

Software Engineering
2017; 5(1): 8-25
http://www.sciencepublishinggroup.com/j/se
doi: 10.11648/j.se.20170501.12
ISSN: 2376-8029 (Print); ISSN: 2376-8037 (Online)

 Review Article

A Concise Overview of Software Agent Research, Modeling,
and Development

Salama A. Mostafa
1
, Mohd Sharifuddin Ahmad

2
, Aida Mustapha

3
, Mazin Abed Mohammed

4

1College of Graduate Studies, Universiti Tenaga Nasional, Selangor, Malaysia
2College of Information Technology, Universiti Tenaga Nasional, Selangor, Malaysia
3Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn, Johor, Malaysia
4Faculty of Communication and Information Engineering, University Technical Malaysia, Melaka, Malaysia

Email address:

semnah@yahoo.com (S. A. Mostafa), sharif@uniten.edu.my (M. S. Ahmad), aidam@uthm.edu.my (A. Mustapha),
mazin_top_86@yahoo.com (M. A. Mohammed)

To cite this article:
Salama A. Mostafa, Mohd Sharifuddin Ahmad, Aida Mustapha, Mazin Abed Mohammed. A Concise Overview of Software Agent Research,
Modeling, and Development. Software Engineering. Vol. 5, No. 1, 2017, pp. 8-25. doi: 10.11648/j.se.20170501.12

Received: January 6, 2017; Accepted: January 24, 2017; Published: March 4, 2017

Abstract: Software agent technology has been intensively explored in the past three decades. It is explicitly or implicitly
applied in many systems. Software agent research covers a wide range of area which makes it challenging for new researchers to
comprehend the peculiarities and complexities of the technology. Consequently, this paper provides a concise overview of
software agent research, modeling, and development. It summarizes and analyzes more than 100 sources of publication including
research papers, articles, and books. The aim of the paper is to provide a quick start to new researchers in software agent and
multi-agent systems. The paper offers the following contributions: (1) it determines the milestone achievements of software
agent conceptualization, modeling and development platforms, (2) it defines the related terminologies of the field and reveals
their redundancies, (3) it summarizes the multi-agent systems technology and finally, (4) it explores the current active research
topics in software agent and multi-agent systems.

Keywords: Software Agent, Multi-agent System, Agent-Oriented Programming, Agent Models

1. Introduction

Conventional software systems are made to perform in
normal circumstances, e.g., deal with valid data and static
environments. The performance and the outcomes of these
systems are straightforward. However, systems that are
susceptible to uncertainties, work in dynamic environments,
handle highly complex tasks and incomplete information
demand advanced models and algorithms [1] [2] [3] [4].

Consequently, the cycle of technological development
progresses at a much rapid pace. Research and development
efforts introduce new solutions stemmed from the concepts
and theories of Artificial Intelligence (AI). The AI discipline
suggests several proposals and one of which is software agent
technology [5] [6] [7] [8]. Software agent and multi-agent
systems get their root from Distributed Artificial Intelligence
(DAI) and distributed computing [7] [9]. Software agents and

multi-agent systems significantly are facilitated solutions to
many complex and distributed problems [4] [10]. Figure 1
shows the scope of software agents and multi-agent systems.

Figure 1. Artificial Intelligence and Software Agents [9].

 Software Engineering 2017; 5(1): 8-25 9

The motivation behind this contribution is the observed
difficulties that new researchers of software agent field
encounter [2] [10]. Software agent and multi-agent systems
cover a wide scope of the research area. This issue presents a
challenge of comprehending this technology by the new
researchers of this field. The research involves many issues
that are related to software agent and multi-agent systems
theories, architectures and cognitions and their complex
notations [11]. This paper is meant to facilitate the
understanding of software agent and multi-agent system
concepts and promote their technology.

This paper presents a concise overview of software agent
and multi-agent systems research, modeling and development.
It is divided into five main sections. This section introduces
the motivation of the paper. Section II reviews the literature on
software agents. It discusses different aspects of software
agents including definitions, types, properties, architectures,
and models. Section III reviews the literature on multi-agent
systems including communication language and
agent-oriented programming. Section IV presents agents’
commitment, deliberation, situation awareness, adjustable
autonomy, collective intelligence, norm, emotion, morality,
and sincerity as active research topics. Finally, Section V
concludes the paper by deliberating the notions of the research
milestones.

2. Software Agent

Research in software agents has progressed over more than
three decades due to the demands of dynamic and open
environments and the complexity of tasks. Agents are capable
of making autonomous decisions and performing
goal-directed actions in many applications [1] [5] [11].
Software agents’ applications range from personalized small
systems, e.g., email filters to complex and critical systems,
e.g., air traffic control [7]. This section reviews and discusses
the issues and underlying concepts of software agents. It
includes agents’ definitions, types, properties, terminology,
architectures, and models.

2.1. Software Agent Concept

The concept of agents is first introduced in mid-1950s
when J. McCarthy and G. Selfridge proposed ‘soft robot’, a
computer software that has a goal, carries out tasks and seek
feedback from humans [12]. Hewitt [13] refined the idea and
introduced the term ‘actor’. An actor “is a computational
agent which has a mail address and a behavior. Actors
communicate by message-passing and carry out their actions
concurrently” [13]. Hewitt proposed that a software agent
actor is an executing object. It has the characteristics of
self-contained, encapsulation, and interactivity.
Subsequently, many views and perceptions of software
agents are elaborated.

2.2. Software Agent Definitions

The essential definition of software agents comes from

agency, which is the capability of autonomous and
self-directed behavior [8] [14]. Software agents like many
other concepts are defined from different views. The proposed
definitions highlight some aspects of the agents and ignore
others and as a result, there is no comprehensive definition of
what a software agent is [7]. Some of the commonly accepted
definitions of software agents in the literature are as follows:

� Wooldridge and Jennings [15] generally described an
agent as a software or hardware computer system that is
characterized by the properties of autonomy, social
ability, reactivity and pro-activeness. They define agent
as “a computer system, situated in some environment that

is capable of flexible autonomous action in order to meet

its design objectives.”
� Maes [6] defined autonomous agents as “computational

systems that inhabit some complex dynamic environment,

sense and act autonomously in this environment, and by

doing so realize a set of goals or tasks for which they are

designed.”
� Nwana and Ndumu [16] defined an agent as a software

and/or hardware components that are capable of acting in
order.

� Franklin and Graesser [17] stated that agents have to
have the ability to perform domain-oriented reasoning
and autonomous execution. They define an autonomous
agent as “a system situated within and a part of an

environment that senses that environment and acts on it,

over time, in pursuit of its own agenda and so as to effect

what it senses in the future.”
� Shoham [18] “An agent is an entity whose state is

viewed as consisting of mental components such as
beliefs, capabilities, choices and commitment.”

� Bradshaw [19] “An agent is a program that is, to some

degree, capable of initiating actions, forming its own

goals, constructing plans of action, communicating with

other agents, and responding appropriately to events –

all without being directly controlled by a human.”
� The International Business Machines (IBM) corporation

definition of agents is “Intelligent agents are software

entities that carry out some set of operations on behalf of

a user or another program with some degree of

independence or autonomy, and in so doing, employ

some knowledge or representation of the user's goals or

desires.” [20]. IBM develops agent-based applications
for different domains like customer help desk, web
browser, and personal shopping assistant [21].

2.3. Software Agent Types

Software agent types are identified by their properties and
each type might have different properties. The properties
define the nature of an agent’s behaviors. Properties selection
and setting depend on the environment and the application
domain specifications. Subsequently, there are some agents
that have a combination of different types due to their
behaviors’ specifications. Some of the agent types that are
proposed by Nwana [22] are as below:

� Reactive agents

10 Salama A. Mostafa et al.: A Concise Overview of Software Agent Research, Modeling, and Development

� Collaborative agents
� Interface/Personal agents
� Information/Internet agents
� Proactive agents
� Hybrid agents
� Mobile agents

2.4. Software Agent Properties

An intelligent software agent is an artifact that has the
properties or some of the properties (also named as attributes
or characteristics) of an intelligent entity, i.e., autonomy,
reactivity, goal-directedness, rationality, embodiments and
sociality [7] [16] [21].

Agent properties acquire their importance based on the
specifications of the research domain [11]. It is agreed among
agent researchers that autonomy is a central property of
software agents [11] [17] [23]. Some properties emerge from
agents’ design [14], e.g., situatedness, embodiment, and
rationality, while others are explicitly formulated to a certain
depth, e.g., goal-directedness requires formulating a plan.
However, it is very uncommon to consider all the properties in
an agent due to the complexity of such consideration. For
example, many agent studies ignore formulating the learning
(or adaptation) property of an agent because of its complexity,
unless there is a need for such formulation [5]. Table 1 details
the most agreed upon software agents’ properties.

Table 1. The main properties of software agents.

