], Ceballos et al. [34] 
and Pokahr et al. [61]. 

Schut et al. [41] experimentally proved that the 
environment’s degree of dynamism is the major factor of 
intention reconsideration efficiency when neglecting the agent’s 
ability to perceive and reason. Hence, it is inappropriate to 
estimate the efficiency of the agent’s action without identifying 
the environment transition states specifications. An important 
assumption to be measured in commitment reconsideration is 
that the commitment reconsideration decision cost must be 
much lesser than the re-planning process [61].  

4.2. Deliberation 

Deliberation is an aspect of an autonomous agent or 
multi-agent systems since the agents are capable of making 
autonomous decisions [28] [61] [62]. When agents have 
delegated a task, their deliberation process is concerned with 
selecting a proper action or actions based on their knowledge 
about the world to complete the task [12] [62] [63]. An 
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example of agents’ deliberation process is shown in Figure 15. 

 

Figure 15. Agents’ deliberation [63]. 

Agents’ deliberation process might involve communication, 
filtering (e.g., probability) and selection (e.g., utility or cost) 
functions as proposed in decision theories [60] [64]. Moreover, 
goal deliberation needs to be associated with a commitment 
strategy [62] [63]. 

Deliberation research in the literature has a direct and indirect 
context [65]. The direct context studies individuals’ behaviors 
when performing the deliberation process while the indirect (or 
inferred) context concerns with analyzing the deliberation 
contents [63]. The deliberation methods have different 
formulations and each of which achieves different objectives. 
Some of the deliberation measures’ objectives assist:  

� To prevent goals conflicts as in [61]. 
� To determine commitment strategies as in [62]. 
� To determine tasks’ and actions’ complexity granularity 

as in [63]. 
� To determine tasks’ and actions’ deliberating time/length 

as in [64]. 
� To determine agreement and disagreement levels of a 

decision-making group [65]. 
� To determine decisions’ accuracy [66].  
Pokahr et al. [61] proposed Easy Deliberation which is a goal 

deliberation strategy for a BDI agent. The strategy specifies the 
relationships between goals in a simple and in an intuitive 
manner the relationships between goals. It is formulated at the 
architectural level to prevent goals conflicts. The goal 
deliberation strategy is activated if there is a new option or if a 
considered option is no longer valid. Figure 16 is an agent 
algorithm that performs the Easy Deliberation strategy. 

 

Figure 16. An Agent with Easy Deliberation strategy [61]. 

Dastani et al. [62] showed how a BDI agent is insufficient in 
performing deliberation. They proposed a model of 
deliberation that uses meta-language to implement the 

deliberation process in the BDI agent. They argue that 
updating the agent’s mental attitude frequency affects its 
deliberation measures. They show that the agent’s deliberation 
level characterizes its autonomy capabilities. 

Mostafa et al. [63] proposed a mechanism to measure tasks’ 
and actions’ deliberation intensities for agents. Basically, the 
number of actions that agents need to do to complete a 
particular task determines the task’s deliberation intensity. 
They assume that the actions of a system have three types: 
non-deliberative, pseudo-deliberative and deliberative actions. 
The deliberation intensity of a task or action determines its 
complexity granularity. They categorize the tasks and actions 
based on the tasks’ and actions’ deliberation intensities into 
high-complex, intermediate- complex and low- complex 
categories. Ultimately, the complexity granularity identifies 
different aspects of the agents and the actions including the 
deliberation length and autonomy configuration, distribution 
and adjustment parameters. 

Larson and Sandholm [64] proposed a set of intuitive 
properties as a basis for explicit agent deliberation setting 
which are Preference formation-independent, 
Deliberation-proof, and Non-misleading. They use a 
preference mechanism to model agent deliberation process in 
which an agent’s resources controls its preferences. The 
deliberation is measured via a cost function that limits agent’s 
resources accessing options. The cost function operates 
according to the agent’s performance profile. They conclude 
that it is difficult to produce a deliberation mechanism that 
satisfies the three proposed properties as they somehow clash. 