Property Synonym Meaning

autonomy -
An agent operates without the direct intervention of humans or others and has some kind of control over its actions
and internal states [11] [23].

situatedness -
An agent is being a part of its environment, observes its surrounding, perceive what observe and act based on its
perception [7] [14].

sociality
communicative,
interactive

An agent interacts with other agents (and possibly humans) via some kind of agent-communication language [7]
[11] [23].

reactivity responsive
An agent perceives some of its environment and responds in a timely fashion to changes that occur in the
environment [23] [24].

goal-directivity
proactive,
purposeful

An agent takes the initiative to attain a particular goal [21] [24].

adaptive learning An agent changes behavior based on its past experience [5] [6] [21] [24].
mobility - An agent transports itself from one machine to another and through different platforms [21] [22] [24].

rationality -
An agent is capable of autonomous and goal-directed behaviors and intends to pursue successful performance that
meets its interest [11] [21].

embodiment - An agent interacts through a physical body in an environment [14].
inferential - An agent decides based on its prior knowledge and might be beyond the given information [12] [15] [23].
self-organization - An agent configures its activities according to its environment demands in order to achieve its goal.
persistence continuous An agent has continuously running thread of processing [24].
flexibility - An agent filters its inputs and reason over its actions [24].
effective - An agent is successful at eventually achieving its goals [5].
efficient - An agent performs better than the conventional autonomic or predetermined reactive systems [5].
reproduction cloning An agent is capable of reproducing itself and adapting to changes [12].
personality - An agent has human-like nature such as an individual view of the world and emotion [12] [15] [23].

2.5. Software Agent Architectures and Models

Agent architectures and models vary across initiatives as a
result of their continuous development by researchers and
based on the essential needs of the technology. Agent
development produces a number of models that investigate
reactive and/or goal-directed behaviors [25]. Some
well-known models are the reactive model, goal-directed

model, BDI model and Soar model [7] [26]. This development
helps the agent technology to embody sophisticated
autonomous systems [4]. It provides mechanisms that develop
dynamic autonomous systems for real-world environments [1].
Therefore, an agent is seen to be one of the core competences
that contribute to software systems [2] [20]. Figure 2 presents
agent models development across the initiatives.

Figure 2. The development of software agent models.

 Software Engineering 2017; 5(1): 8-25 11

2.5.1. Reactive Agent

At the right side of Figure 2 is the reactive or the executive
agent model which is a type of agent that can only follow
directly what it has been explicitly programmed to do. The
agent is considered primitive and acts without much reasoning
on the causes and effects of its actions [26]. Hence, it commits
to a particular plan but the re-planning option does not exist.
This means, if a system faces failure or has an opportunity, it
will not proactively act unless it is programmed to do so [11]
[27]. Practically, the reactive architecture shows great
successes, especially in the industrial field due to its simplicity
[7] [28]. An example is the famous subsumption architecture
that is proposed by Brooks [29] [30]. Figure 3 shows a
reactive agent architecture.

Figure 3. An abstract reactive architecture [28].

Nevertheless, a reactive agent’s deficiencies are its
dependency on the local information which affects its global
view especially in the long run; its non-compliance with the
adaptation and learning from experience; no clear principled
methodology due to the emergent property of its autonomy
and intelligence; and sensor data with no reasoning that might
produce inappropriate actions [7] [26] [28]. For instance, a
system’s sensors indicate conflict information. This
contradiction would more likely lead to a wrong conclusion as
one of the sensors might have a faulty reading. In order to
determine the faulty sensor, the agent needs to perceive
additional states and reason on the situation, but the reactive
model does not have such capability.

2.5.2. Environmental Agent

An environmental agent model is a logic-based model that
adopts the knowledge base system architecture [11]. The agent
has an inference engine as a reasoning mechanism and is
situated in an environment that has symbolic representations.
Its responses are configured based on sensing the changes that
occur in the environment [31]. The advantages of this model
are inherited from the knowledge base system adoption such
as an explicit representation of the world, easy encoding and
easy understanding [26]. However, in this model, the
environment dependency stands against the agent’s
potentiality especially in uncertain and complex environments
[1]. The symbolic representation of the environment
constrains the autonomous behavior of the agent as the
environmental inputs determine the number of possible

actions.

2.5.3. Goal-Directed Agent

In Goal-Directed (GD) models, agents deliberate, plan,
generate and implement their own goals based on the
environment’s current situation [28] [32] [33]. Examples of
GD agents are found in [32], [33], [34] and [35]. The GD
model transforms the agent from the task-oriented (reactive)
model to the dynamic goal-oriented model [34]. It enables an
agent to autonomously respond to unexpected situations using
some goal reasoning strategies [33]. Hence, it is a key aspect
of dynamic planning [35]. Figure 4 elucidates a dynamic
planning GD agent architecture which is an extension of Nau
[32] model.

Figure 4. A goal-directed agent architecture [35].

To explain the GD methodology, consider a robot working
on completing a task of moving a box from a location A to
another location B. During the task performance, the robot
faces a door. In order to be able to open the door, the robot
needs to put the box down first. If the robot put the box down
and opens the door it needs to remember to carry the box again
before proceeding with its movement to the location B. This
process is associated with a goal-oriented reasoning strategy
of the GD agent.

GD agents have been applied in simulation domains as in
[33], games as in [36] and Unmanned Systems (US) as in [1],
[34] and [35]. In GD agents, however, goal revision
mechanism is still an active research topic [36]. Foremost,
there is an insufficiency in responding to unanticipated events
and dealing with discrepancies of the environment as a result
of the absence of retrospective process associated with the
generated plans.

2.5.4. Belief-Desire-Intention Agent

The Belief-Desire-Intention (BDI) model is a goal-directed
model but with specific architecture [10]. The BDI agent
model is introduced in Georgeff and Lansky [37] and Rao and

12 Salama A. Mostafa et al.: A Concise Overview of Software Agent Research, Modeling, and Development

Georgeff [38]. It espouses the philosophical human practical
reasoning model that is proposed by Bratman [39]. The BDI is
considered as the best-known architecture to model practical
reasoning agent as it is synonymous to humans’ practical
reasoning [26] [27] [38] [40]. Agents’ mental attitudes of the
BDI represent respectively, the informational, the
motivational, and the deliberation states of the agents [8] [38].
These mental attitudes determine the agents’ behaviors and are
critical for achieving adequate or optimal performance when
deliberation is subject to resource bounds.

The BDI architecture supports agents’ autonomous
capabilities via enabling an agent to select a task based on its
beliefs and decides what actions are needed to be performed to
complete the tasks [41] [42]. The four important procedures in
the BDI agent practical reasoning are summarized in the
following and illustrated in Figure 5 [11] [41]:

1. observe the world and update beliefs;
2. deliberate desires to pursue:
� determine the available options;
� filters the options;

3. select intentions to satisfy the desires;
4. execute the selected intentions.
An agent’s beliefs are its knowledge about the world, its

internal state, and other agents shared states [42]. A belief
defines a world state in some forms, e.g., a variable, data
structure or logical expression [27]. When the agent observes
the world, it perceives some of its states. The perceived states
are represented in beliefs’ forms [21]. The beliefs can be
updated based on the continuous observation of the world.
Beliefs and their updates are susceptible to constraints and two
of which are world dynamism and uncertainty [1].

A desire is a representation of a goal. It defines an agent’s
state of the world in some forms, e.g. variables, data structure
or logical expressions [38]. Going back to the robot example,
the goal of moving the box from location A to location B
represents the robot’s desire. While dropping the box to open
the door and carrying the box after opening the door represent
other desires. However, the robot needs to have a repository of
possible actions that can be performed in its environment to
satisfy its desires, i.e., a plan.

Figure 5. An abstract BDI architecture.

One formalization of plans is a task orientation in which
each desire is allocated to a task [27]. A task accomplishment
requires the agent to perform some actions. The actions define
an agent’s ability in an environment [43]. A rational BDI agent
would select the best sequence of actions from the set of
possible actions to perform based on its beliefs about the
world [40] [44]. Since the agent is not being able to achieve all
its desires, it must decide on some subset of its desires and
commit resources to achieve them [8].

Intentions are chosen desires through deliberation process
to achieve goals, i.e., the committed plans [42]. Georgeff et al.
[27] proposed that an intention is computationally defined as
an executing thread in a process of performing actions.
However, in the BDI agent as well as some other models, there
is a challenge of modeling an efficient commitment strategy to
control agent’s commitment to its intention. Agent
commitment is detailed in Section IV. A. The following
algorithm is an abstract representation of the BDI agent:

 Software Engineering 2017; 5(1): 8-25 13

1. sense the environment
2. update beliefs
3. select a plan
4. if there is no plan
� choose a desire to pursue
� find a plan to achieve the desire

5. decide on the actions of the plan
6. execute actions
7. validate the plan

2.5.5. Hybrid Agent

The hybrid model or integrated model provides an
architecture that has a combination of a reactive and
deliberative agent [28]. It attempts to exploit the advantages of
the reactive and the deliberative models [26] [34]. The layered
concept is applied in the agent’s architecture to organize its
behavior. A layer is a link that connects a sensor input with an
action output as in the subsumption architecture of Brooks
[29], i.e., the reactive part. The layers interact with each other
to shape the agent’s global behavior, i.e., the deliberative part
[28] [31]. Ferguson [45] proposed a horizontal layered
architecture and Müller et al. (1996) proposed a vertical
layered architecture as shown in Figure 6. In the horizontal
layered architecture, the layers are arranged horizontally and a
layer represents an agent by itself while in the vertical layered
architecture, the layers are arranged vertically and a layer
forms a behavior of the agent [26] [31]. The vertical layering
architecture enhances the layered agent via improving its
deliberativeness and actions’ consistency.

Figure 6. The layered agent architectures.

Three-layered architectures are used in many robotic
systems. Ceballos et al. [34] proposed a three-layered
architecture of agent that consists of a deliberative layer, a
decision layer and a function layer to balance the deliberative
and the reactive behavior of the agent and provide better
performance. Kong and Xiao [47] proposed a typical
three-layered architecture. The lowest is the execution or the
reactive layer, which provides the inputs and processes the
outputs. The middle layer is the detailed control layer that
handles tasks’ operations, such as finding the possible and the
alternative procedures to carry out a task, tasks’ timing and
performance synchronization and adjustment. Finally, the top
layer is the global control layer that is responsible for the

planning aspect and deals with the agent’s goals. Figure 7
shows the three-layered control architecture proposed by
Kong and Xiao [47] including the environment.

Figure 7. The three-layered agent architecture [47].

2.6. Other Models and Architectures

Some other popular agent models are the Soar model, PRS
model, Sensible model and utility-based model. They are
detailed in the following:

2.6.1. Soar Agent

The Soar agent model is a goal-directed rule base reasoning
model. It adopts the reactive agent’s use of operators and has a
means-end reasoning strategy (chunking). A hierarchy of
operators’ execution leads to achieving a goal. It uses a
forward chaining search engine for operators’ selection in
order to reach the goal state [48]. The satisfaction of the
preconditions is determined by an operator that detects current
states. The states represent the agent’s goals and beliefs. The
Soar and the BDI agent models are similar in the current states
that correspond to the beliefs, the goals that correspond to the
desires, the selected operators that correspond to the intentions
and the existence of the commitment strategy in both models
[27].

2.6.2. PRS Agent

The Procedural Reasoning System (PRS) is an agent-based
application development platform [37]. The PRS agent adopts
the BDI model and it is designed to work in a dynamic
environment [27]. In the PRS agent, beliefs are the perception
of the environment; desires are the tasks allocated to the agent;
intentions are committed desires or tasks to be completed;
plans are courses of actions that have a specific configuration
and can complete the task. Tasks’ accomplishment achieves
the goal [26]. The beliefs, desires, intentions and plans are
managed and revised by an interpreter. The interpreter
processes the perceptions and updates the beliefs; generates
new desires in the form of tasks based on the updated beliefs;
selects a task as intentions and apply procedural knowledge to
perform the actions that complete the task. The PRS is
considered a successful model of the BDI agent. It is used in
many applications, e.g. air-combat simulation and is able to
perform in incomplete or incorrect conditions. Figure 8 shows
the PRS agent architecture.

14 Salama A. Mostafa et al.: A Concise Overview of Software Agent Research, Modeling, and Development

Figure 8. The PRS agent.

2.6.3. Sensible Agent

Barber [49] proposed a Sensible agent architecture to
demonstrate flexible, receptive and adaptive automated
systems. The Sensible model is designed to operate in
dynamic environments. The model allows an agent to
dynamically configure its autonomy level based on its
understanding of the situations. The autonomy configuration
for a particular situation is obtained through a predictive
process of an autonomy reasoning module. In the Sensible
model, the agent reasons about situation handling through two
decision-making phases, which are tasks selection and tasks
delegation. In the model, determining which agent can decide
on the current goal is made via a voting scheme, whereby the
agent needs to gain a certain number of votes in order to
qualify for decision making. The agent behavior is, however,
hard to predict as the autonomy configuration is based on the
agent’s internal states.

2.6.4. Utility-Based Agent

As mentioned earlier, a goal-directed agent has a set of
goals to be achieved and its satisfaction is implicitly
represented by the goals’ achievement. The utility-based
model directs an agent’s behavior towards the specific level of
satisfaction based on some explicit utility measures. Often, the
utility measurement criterion is represented by agent’s
performance evaluation [31]. A utility function measures the
agent’s action choice towards maximizing its utility. The
utility function is an efficient method to manipulate the agent’s
preferences and setup its commitment to delegated objectives
[11]. A utility-based agent can be a convenient approach to a
model rational agent. It is widely adopted in game theory to
form worth-oriented decisions.

2.7. Software Agent and Game Theory

Game theory and software agent disciplines share many
characteristics, hence, each of which adopts the other concepts.

Game theory is another decision science discipline that studies
strategic decision-making using mathematical and
computational algorithms. It is used in computer science, logic,
political science, economics, biology, and psychology. Game
theory as software agents target complex, distributed and
constrained problems that are attributed with cooperation,
negotiation, optimization and conflict. However, game theory
or decision theory is not good enough to some researchers and
they argue that it cannot satisfy the introspection process and
prefer human-like intuitive approaches, e.g., BDI. Moreover,
in game theory some strategies are exhaustive and of high
computational cost, e.g., dynamic planning ensues after
performing every action.

3. Multi-Agent Systems

A Multi-agent system is defined as a loosely coupled
network of agents that interact to achieve a common goal that
is beyond an individual agent’s achievement [31] [36] [50]. A
multi-agent system provides a variety of agents’ capabilities
which facilitates flexibility to solving problems [21].
Individual agents’ goals represent solving local problems and
a multi-agent system’s goal represents solving distributed
problems via establishing agent groups [7]. Each agent in a
group is equipped with communication, coordination,
cooperation and/or negotiation capabilities [11] [51].
Communication is performed via Agent Communication
Language (ACL) like KQML or FIPA ACL [12] [26].
Coordination is a process of aligning and synchronizing
agents group activities in order to work together using
coordination algorithms such as join intention or partial global
planning. Cooperation is a group of agents working together to
perform a task that solves a particular problem via sharing
some information, i.e., cooperative distributed problem
solving. Negotiation or bargaining is a process of reaching an
agreement about a particular negotiation set according to some
rules, strategies and protocols such as negotiating about tasks
or resources [11]. According to Jennings et al. [7], multi-agent
systems in general share the following foundations:

� The existence of complex distributed problems that
cannot be solved by individual agents due to their lack of
knowledge and/or capability about the problem;

� There is no global control agent of the system;
� The appropriateness of a decentralized data distribution;
� There exists coordination between the agents.
Subsequently, there is no standard multi-agent architecture

and its formulation depends on the nature of the distributed
problem that the system attempts to solve [31] [50]. Some
examples of multi-agent architectures are centralized
multi-agent architecture with facilitator or mediator agent and
decentralized multi-agent architecture [51]. The multi-agent
system is deployed to cater for complex distributed problems
such as air-traffic control and design and manufacturing
problems [7] [51].

3.1. Agent Communication Language

The Agent Communication Language (ACL) provides a

 Software Engineering 2017; 5(1): 8-25 15

means of sharing or exchanging information between the
agents in a multi-agent system. An ACL provides a
transmission approach (e.g., signaling, message passing or
speech act) that consists of a set of agreed upon transmission
rules or protocols. The transmitted context must be
understandable by the agents in order to be able to perceive its
meaning.

The Knowledge Query and Manipulation Language
(KQML) is an ACL, developed as part of DARPA Knowledge
Sharing Effort (KSE) [26]. KQML provides the facility for
agents sharing knowledge during run-time. It uses
performatives (i.e., descriptive utterances that are not true or
false) of the speech acts theory as agent communication
framework [12]. The performatives are classified into nine
categories that define agents’ speech acts sets [23]. The
message structure of the KQML is layered into the content
layer which includes the actual content of the message, the
message layer which includes the performatives set and the
communication layer which includes sender, receiver,
message identities and message passing parameters. The
KQML efforts are adopted by the Foundation of Intelligent
Physical Agent (FIPA) which provides an enhanced and
standardized ACL [26]. It added new parameters including
user-defined message parameters.

Finally, the Knowledge Interchange Format (KIF) is
another agent communication formal language [12]. KIF is
formalized based on the first order logic that describes the
syntax and the semantics of the message. It can be used as a
meta-language and enables the communications between
agents with different languages.

3.2. Agent-Oriented Programming

The diversity of agents’ and multi-agent systems’
architectures mandates the production of a number of tools to
cover the implementation of the architectures. Different
programming languages are used as a development platform
for the tools, e.g., Java and Prolog. The availability of the
technologies facilitates the success of multi-agent systems
development [7] [52]. However, selecting a suitable
programming language and tool is constrained by the adopted
agent and multi-agent system architectures and the application
domain [18]. In this section, we study the well-known agent
development programming languages and tools that
implement successful agent-based applications. The study’s
main aim is to guide researchers to select suitable
programming languages and tools in order to carry out their
research.

The concepts of programming languages have been
improved with time. Program architectures are enhanced from
the monolithic non-modular programming languages to the
object-oriented programming languages [53]. The modular
programming concept offers reusable behaviors (e.g., loops
and subroutines) and reduces the memory space.
Object-oriented programming further introduces new
properties including message passing, encapsulation, and
inheritance. Object-oriented programming languages like C++,
Java, and Smalltalk improves the modular concept by

maintaining the subroutines, i.e., methods, and improving the
structure of the method’s local control over its variables, i.e.,
public, private and protected method options [12] [52].