Lizzeri and Yariv [66] proposed a model of deliberation 
measure that captures some key features of group members’ 
deliberation process. The model uses key features to 
customize deliberation length, agreement, and disagreement 
processes and enhancing the decision accuracy within the 
deliberation and actions selection decision phases.  

4.3. Situation Awareness 

The principle of involving humans and agents to carry out 
some system’s initiative manifests the notion of the intelligent 
interactive system [44] [67]. Improving agents’ awareness of 
situations has aroused a lot of interests in agent research [68] 
[69]. In this section, we explore the proposed agent situation 
awareness mechanisms in the literature. Our aim is to exploit 
situation awareness mechanisms in agent models. The 
mechanisms improve agents’ decision-making via 
decomposing events’ contexts. 

Situation awareness reflects the situatedness of agents in 
environments. An agent’s decision in a particular event is 
formed based on its interpretation of the situation’s context of 
the event [44] [70]. It implies that an agent acting on a 
situation in an environment by means of reasoning and 
acquired knowledge about the situation’s parameters and 
performing situated actions [71]. Situated action means that 
the decision of an action selection regarding a situation is 
prone to the situation’s constraints [68].  

An agent’s practical reasoning methodology encompasses 
implicit situation awareness capabilities to some limited depth. 
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Franklin and Graesser [17] stated that “an autonomous agent 
is a system situated within and a part of an environment that 
senses that environment and acts on it, over time, in pursuit of 
its own agenda and so as to effect what it senses in the future.” 
Since one of the agent’s core behaviors is observation, then, 
the perception of the surrounding is embodied in its design 
[44]. An agent’s understanding of an event is built upon its 
knowledge of the event’s situational elements and its 
interpretation (or beliefs) of the situation [70]. The agent’s 
desires dictate its existing or newly generated intentions. The 
agent’s intentions processing forms its projection of the 
situation’s future scenarios (proactivity) [68]. 

However, building a mechanism that controls the behavior 
of agents toward an optimized behavior is the main challenge 
in modeling agents [17]. Agents need to be modeled to deal 
with the possibility of actions’ failure when acting on an event, 
especially, in dynamic environments [28]. It implies that the 
agents need to understand the context of the perceived 
aggregated knowledge of events which is challenging [69]. 
Nevertheless, a situation awareness approach is found to be 
very useful in enhancing decisions [68].  

Wardziński [71] emphasized the importance of situation 
awareness mechanism in improving an agent’s knowledge and 
minimizing its action risk of failure, especially, in dynamic 
and uncertain environments [72]. McAree and Chen [73] 
claimed that the situation awareness capability enhancement 
of a system leads to the system’s autonomy improvement. 
Hoogendoorn et al. [40] deployed a situation awareness 
mechanism on an agent’s belief optimization in which the 
agent’s degree of awareness on a situation is signified by an 
activation value of belief. Their aim is to generate complex 
beliefs from the observed beliefs that enable the agent to 
perform projection to future situations.  

In summary, explicit situation awareness activities can be 
modeled and exploited for the agent to further improve its 
autonomy, especially when dealing with uncertainties in the 
event [68] [73]. This mechanism is needed to enable the agent 
to derive precise conclusions from an observed situation [40]. 
It assists the agent to reason over its decisions of actions and 
the actions outcomes [44]. Ultimately, equipping agents with 
situation awareness capabilities leads to produce enhanced 
interactive autonomous systems. 

4.4. Adjustable Autonomy 

The abstract definition of autonomy is the ability of a 
system to make unaided decisions [74]. However, a key aspect 
of the advanced autonomous system is its ability to 
concurrently communicate and cooperate with other systems 
in order to fulfill different situations’ constraints [75]. The 
cooperation between the systems and their entities in an 
environment may operate at different levels of intelligence 
and with different degrees of autonomy [43]. Human and 
agent cooperation is a good example of entities in interaction 
and cooperation [44] [75]. 

Consequently, it is unreliable to completely make an agent 
handles its autonomous behavior only by its internal state [19] 
[76]. In some situations, agents are found incapable, uncertain, 

unpredictable and/or unauthorized and ultimately unreliable to 
decide on a situation and achieve tasks [77] [78]. Without 
adjustable autonomy, when an agent responds to a particular 
event it always pursues the corresponding tasks beyond 
oversight or intervention of control from others. Therefore, an 
agent’s autonomy needs to be dynamically updated (internally 
or externally) to perform the interaction [67] [74] [76]. 