The agent concept is close to the object concept as they
share many properties [18] [53]. Therefore, object-oriented
languages pave the way for agent-oriented programming [11]
[19]. However, the objects produce passive behaviors and
their methods are controlled based on some received messages
[52]. But agents have the characteristics of autonomy,
instructiveness, goal-directedness, reasoning and independent
thread of control [18] [26]. Figure 9 shows the evaluation of
programming languages from non-modular to the
agent-oriented programming concepts.

Figure 9. Evolution of programming concepts [52].

Some agent-oriented programming tools and platforms are
summarized as follows:

3.2.1. AGENT10

It is the first agent-oriented programming language. The
agent in AGENT10 consists of sets of capabilities,
commitments, and beliefs. It uses a number of commitment
rules, message conditions, and mental conditions to determine
the committed action [11]. Agent execution cycle functions
via reading messages, updating beliefs, setting commitments,
selecting an action based on the capability conditions and
executing the action.

3.2.2. Concurrent MetateM

It is a multi-agent system programming language that is
developed by Fisher [54]. The Concurrent MetateM agent
architecture has a computational engine which uses a number
of temporal logic sets to specify agents’ behaviors and
interface for interaction.

3.2.3. KAoS

Knowledgeable Agent-oriented System (KAoS) is a fully
object-oriented agent framework that works based on the
distributed object technology and written in Java [55]. The
agent architecture has knowledge, desires, intentions, and
capabilities and provides a dynamic agent lifecycle that starts
with agent birth and ends with agent death as shown in Figure
10. An agent has resistance capability via retaining and
retrieving some aspects of its run cycle, i.e., cryogenic state.
KAoS enhances the scalability, security of agent architecture,
semantics, and extensibility of agent communication
languages.

16 Salama A. Mostafa et al.: A Concise Overview of Software Agent Research, Modeling, and Development

Figure 10. The structure and dynamics of KAoS agents [55].

3.2.4. JACK

JACK Intelligent Agents is a third-generation framework
that is written in Java for a multi-agent system platform [56].
It is developed by Agent-Oriented Software (AOS) Pty. Ltd., a

company in Melbourne, Australia, for research and industry
applications.

JACK combines the Procedural Reasoning System (PRS)
and Distributed Multi-Agent Reasoning System (dMARS)
architectures. It adopts the BDI agent model for its agent
architecture. It is not bound to any particular ACL and can
implement KQML or FIPA.

JACK facilitates the planning process via providing JACK
Plan Language (JPL) and graphical planning tools. However,
it is not an open source software and licensed by the sponsored
company.

3.2.5. RETSINA

It is developed via the Intelligent Software Agents Lab at
Carnegie Mellon University [57]. RETSINA is a multi-agent
system infrastructure that engineers heterogeneous
autonomous agents. It is designed to cover a wide range of
application domains. The types of agents in RETSINA are
interface agent, task agent, information agent and middle
agent. Figure 11 shows the architecture of RETSINA agent.

Figure 11. RETSINA agent architecture [57].

3.2.6. AnyLogic

AnyLogic is a multi-method tool that supports agent-based
simulation modeling. It also supports the simulation of system
dynamics and discrete event simulation methodologies.
AnyLogic is developed by XJ Technologies and it is free for
the use of educational purposes [58]. It is widely used as a
research and development tool for different fields including
optimization, strategic planning, logistics, forecasting and
project management. Figure 12 shows AnyLogic modeling
and simulation architecture.

Figure 12. AnyLogic architecture [58].

AnyLogic is written in Java and 7.3.1 is its last version. It
works based on a graphical modeling language and compiles
the designed models into Java codes. It allows users to extend
some of its simulation models by adding in Java codes. The
extensions include modifying its agents and multi-agent
system architectures and the simulation statistical outputs. The
anyLogic architecture consists of Windows platform that
contains the development environment and Java platform that
handles the Windows platform.

The structure of AnyLogic projects consists of three core
classes: The Main class, Agent classes, and Experiment classes.
These classes hold the user contributions that include defining
the environment, objects and assumptions of a project. Finally,
AnyLogic is supported by many standard libraries that facilitate
the simulated environment to users including Road Traffic,
Pedestrian, Fluid and Rail environments.

3.2.7. JADE

Java Agent DEvelopment (JADE) framework is one of the
widely-used platforms to develop agent-based applications.
JADE is developed via the Research and Development
department of Telecon Italia. It is purely written in Java and
inherits features like the flexibility to work with other
platforms via the aid of Java Virtual Machine [26]. JADE is in

 Software Engineering 2017; 5(1): 8-25 17

compliance with the FIPA specifications. It is an open source,
well-documented and easy to use the tool.

JADE provides an abstract agent architecture that flexibly
engineers different agent architectures on top of it. JADE
architectural elements include the main container, which is the
bootstrap point of JADE that registers other containers in a
platform, distributable containers that join to the main container
and host to execute the agents. Figure 13 schematizes JADE
main architectural elements in a UML diagram.

Figure 13. JADE main architectural elements [26].

4. Software Agents Research

Agents research is meant to find solutions to many modern
systems challenges. This results in many areas that are
covered by software agent research and development. Hence,
software agent challenges are replicating over time. This
section presents a number of software agents’ active research
topics. They include commitment, deliberation, situation
awareness, adjustable autonomy, collective intelligence, norm,
emotion, morality, and sincerity. They are illustrated in the
following subsections.

4.1. Commitment

A goal-directed agent commits to a plan in order to achieve
goals. Apparently, there is no optimal strategy to design an
agent’s commitment and its reconsideration is constrained as it
is influenced by different factors such as agents’ mental ability,
accessibility to environments, determinism of actions
successfulness and environment dynamism [31] [41]. There
are three main commitment strategies [27] [41] [59]:

� Bold commitment: agents never reconsider its
commitment to the committed plan. The agent that used
this strategy is called a bold agent. The bold agent has a
reactive architecture. The bold agent is found to be more
efficient in a less dynamic environment.

� Cautious commitment: agents reconsider their plan for
every new option’s occurrence. The agent that used this
strategy is called a cautious agent. The cautious agent
has a deliberative architecture. The cautious agent is
more efficient in a highly dynamic environment.

� Balanced commitment: agents balance between the
boldness and the cautiousness of the commitment. The
agent that used this strategy is called a balanced agent.
The balanced agent has a deliberative architecture with a
reactive controlling mechanism. The balanced agent has
the flexibility to efficiently perform in environments
with different levels of dynamism.

Figure 14. A BDI agent control loop [41].

Different mechanisms are proposed to achieve a balanced
commitment strategy. Kinny and George [59] used a plan
utility function to measure the commitment degree in order to
balance the commitment. Schut et al. [41] proposed a BDI
agent that performs observation, deliberation, planning, and
execution functions of a control loop [31]. The agent is
supported by a commitment strategy that consists of
reconsider function to decide on the deliberation state as
shown in Figure 14. Ermon et al. [60] used the Markov
decision processes and non-linear utility maximization
function with the rewards strategy to determine planning
preferences of agents. Other works that illustrate agents’
commitment are McBurney & Luck [10], Ceballos et al. [34]
and Pokahr et al. [61].

Schut et al. [41] experimentally proved that the
environment’s degree of dynamism is the major factor of
intention reconsideration efficiency when neglecting the agent’s
ability to perceive and reason. Hence, it is inappropriate to
estimate the efficiency of the agent’s action without identifying
the environment transition states specifications. An important
assumption to be measured in commitment reconsideration is
that the commitment reconsideration decision cost must be
much lesser than the re-planning process [61].

4.2. Deliberation

Deliberation is an aspect of an autonomous agent or
multi-agent systems since the agents are capable of making
autonomous decisions [28] [61] [62]. When agents have
delegated a task, their deliberation process is concerned with
selecting a proper action or actions based on their knowledge
about the world to complete the task [12] [62] [63]. An

18 Salama A. Mostafa et al.: A Concise Overview of Software Agent Research, Modeling, and Development

example of agents’ deliberation process is shown in Figure 15.

Figure 15. Agents’ deliberation [63].

Agents’ deliberation process might involve communication,
filtering (e.g., probability) and selection (e.g., utility or cost)
functions as proposed in decision theories [60] [64]. Moreover,
goal deliberation needs to be associated with a commitment
strategy [62] [63].

Deliberation research in the literature has a direct and indirect
context [65]. The direct context studies individuals’ behaviors
when performing the deliberation process while the indirect (or
inferred) context concerns with analyzing the deliberation
contents [63]. The deliberation methods have different
formulations and each of which achieves different objectives.
Some of the deliberation measures’ objectives assist:

� To prevent goals conflicts as in [61].
� To determine commitment strategies as in [62].
� To determine tasks’ and actions’ complexity granularity

as in [63].
� To determine tasks’ and actions’ deliberating time/length

as in [64].
� To determine agreement and disagreement levels of a

decision-making group [65].
� To determine decisions’ accuracy [66].
Pokahr et al. [61] proposed Easy Deliberation which is a goal

deliberation strategy for a BDI agent. The strategy specifies the
relationships between goals in a simple and in an intuitive
manner the relationships between goals. It is formulated at the
architectural level to prevent goals conflicts. The goal
deliberation strategy is activated if there is a new option or if a
considered option is no longer valid. Figure 16 is an agent
algorithm that performs the Easy Deliberation strategy.