Managing agents’ autonomy in dynamically interactive 
systems is a challenging task [1] [28] [79]. Giving an agent 
absolute control over its autonomy is a risky practice. The 
agent makes decisions based on its local state and theoretically 
the agent cannot always make optimal decisions unless it has 
global knowledge about its environment and this is impossible 
[12] [67]. For instance, we as humans need some help and 
support in doing our job. Subsequently, the fear that 
autonomous agents’ behavior could wreak havoc and cause 
harm, fatalities, or catastrophes justifies the need for 
adjustable autonomy. Hence, many autonomy researchers 
adopt the adjustable autonomy approach, e.g., [1], [12], [67], 
[72], [76] and [79].  

There are many opinions and diverse understanding of what 
adjustable autonomy is and how it can be efficiently 
formulated [72]. The adjustable autonomy or flexible 
autonomy is proposed to give agents a variable autonomy [76] 
[80]. It gives the option of agents working in different levels of 
autonomy and prone to human oversight or intervention to 
promote reliability [80] [81]. Moffitt et al. [82] define 
adjustable autonomy as “a mechanism through which an 

operator delegates authority to the system that can be taken 

back or shared dynamically throughout mission execution.” 
Consequently, autonomy adjustment is a process of changing 
an agent’s decision-making parameters, based on a situation of 
exigency, so as to influence the agent’s decision to satisfy the 
situation needs [74]. 

While adjustable autonomy is considered as a successful 
approach, it shows some deficiencies that are crucial, 
especially, in systems where many players are involved in its 
control [67] [72]. The dependency that it provides has a 
positive impact by increasing system initiative level (i.e., 
human contributions) and negative impact in dealing with 
dynamic [80]. Apparently, the ensuing continuous interrupts 
make such systems dependent and slow, especially, in systems 
where a dialogue is utilized in the sequential decision of 
problem-solving, e.g., communication delays [75] [83].  

In this technology, there are still many aspects that need to 
be further studied and improved. Therefore, Schurr et al. [83], 
among others, stated that “adjustable autonomy in teams is an 
inherently distributed and complex problem that cannot be 
solved optimally and completely online.” The main challenges 
in adjustable autonomy formulation are addressed in the 
literature and some of which are: 

� Determining dynamic autonomy distribution and adjustment 
mechanisms for agents that improve their performance when 
encountering some environment constraints. 

� Determining variable autonomy levels of operations for 
agents that satisfy dynamic and complex environments. 

� Determining autonomy degrees of an agent that enables 
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it to interact and successful perform. 
� Determining when and how a human should intervene. 
� Directing autonomy distribution and adjustment of a 

system’s operations to satisfy its users’ preference. 
� Reducing the disturbance of a system during autonomy 

distribution and adjustment to avoid the destabilization 
of the system. 

� Testing and validating the viability of autonomous 
systems when operating in dynamic environments. 

4.5. Collective Intelligence 

Intelligence is the ability of an entity to strategically deploy its 
knowledge to solve problems. The logical ability is influenced by 
the knowledge depth that the entity had comprehended 
throughout experiences [84]. Collective intelligence incorporates 
entities’ individual diversity of knowledge and experiences in the 
pursuit of a common goal [85]. It is the transaction of all the 
collective knowledge intersections to form a meaningful solution. 
The process of knowledge interactions and intersection 
represents the emergent process of collective intelligence in 
reaching common goals [86].  

Knowledge is transferred from one entity to another 
through communication skills. Consequently, an inherent 
process guides the transformed knowledge into 
decision-making options [87]. Figure 17 characterizes the 

process of the intersection of knowledge in which PI�  and 
PI� denote personal intelligence of two individuals.  

Bio-inspired collective intelligence algorithms such as bee 
colony and ant colony algorithms are introduced to solve 
challenging optimization problems. Humans also are 
biological agents that communicate formally and informally 
to execute the task and solve problems [88]. Seemingly, this 
collective composition of cognition and behavior formulate 
efficient solution resulting in a dynamic process of intelligent 
group discussion, reasoning and decision-making, thus 
optimizing problem-solving method [86].  