Figure 16. An Agent with Easy Deliberation strategy [61].

Dastani et al. [62] showed how a BDI agent is insufficient in
performing deliberation. They proposed a model of
deliberation that uses meta-language to implement the

deliberation process in the BDI agent. They argue that
updating the agent’s mental attitude frequency affects its
deliberation measures. They show that the agent’s deliberation
level characterizes its autonomy capabilities.

Mostafa et al. [63] proposed a mechanism to measure tasks’
and actions’ deliberation intensities for agents. Basically, the
number of actions that agents need to do to complete a
particular task determines the task’s deliberation intensity.
They assume that the actions of a system have three types:
non-deliberative, pseudo-deliberative and deliberative actions.
The deliberation intensity of a task or action determines its
complexity granularity. They categorize the tasks and actions
based on the tasks’ and actions’ deliberation intensities into
high-complex, intermediate- complex and low- complex
categories. Ultimately, the complexity granularity identifies
different aspects of the agents and the actions including the
deliberation length and autonomy configuration, distribution
and adjustment parameters.

Larson and Sandholm [64] proposed a set of intuitive
properties as a basis for explicit agent deliberation setting
which are Preference formation-independent,
Deliberation-proof, and Non-misleading. They use a
preference mechanism to model agent deliberation process in
which an agent’s resources controls its preferences. The
deliberation is measured via a cost function that limits agent’s
resources accessing options. The cost function operates
according to the agent’s performance profile. They conclude
that it is difficult to produce a deliberation mechanism that
satisfies the three proposed properties as they somehow clash.

Lizzeri and Yariv [66] proposed a model of deliberation
measure that captures some key features of group members’
deliberation process. The model uses key features to
customize deliberation length, agreement, and disagreement
processes and enhancing the decision accuracy within the
deliberation and actions selection decision phases.

4.3. Situation Awareness

The principle of involving humans and agents to carry out
some system’s initiative manifests the notion of the intelligent
interactive system [44] [67]. Improving agents’ awareness of
situations has aroused a lot of interests in agent research [68]
[69]. In this section, we explore the proposed agent situation
awareness mechanisms in the literature. Our aim is to exploit
situation awareness mechanisms in agent models. The
mechanisms improve agents’ decision-making via
decomposing events’ contexts.

Situation awareness reflects the situatedness of agents in
environments. An agent’s decision in a particular event is
formed based on its interpretation of the situation’s context of
the event [44] [70]. It implies that an agent acting on a
situation in an environment by means of reasoning and
acquired knowledge about the situation’s parameters and
performing situated actions [71]. Situated action means that
the decision of an action selection regarding a situation is
prone to the situation’s constraints [68].

An agent’s practical reasoning methodology encompasses
implicit situation awareness capabilities to some limited depth.

 Software Engineering 2017; 5(1): 8-25 19

Franklin and Graesser [17] stated that “an autonomous agent
is a system situated within and a part of an environment that
senses that environment and acts on it, over time, in pursuit of
its own agenda and so as to effect what it senses in the future.”
Since one of the agent’s core behaviors is observation, then,
the perception of the surrounding is embodied in its design
[44]. An agent’s understanding of an event is built upon its
knowledge of the event’s situational elements and its
interpretation (or beliefs) of the situation [70]. The agent’s
desires dictate its existing or newly generated intentions. The
agent’s intentions processing forms its projection of the
situation’s future scenarios (proactivity) [68].

However, building a mechanism that controls the behavior
of agents toward an optimized behavior is the main challenge
in modeling agents [17]. Agents need to be modeled to deal
with the possibility of actions’ failure when acting on an event,
especially, in dynamic environments [28]. It implies that the
agents need to understand the context of the perceived
aggregated knowledge of events which is challenging [69].
Nevertheless, a situation awareness approach is found to be
very useful in enhancing decisions [68].

Wardziński [71] emphasized the importance of situation
awareness mechanism in improving an agent’s knowledge and
minimizing its action risk of failure, especially, in dynamic
and uncertain environments [72]. McAree and Chen [73]
claimed that the situation awareness capability enhancement
of a system leads to the system’s autonomy improvement.
Hoogendoorn et al. [40] deployed a situation awareness
mechanism on an agent’s belief optimization in which the
agent’s degree of awareness on a situation is signified by an
activation value of belief. Their aim is to generate complex
beliefs from the observed beliefs that enable the agent to
perform projection to future situations.

In summary, explicit situation awareness activities can be
modeled and exploited for the agent to further improve its
autonomy, especially when dealing with uncertainties in the
event [68] [73]. This mechanism is needed to enable the agent
to derive precise conclusions from an observed situation [40].
It assists the agent to reason over its decisions of actions and
the actions outcomes [44]. Ultimately, equipping agents with
situation awareness capabilities leads to produce enhanced
interactive autonomous systems.

4.4. Adjustable Autonomy

The abstract definition of autonomy is the ability of a
system to make unaided decisions [74]. However, a key aspect
of the advanced autonomous system is its ability to
concurrently communicate and cooperate with other systems
in order to fulfill different situations’ constraints [75]. The
cooperation between the systems and their entities in an
environment may operate at different levels of intelligence
and with different degrees of autonomy [43]. Human and
agent cooperation is a good example of entities in interaction
and cooperation [44] [75].

Consequently, it is unreliable to completely make an agent
handles its autonomous behavior only by its internal state [19]
[76]. In some situations, agents are found incapable, uncertain,

unpredictable and/or unauthorized and ultimately unreliable to
decide on a situation and achieve tasks [77] [78]. Without
adjustable autonomy, when an agent responds to a particular
event it always pursues the corresponding tasks beyond
oversight or intervention of control from others. Therefore, an
agent’s autonomy needs to be dynamically updated (internally
or externally) to perform the interaction [67] [74] [76].

Managing agents’ autonomy in dynamically interactive
systems is a challenging task [1] [28] [79]. Giving an agent
absolute control over its autonomy is a risky practice. The
agent makes decisions based on its local state and theoretically
the agent cannot always make optimal decisions unless it has
global knowledge about its environment and this is impossible
[12] [67]. For instance, we as humans need some help and
support in doing our job. Subsequently, the fear that
autonomous agents’ behavior could wreak havoc and cause
harm, fatalities, or catastrophes justifies the need for
adjustable autonomy. Hence, many autonomy researchers
adopt the adjustable autonomy approach, e.g., [1], [12], [67],
[72], [76] and [79].

There are many opinions and diverse understanding of what
adjustable autonomy is and how it can be efficiently
formulated [72]. The adjustable autonomy or flexible
autonomy is proposed to give agents a variable autonomy [76]
[80]. It gives the option of agents working in different levels of
autonomy and prone to human oversight or intervention to
promote reliability [80] [81]. Moffitt et al. [82] define
adjustable autonomy as “a mechanism through which an

operator delegates authority to the system that can be taken

back or shared dynamically throughout mission execution.”
Consequently, autonomy adjustment is a process of changing
an agent’s decision-making parameters, based on a situation of
exigency, so as to influence the agent’s decision to satisfy the
situation needs [74].

While adjustable autonomy is considered as a successful
approach, it shows some deficiencies that are crucial,
especially, in systems where many players are involved in its
control [67] [72]. The dependency that it provides has a
positive impact by increasing system initiative level (i.e.,
human contributions) and negative impact in dealing with
dynamic [80]. Apparently, the ensuing continuous interrupts
make such systems dependent and slow, especially, in systems
where a dialogue is utilized in the sequential decision of
problem-solving, e.g., communication delays [75] [83].

In this technology, there are still many aspects that need to
be further studied and improved. Therefore, Schurr et al. [83],
among others, stated that “adjustable autonomy in teams is an
inherently distributed and complex problem that cannot be
solved optimally and completely online.” The main challenges
in adjustable autonomy formulation are addressed in the
literature and some of which are:

� Determining dynamic autonomy distribution and adjustment
mechanisms for agents that improve their performance when
encountering some environment constraints.

� Determining variable autonomy levels of operations for
agents that satisfy dynamic and complex environments.

� Determining autonomy degrees of an agent that enables

20 Salama A. Mostafa et al.: A Concise Overview of Software Agent Research, Modeling, and Development

it to interact and successful perform.
� Determining when and how a human should intervene.
� Directing autonomy distribution and adjustment of a

system’s operations to satisfy its users’ preference.
� Reducing the disturbance of a system during autonomy

distribution and adjustment to avoid the destabilization
of the system.

� Testing and validating the viability of autonomous
systems when operating in dynamic environments.

4.5. Collective Intelligence

Intelligence is the ability of an entity to strategically deploy its
knowledge to solve problems. The logical ability is influenced by
the knowledge depth that the entity had comprehended
throughout experiences [84]. Collective intelligence incorporates
entities’ individual diversity of knowledge and experiences in the
pursuit of a common goal [85]. It is the transaction of all the
collective knowledge intersections to form a meaningful solution.
The process of knowledge interactions and intersection
represents the emergent process of collective intelligence in
reaching common goals [86].