Collective intelligence in human entities is a valid and 
profound idea if the emergent intelligence resulting from 
discussions leads to successful outcomes [84]. A successful 
outcome is demonstrated by the achievement of a common 
goal. Embarking upon the theory of collective intelligence that 
emerges from the intellectual discussions amongst human 
entities reveals a higher rate of success in goals attainment 
[88]. As an example, Gunasekaran et al. [89] discussed the 
topology of a collective intelligent mechanism and its 
influence in the internet technology. The topology provides a 
case structure of how collective intelligence is used as an 
online mechanism in improving issues related to climate 
change. As such, they look at the notion of collective 
intelligence from the perspectives of social sciences.  

 

Figure 17. The intersection of knowledge [84]. 

In a multi-agent environment, a series of interactions 
through communications emerges to determine the flow of 
actions that each agent should execute in order to accomplish 
its individual goal [88]. Ultimately, each goal aligns to 
manifest a common goal. In a collective multi-agent 
environment, these agents retain only one common goal from 
the start, which is achieved through a series of processes that 
involve discussions, group reasoning, decision-making, and 
actions. Both the reasoning and decision-making phases 

diffuse knowledge in the form of proven beliefs between these 
agents [84].  

Swarm intelligence algorithms of multi-agent systems are 
formed based on specialized abilities and agreed upon 
outcomes. The algorithms manifest collective behaviors in 
observation, navigation and collective decision-making [87]. 
These collective behaviors impose the privileges of 
communication, argumentation and group goal attainment 
[86]. The collective behavior process is fundamental so as to 
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coherently fulfill their group optimal goal. Sufficiency in 
terms of the collective behavior process is reflected by the 
efficiency of the goal being achieved. 

Gunasekaran et al. [84] proposed a collective intelligence 
model of a multi-agent system that mimics the actual 
collective behaviors process occurs between two or more 
human entities. They analyze a group of humans meeting 
activities and extract number of collaborative intelligence 
attributes, parameters and goal attainment strategies. The 
results show that humans exhibit higher level intelligence 
while augmenting their intelligence may steadily improve the 
operations on decision making. Subsequently, the model is 
applied in a multi-agent system optimization problem. The 
model contributes significantly in optimizing solutions. 

4.6. Norm 

Norms are informal rules that represent behaviors for a 
natural or artificial community population towards specific 
situations. The rules usually indicate actions that are 
performed based on observation of facts [90]. For instance, the 
norm of the attendees of a formal meeting is they behave in a 
polite manner. Research in norms has progressed over the past 
decades across many fields including philosophy, sociology 
and artificial intelligence [91].  

In multi-agent societies, the concept of norms determines 
the behaviors of agents. It is mainly adopted in decentralized 
multi-agent systems [92]. The concept is used as a means to 
normalize or constrain the behaviors of agents within their 
communities [93]. These constraints define obligatory, 
prohibitive or permissive behaviors to create solutions to 
particular problems of the multi-agent societies.  

Agents are designed to achieve certain goals. The norms 
influence them to behave according to their societies’ 
expectations when achieving their goals [94]. The word 
‘influence’ indicates that the agents have complete control 
over their behaviors as the agents autonomously perform in 
their communities. Elsewise, the agents are behaving without 
their will and the norms intervene in their goals’ achievement. 
Instead, the norms should only affect the means of achieving 
the goals. Hence, norms’ trust is introduced to influences 
agents’ compliance with the norms and to enforce the stability 
of the norms in normative multi-agent systems [95]. 

4.7. Emotion 

Emotion research covers the disciplines of artificial 
intelligence, cognitive science, behavioral science, philosophy, 
phenomenology, and physiology. In artificial intelligence, it 
plays an essential role in supporting cognitive activities 
including decision-making, rational thinking, and learning 
[96]. It should receive better attention due to its potentials to 
manifest creative solutions and credible characters [97]. 
However, the outcomes of emotion research in the artificial 
intelligence discipline have not shown noticeable progress. 

Recently, emotion is introduced in software agent research 
and applications. The integration of emotion in software agents 
can enhance the agents’ autonomy, adoption and social 

interactions [98] [99]. As an example, when a human assistant 
agent knows that the human is upset, it avoids disturbing 
him/her. Tremendous efforts have been devoted to developing 
emotional software agents for robotics applications [97]. Other 
attempts include e-commerce, medical care, toys, games, and 
domestic applications. The aim is to create a system that 
supports and facilitates humans’ daily routines [99]. 

The main issue is that emotional behavior is missing in most 
well-known agent models. Modeling emotions in an agent 
require identifying its emotional factors including causes, 
effects, and drivers. It also requires equipping the agent with 
mechanisms to expresses its emotions and captures others 
emotions [99]. The emotion model enables the agent to 
manage its emotions internally by changing its mental 
attitudes or externally by translating them into actions. 
Certainly, when an agent is equipped with emotions, its 
emotional states influence its decisions to a certain instinct. 
For instance, when a civilian agent is encountering threats, its 
emotional states of risk and fear affects its commitment to 
pursuing its goal more than a soldier agent. Hence their 
responses to the threat differ according to their emotional 
states’ stress.  

In multi-agent systems, it is found that emotion in agents 
can be directed to manage an individual and team goals [98]. A 
good example is the impact of emotions on a football team. 
The emotional states of the players are changed according to 
the changes of the game scenarios. The individual player is 
emotionally guided by its personal success and the overall 
team success. A failure of a player might lead to the failure of 
the team. Hence, organizing the emotions of a team play a key 
role in the team’s success. 

4.8. Morality and Sincerity 

Sincerity characteristic of agents is adapted from humans’ 
behavioral characteristic as many of other software agent 
characteristics. It presents humans sincere attitude in a 
multi-agent environment. Sincerity implies the attitude of a 
proactive volunteer to help others without expecting a tangible 
gain. Sincere behavior supports cooperation, facilitate 
negotiation and enforces corrective and preventive actions in 
multi-agent systems. It facilitates achieving tasks that involve 
many parties of agents [101]. It has an important effect when 
agents’ local goals are envisioned for a global goal. The agents 
are willing to do the extra effort and help each other in order to 
ensure that the global goal can be achieved. 

Depending on functions like utility or cost in a 
collaborating environment might create selfish and greedy 
agents. The agents’ concern is confined to maximizing their 
utilities, profits or minimizing costs [102]. Previous research 
elaborates that applying morality to agents improves their 
collaboration e.g., [103], [104] and [105].  

Nominating morality and sacrificing culture among 
different parties maintain cohesive productive framework. 
Ahmad et al. [106] proposed a framework of a multi-agent 
system with sacrifice behavior. The framework enforces a 
sacrifice culture of sharing resources among agents in order to 
complete delegated tasks. The agents comply with the 
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sacrifice via a penalty mechanism.  
Sacrifice can be requested by a third party or sincerely 

occurs in an agent. Sincerity represents a strong moral 
behavior to be imposed on agents. Jaafar et al. [107] proposed 
a sincerity framework that instills the sacrifice behavior in 
agents. They propose three types of agents: leader agent, 
problem agent and helping agent. The framework enables the 
agents to work as a team and helps each other while carrying 
out their own tasks. Agents teaming conditions are extracted 
according to a delegated task’s level of importance and 
urgency. The framework is able to formulate a sincere 
behavior in the agent-based systems.  

5. Conclusion 

This paper presents a concise literature review on software 
agents and multi-agent systems. It results from reviewing 
more than 300 references of the field. It summarizes and 
analyzes more than 100 sources including papers, articles, and 
books. The aim of this paper is to provide a quick start to new 
researchers of the field.  

The paper covers the issues of software agents that include 
agents’ definitions, properties, types, terminology, 
architectures, and models. Subsequently, the paper discusses 
the issues of multi-agent systems that include 
conceptualization, architectures, properties and development 
platforms. Finally, it explores the currently active research 
topics of the field including agents’ commitment, deliberation, 
situation awareness, adjustable autonomy, collective 
intelligence, norm, emotion, morality, and sincerity. 
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