Knowledge is transferred from one entity to another
through communication skills. Consequently, an inherent
process guides the transformed knowledge into
decision-making options [87]. Figure 17 characterizes the

process of the intersection of knowledge in which PI� and
PI� denote personal intelligence of two individuals.

Bio-inspired collective intelligence algorithms such as bee
colony and ant colony algorithms are introduced to solve
challenging optimization problems. Humans also are
biological agents that communicate formally and informally
to execute the task and solve problems [88]. Seemingly, this
collective composition of cognition and behavior formulate
efficient solution resulting in a dynamic process of intelligent
group discussion, reasoning and decision-making, thus
optimizing problem-solving method [86].

Collective intelligence in human entities is a valid and
profound idea if the emergent intelligence resulting from
discussions leads to successful outcomes [84]. A successful
outcome is demonstrated by the achievement of a common
goal. Embarking upon the theory of collective intelligence that
emerges from the intellectual discussions amongst human
entities reveals a higher rate of success in goals attainment
[88]. As an example, Gunasekaran et al. [89] discussed the
topology of a collective intelligent mechanism and its
influence in the internet technology. The topology provides a
case structure of how collective intelligence is used as an
online mechanism in improving issues related to climate
change. As such, they look at the notion of collective
intelligence from the perspectives of social sciences.

Figure 17. The intersection of knowledge [84].

In a multi-agent environment, a series of interactions
through communications emerges to determine the flow of
actions that each agent should execute in order to accomplish
its individual goal [88]. Ultimately, each goal aligns to
manifest a common goal. In a collective multi-agent
environment, these agents retain only one common goal from
the start, which is achieved through a series of processes that
involve discussions, group reasoning, decision-making, and
actions. Both the reasoning and decision-making phases

diffuse knowledge in the form of proven beliefs between these
agents [84].

Swarm intelligence algorithms of multi-agent systems are
formed based on specialized abilities and agreed upon
outcomes. The algorithms manifest collective behaviors in
observation, navigation and collective decision-making [87].
These collective behaviors impose the privileges of
communication, argumentation and group goal attainment
[86]. The collective behavior process is fundamental so as to

 Software Engineering 2017; 5(1): 8-25 21

coherently fulfill their group optimal goal. Sufficiency in
terms of the collective behavior process is reflected by the
efficiency of the goal being achieved.

Gunasekaran et al. [84] proposed a collective intelligence
model of a multi-agent system that mimics the actual
collective behaviors process occurs between two or more
human entities. They analyze a group of humans meeting
activities and extract number of collaborative intelligence
attributes, parameters and goal attainment strategies. The
results show that humans exhibit higher level intelligence
while augmenting their intelligence may steadily improve the
operations on decision making. Subsequently, the model is
applied in a multi-agent system optimization problem. The
model contributes significantly in optimizing solutions.

4.6. Norm

Norms are informal rules that represent behaviors for a
natural or artificial community population towards specific
situations. The rules usually indicate actions that are
performed based on observation of facts [90]. For instance, the
norm of the attendees of a formal meeting is they behave in a
polite manner. Research in norms has progressed over the past
decades across many fields including philosophy, sociology
and artificial intelligence [91].

In multi-agent societies, the concept of norms determines
the behaviors of agents. It is mainly adopted in decentralized
multi-agent systems [92]. The concept is used as a means to
normalize or constrain the behaviors of agents within their
communities [93]. These constraints define obligatory,
prohibitive or permissive behaviors to create solutions to
particular problems of the multi-agent societies.

Agents are designed to achieve certain goals. The norms
influence them to behave according to their societies’
expectations when achieving their goals [94]. The word
‘influence’ indicates that the agents have complete control
over their behaviors as the agents autonomously perform in
their communities. Elsewise, the agents are behaving without
their will and the norms intervene in their goals’ achievement.
Instead, the norms should only affect the means of achieving
the goals. Hence, norms’ trust is introduced to influences
agents’ compliance with the norms and to enforce the stability
of the norms in normative multi-agent systems [95].

4.7. Emotion

Emotion research covers the disciplines of artificial
intelligence, cognitive science, behavioral science, philosophy,
phenomenology, and physiology. In artificial intelligence, it
plays an essential role in supporting cognitive activities
including decision-making, rational thinking, and learning
[96]. It should receive better attention due to its potentials to
manifest creative solutions and credible characters [97].
However, the outcomes of emotion research in the artificial
intelligence discipline have not shown noticeable progress.

Recently, emotion is introduced in software agent research
and applications. The integration of emotion in software agents
can enhance the agents’ autonomy, adoption and social

interactions [98] [99]. As an example, when a human assistant
agent knows that the human is upset, it avoids disturbing
him/her. Tremendous efforts have been devoted to developing
emotional software agents for robotics applications [97]. Other
attempts include e-commerce, medical care, toys, games, and
domestic applications. The aim is to create a system that
supports and facilitates humans’ daily routines [99].

The main issue is that emotional behavior is missing in most
well-known agent models. Modeling emotions in an agent
require identifying its emotional factors including causes,
effects, and drivers. It also requires equipping the agent with
mechanisms to expresses its emotions and captures others
emotions [99]. The emotion model enables the agent to
manage its emotions internally by changing its mental
attitudes or externally by translating them into actions.
Certainly, when an agent is equipped with emotions, its
emotional states influence its decisions to a certain instinct.
For instance, when a civilian agent is encountering threats, its
emotional states of risk and fear affects its commitment to
pursuing its goal more than a soldier agent. Hence their
responses to the threat differ according to their emotional
states’ stress.

In multi-agent systems, it is found that emotion in agents
can be directed to manage an individual and team goals [98]. A
good example is the impact of emotions on a football team.
The emotional states of the players are changed according to
the changes of the game scenarios. The individual player is
emotionally guided by its personal success and the overall
team success. A failure of a player might lead to the failure of
the team. Hence, organizing the emotions of a team play a key
role in the team’s success.

4.8. Morality and Sincerity

Sincerity characteristic of agents is adapted from humans’
behavioral characteristic as many of other software agent
characteristics. It presents humans sincere attitude in a
multi-agent environment. Sincerity implies the attitude of a
proactive volunteer to help others without expecting a tangible
gain. Sincere behavior supports cooperation, facilitate
negotiation and enforces corrective and preventive actions in
multi-agent systems. It facilitates achieving tasks that involve
many parties of agents [101]. It has an important effect when
agents’ local goals are envisioned for a global goal. The agents
are willing to do the extra effort and help each other in order to
ensure that the global goal can be achieved.

Depending on functions like utility or cost in a
collaborating environment might create selfish and greedy
agents. The agents’ concern is confined to maximizing their
utilities, profits or minimizing costs [102]. Previous research
elaborates that applying morality to agents improves their
collaboration e.g., [103], [104] and [105].

Nominating morality and sacrificing culture among
different parties maintain cohesive productive framework.
Ahmad et al. [106] proposed a framework of a multi-agent
system with sacrifice behavior. The framework enforces a
sacrifice culture of sharing resources among agents in order to
complete delegated tasks. The agents comply with the

22 Salama A. Mostafa et al.: A Concise Overview of Software Agent Research, Modeling, and Development

sacrifice via a penalty mechanism.
Sacrifice can be requested by a third party or sincerely

occurs in an agent. Sincerity represents a strong moral
behavior to be imposed on agents. Jaafar et al. [107] proposed
a sincerity framework that instills the sacrifice behavior in
agents. They propose three types of agents: leader agent,
problem agent and helping agent. The framework enables the
agents to work as a team and helps each other while carrying
out their own tasks. Agents teaming conditions are extracted
according to a delegated task’s level of importance and
urgency. The framework is able to formulate a sincere
behavior in the agent-based systems.

5. Conclusion

This paper presents a concise literature review on software
agents and multi-agent systems. It results from reviewing
more than 300 references of the field. It summarizes and
analyzes more than 100 sources including papers, articles, and
books. The aim of this paper is to provide a quick start to new
researchers of the field.

The paper covers the issues of software agents that include
agents’ definitions, properties, types, terminology,
architectures, and models. Subsequently, the paper discusses
the issues of multi-agent systems that include
conceptualization, architectures, properties and development
platforms. Finally, it explores the currently active research
topics of the field including agents’ commitment, deliberation,
situation awareness, adjustable autonomy, collective
intelligence, norm, emotion, morality, and sincerity.

Acknowledgment

This research project is sponsored by the Malaysian
Ministry of Higher Education (MoHE) under the Exploratory
Research Grant Scheme (ERGS) No. ERGS/1/2012/STG07/
UNITEN /02/5.

References

[1] Mostafa, S. A., Ahmad, M. S., Annamalai, M., Ahmad, A., &
Gunasekaran, S. S. (2013). A dynamically adjustable
autonomic agent framework. Advances in Intelligent Systems
and Computing, Springer Verlag, 206, 631-642.

[2] Mohammed, K. A., Mostafa, S. A., Ahmad, M. S., & Mahmoud,
M. A. (2014, November). A qualitative analysis of
human-agent functions for collaborative multi-agent system. In
Information Technology and Multimedia (ICIMU), 2014
International Conference on (pp. 244-249). IEEE.

[3] Pătraşcu, M., & Drăgoicea, M. (2014). Integrating agents and
services for control and monitoring: managing emergencies in
smart buildings. In Service Orientation in Holonic and
Multi-Agent Manufacturing and Robotics (pp. 209-224).
Springer International Publishing.

[4] Byrski, A., Dreżewski, R., Siwik, L., & Kisiel-Dorohinicki, M.
(2015). Evolutionary multi-agent systems. The Knowledge
Engineering Review, 30 (02), 171-186.

[5] Maes, P. (1993). Modeling adaptive autonomous agents.
Artificial life, 1 (1-2), 135-162.

[6] Maes, P. (1995). Artificial life meets entertainment: Lifelike
autonomous agents. Communications of the ACM, 38 (11),
108-114.

[7] Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). A
roadmap of agent research and development. Autonomous
agents and multi-agent systems, 1 (1), 7-38.

[8] Magill, K., & Erden, Y. J. (2012). Autonomy and desire in
machines and cognitive agent systems. Cognitive Computation,
4 (3), 354-364.

[9] Chira, C. (2003). Software agents. IDIMS Report, 21.

[10] McBurney, P., & Luck, M. (2007). The agents are all busy
doing stuff!. IEEE Intelligent Systems, (4), 6-7.

[11] Wooldridge, M. (2009). An introduction to multi-agent systems.
John Wiley & Sons.

[12] Ehlert, P. (2001). Intelligent driving agents: The agent approach
to tactical driving in autonomous vehicles and traffic
simulation.

[13] Hewitt, C. (1977). Viewing control structures as patterns of
passing messages. Artificial intelligence, 8 (3), 323-364.

[14] Florian, R. V. (2003). Autonomous artificial intelligent agents.
Center for Cognitive and Neural Studies (Coneural), Str.
Saturn, 24, 3400.

[15] Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents:
Theory and practice. The knowledge engineering review, 10
(02), 115-152.

[16] Nwana, H. S., & Ndumu, D. T. (1997). An introduction to agent
technology. In Software Agents and Soft Computing Towards
Enhancing Machine Intelligence (pp. 1-26). Springer Berlin
Heidelberg.

[17] Franklin, S., & Graesser, A. (1997). Is it an agent, or just a
program?: A Taxonomy for Autonomous Agents. In Intelligent
agents III agent theories, architectures, and languages (pp.
21-35). Springer Berlin Heidelberg.

[18] Shoham, Y. (1997). An overview of agent-oriented
programming. In Software agents. Bradshaw, J. M editor, AAAI
Press / The MIT Press, Cambridge, Massachusetts.

[19] Bradshaw, J. M. (1997). Software agents. MIT press.

[20] Hexmoor, H., Castelfranchi, C., & Falcone, R. (2003). A
prospectus on agent autonomy. In Agent Autonomy (pp. 1-10).
Springer US.

[21] Bhatia, R. (2014). Intelligent agents: A Deep insight. IJCAIT, 4
(2), 11-13.

[22] Nwana, H. S. (1996). Software agents: An overview. The
knowledge engineering review, 11 (03), 205-244.

[23] Nwana, H. S., & Wooldridge, M. (1996). Software agent
technologies. BT Technology Journal, 14 (4).

[24] Franklin, S., & Graesser, A. (1997). Is it an agent, or just a
program?: A Taxonomy for Autonomous Agents. In Intelligent
agents III agent theories, architectures, and languages (pp.
21-35). Springer Berlin Heidelberg.

 Software Engineering 2017; 5(1): 8-25 23

[25] Mohammed, K. A., Ahmad, M. S., Mostafa, S. A., & Firdaus,
M. A. (2012). A Nodal Approach to Modeling Human-Agents
Collaboration. International Journal of Computer Applications,
43 (12), 33-40.

[26] Bellifemine, F. L., Caire, G., & Greenwood, D. (2007).
Developing multi-agent systems with JADE (Vol. 7). John
Wiley & Sons.

[27] Georgeff, M., Pell, B., Pollack, M., Tambe, M., & Wooldridge,
M. (1999). The belief-desire-intention model of agency. In
Intelligent Agents V: Agents Theories, Architectures, and
Languages (pp. 1-10). Springer Berlin Heidelberg.

[28] Durand, B., Godary-Dejean, K., Lapierre, L., & Crestani, D.
(2009). Inconsistencies evaluation mechanisms for a hybrid
control architecture with adaptive autonomy. In CAR'09: 4th
National Conference on Control Architectures of Robots.

[29] Brooks, R. (1986). A robust layered control system for a mobile
robot. Robotics and Automation, IEEE Journal of, 2 (1), 14-23.

[30] Brooks, R. A. (1991). Intelligence without representation.
Artificial intelligence, 47 (1), 139-159.

[31] Schumann, R. (2011). Engineering coordination: a
methodology for the coordination of planning systems.

[32] Nau, D. S. (2007). Current trends in automated planning. AI
magazine, 28 (4), 43.

[33] Molineaux, M., Klenk, M., & Aha, D. W. (2010). Goal-driven
autonomy in a Navy strategy simulation. KNEXUS Research
Corp Springfield VA.

[34] Ceballos, A., Bensalem, S., Cesta, A., De Silva, L., Fratini, S.,
Ingrand, F., Ocon, J., Orlandini, A., Py, F., Rajan, K., &Rasconi,
R. (2011). A goal-oriented autonomous controller for space
exploration. ASTRA, 11.

[35] Wilson, M. A., McMahon, J., & Aha, D. W. (2014). Bounded
expectations for discrepancy detection in goal-driven autonomy.
In Workshops at the Twenty-Eighth AAAI Conference on
Artificial Intelligence.

[36] Muñoz-Avila, H., Aha, D. W., Jaidee, U., Klenk, M., &
Molineaux, M. (2010). Applying goal driven autonomy to a
team shooter game. In FLAIRS Conference.

[37] Georgeff, M. P., & Lansky, A. L. (1987). Reactive reasoning
and planning. In AAAI (Vol. 87, pp. 677-682).

[38] Rao, A. S., & Georgeff, M. P. (1995). BDI agents: From theory
to practice. In ICMAS (Vol. 95, pp. 312-319).

[39] Bratman, M. (1987). Intention, plans, and practical reason.

[40] Hoogendoorn, M., Van Lambalgen, R. M., & Treur, J. (2011).
Modeling situation awareness in human-like agents using
mental models. In IJCAI Proceedings-International Joint
Conference on Artificial Intelligence (Vol. 22, No. 1, p. 1697).

[41] Schut, M., Wooldridge, M., & Parsons, S. (2004). The theory
and practice of intention reconsideration. Journal of
Experimental & Theoretical Artificial Intelligence, 16 (4),
261-293.

[42] Pantelis, P. C., Baker, C. L., Cholewiak, S. A., Sanik, K.,
Weinstein, A., Wu, C. C., Tenenbaum, J. B., & Feldman, J.
(2014). Inferring the intentional states of autonomous virtual
agents. Cognition, 130 (3), 360-379.

[43] Mostafa, S. A., Ahmad, M. S., Ahmad, A., Annamalai, M., &

Mustapha, A. (2014). A dynamic measurement of agent
autonomy in the layered adjustable autonomy model. Studies in
Computational Intelligence, Springer-Verlag, 513, 513, 25-35.

[44] Mostafa, S. A., Ahmad, M. S., Tang, A. Y., Ahmad, A.,
Annamalai, M., & Mustapha, A. (2014). Agent’s autonomy
adjustment via situation awareness. Lecture Notes in Computer
Science, Springer-Verlag, 8397, 443-453.

[45] Ferguson, I. A. (1991). Toward an architecture for adaptive,
rational, mobile agents. ACM SIGOIS Bulletin, 13 (3), 15.

[46] Müller, J. P. (1996). The design of intelligent agents: a layered
approach (Vol. 1177). Springer Science & Business Media.

[47] Kong, L., & Xiao, L. (2007). A multi-layered control
architecture of intelligent agent. In Control and Automation,
2007. ICCA 2007. IEEE International Conference on (pp.
1454-1458). IEEE.

[48] Wallace, S. A., & Henry, M. (2008). Towards a generic
infrastructure to adjust the autonomy of Soar agents. In FLAIRS
Conference (pp. 119-120).

[49] Barber, K. S. (1996). The architecture for sensible agents. In
Proceedings of the International Multidisciplinary Conference,
Intelligent Systems: A Semiotic Perspective (pp. 49-54).

[50] Torreño, A., Onaindia, E., & Sapena, Ó. (2015). An approach to
multi-agent planning with incomplete information. arXiv
preprint arXiv:1501.07256.

[51] Andreadis, G., Bouzakis, K. D., Klazoglou, P., & Niwtaki, K.
(2014). Review of Agent-Based Systems in the Manufacturing
Section. Universal Journal of Mechanical Engineering, 2 (2),
55-59.

[52] Parunak, H. V. D. (1997). " Go to the ant": Engineering
principles from natural multi-agent systems. Annals of
Operations Research, 75, 69-101.

[53] Odell, J. (2002). Objects and agents compared. Journal of
object technology, 1 (1), 41-53.

[54] Fisher, M. (1994). A survey of Concurrent METATEM—the
language and its applications. In Temporal Logic (pp. 480-505).
Springer Berlin Heidelberg.

[55] Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley, J. D.
(1997). KAoS: Toward an industrial-strength open agent
architecture. Software agents, 375-418.

[56] Howden, N., Rönnquist, R., Hodgson, A., & Lucas, A. (2001).
JACK intelligent agents-summary of an agent infrastructure. In
5th International conference on autonomous agents.

[57] Sycara, K., Paolucci, M., Van Velsen, M., & Giampapa, J.
(2003). The retsina MAS infrastructure. Autonomous agents
and multi-agent systems, 7 (1-2), 29-48.

[58] Grigoryev I. " AnyLogic 7 in Three Days: A Quick Course in
Simulation Modeling ". [Hampton, NJ]: Kindle Edition, 2014.
http://www.anylogic.com/books

[59] Kinny, D., & George, M. (1991). Commitment and
effectiveness of situated agents. In IJCAI-91 (pp. 82-88).

[60] Ermon, S., Gomes, C., Selman, B., & Vladimirsky, A. (2012).
Probabilistic planning with non-linear utility functions and
worst-case guarantees. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems,
Vol 2 (pp. 965-972). International Foundation for Autonomous
Agents and Multi-agent Systems.

24 Salama A. Mostafa et al.: A Concise Overview of Software Agent Research, Modeling, and Development

[61] Pokahr, A., Braubach, L., & Lamersdorf, W. (2005). A goal
deliberation strategy for BDI agent systems. In Multiagent
System Technologies (pp. 82-93). Springer Berlin Heidelberg.

[62] Dastani, M., Dignum, F., & Meyer, J. J. (2004). Autonomy and
agent deliberation. In Agents and Computational Autonomy (pp.
114-127). Springer Berlin Heidelberg.

[63] Mostafa, S., Gunasekaran, S. S., Ahmad, M. S., Ahmad, A.,
Annamalai, M., & Mustapha, A. (2014). Defining tasks and
actions complexity-levels via their deliberation intensity
measures in the layered adjustable autonomy model. In
Intelligent Environments (IE), 2014 International Conference
on (pp. 52-55). IEEE.

[64] Larson, K., & Sandholm, T. (2005). Mechanism design and
deliberative agents. In Proceedings of the fourth international
joint conference on Autonomous agents and multi-agent
systems (pp. 650-656). ACM.

[65] Black, L. W., Burkhalter, S., Gastil, J., & Stromer-Galley, J.
(2011). Methods for analyzing and measuring group
deliberation. Sourcebook of political communication research:
Methods, measures, and analytical techniques, 323-345.

[66] Lizzeri, A., & Yariv, L. (2010). Sequential deliberation.
Available at SSRN 1702940.

[67] Fleming, M., & Cohen, R. (2004). A decision procedure for
autonomous agents to reason about interaction with humans. In
Proceedings of the AAAI 2004 Spring Symposium on
Interaction between Humans and Autonomous Systems over
Extended Operation (pp. 81-86).

[68] Mostafa, S., Ahmad, M. S., Ahmad, A., & Annamalai, M.
(2013). Formulating situation awareness for multi-agent
systems. In Advanced Computer Science Applications and
Technologies (ACSAT), (pp. 48-53). IEEE.

[69] Mostafa, S. A., Ahmad, M. S., Annamalai, M., Ahmad, A., &
Gunasekaran, S. S. (2015). Formulating dynamic agents’
operational state via situation awareness assessment. Advances
in Intelligent Systems and Computing, Springer Verlag, 320,
545-556.

[70] Ferrando, S. P., & Onaindia, E. (2013). Context-aware
multi-agent planning in intelligent environments. Information
Sciences, 227, 22-42.

[71] Wardziński, A. (2006). The role of situation awareness in
assuring safety of autonomous vehicles. In Computer Safety,
Reliability, and Security (pp. 205-218). Springer Berlin
Heidelberg.

[72] Mostafa, S. A., Ahmad, M. S., Ahmad, A., Annamalai, M., &
Gunasekaran, S. S. (2015, August). An autonomy viability
assessment matrix for agent-based autonomous systems. In
Agents, Multi-Agent Systems and Robotics (ISAMSR), 2015
International Symposium on (pp. 53-58). IEEE.

[73] McAree, O., & Chen, W. H. (2013). Artificial situation
awareness for increased autonomy of unmanned aerial systems
in the terminal area. Journal of Intelligent & Robotic Systems,
70 (1-4), 545-555.

[74] Mostafa, S. A., Ahmad, M. S., Annamalai, M., Ahmad, A., &
Gunasekaran, S. S. (2013). A conceptual model of layered
adjustable autonomy. Advances in Intelligent Systems and
Computing, Springer Verlag, 206, 619-630.

[75] Jennings, N. R., Moreau, L., Nicholson, D., Ramchurn, S.,

Roberts, S., Rodden, T., & Rogers, A. (2014). Human-agent
collectives. Communications of the ACM, 57 (12), 80-88.

[76] Bradshaw, J. M., Feltovich, P. J., Jung, H., Kulkarni, S.,
Taysom, W., & Uszok, A. (2004). Dimensions of adjustable
autonomy and mixed-initiative interaction. In Agents and
Computational Autonomy (pp. 17-39). Springer Berlin
Heidelberg.

[77] Mostafa, S. A., Ahmad, M. S., Annamalai, M., Ahmad, A., &
Basheer, G. S. (2013). A layered adjustable autonomy approach
for dynamic autonomy distribution. Frontiers in Artificial
Intelligence and Applications. IOS Publisher. 252, 335-345.

[78] Alzahrani, A., Callaghan, V., & Gardner, M. (2013). Towards
Adjustable Autonomy in Adaptive Course Sequencing. In
Intelligent Environments (Workshops) (pp. 466-477).

[79] Alan, A., Costanza, E., Fischer, J., Ramchurn, S. D., Rodden, T.,
& Jennings, N. R. (2014). A field study of human-agent
interaction for electricity tariff switching. In Proceedings of the
2014 international conference on Autonomous agents and
multi-agent systems (pp. 965-972). International Foundation
for Autonomous Agents and Multi-agent Systems.

[80] Johnson, M., Bradshaw, J. M., Feltovich, P. J., Jonker, C. M.,
Van Riemsdijk, M. B., & Sierhuis, M. (2014). Coactive design:
Designing support for interdependence in joint activity. Journal
of Human-Robot Interaction, 3 (1), 2014.

[81] Johnson, M., Bradshaw, J. M., Feltovich, P. J., Jonker, C., Van
Riemsdijk, B., & Sierhuis, M. (2012). Autonomy and
interdependence in human-agent-robot teams. Intelligent
Systems, IEEE, 27 (2), 43-51.

[82] Moffitt, V. Z., Franke, J. L., & Lomas, M. (2006).
Mixed-initiative adjustable autonomy in multi-vehicle
operations. Proceedings of AUVSI, Orlando, Florida.

[83] Schurr, N., Marecki, J., & Tambe, M. (2008). RIAACT: A
robust approach to adjustable autonomy for human-multi-agent
teams. In Proceedings of the 7th international joint conference
on Autonomous agents and multi-agent systems, Volume 3 (pp.
1429-1432). International Foundation for Autonomous Agents
and Multi-agent Systems.

[84] Gunasekaran, S. S., Mostafa, S. A., & Ahmad, M. S. (2015).
Knowledge Transfer Model in Collective Intelligence Theory.
In Advances in Intelligent Informatics (pp. 481-491). Springer
International Publishing.

[85] Salminen, J. (2012). Collective intelligence in humans: A
literature review.arXiv preprint arXiv:1204.3401.

[86] Gunasekaran, S. S., Mostafa, S. A., Ahmad, M. S., & Tang, A.
Y. (2015, August). Identifying variables dependency that
influences a high level deliberation process in a CI-based
Multi-agent System. In Agents, Multi-Agent Systems and
Robotics (ISAMSR), 2015 International Symposium on (pp.
24-29). IEEE.

[87] Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013).
Swarm robotics: a review from the swarm engineering
perspective. Swarm Intelligence, 7 (1), 1-41.

[88] Gunasekaran, S. S., Mostafa, S. A., & Ahmad, M. S. (2013,
December). Personal and extended intelligence in collective
emergence. In Intelligent Systems Design and Applications
(ISDA), 2013 13th International Conference on (pp. 199-204).
IEEE.

 Software Engineering 2017; 5(1): 8-25 25

[89] Gunasekaran, S. S., Mostafa, S. A., & Ahmad, M. S. (2014,
November). Using the Internet as a Collective Intelligence
platform in harnessing issues on Climate Change. In
Information Technology and Multimedia (ICIMU), 2014
International Conference on (pp. 130-135). IEEE.

[90] Ahmad, A., Ahmed, M., M. Yusoff, M. Z, Ahmad, M. S, &
Mustapha, A. (2011). Resolving Conflicts between Personal
and Normative Goals in Normative Agent Systems, The
Seventh International Conference on IT in Asia 2011 (CITA
2011), pp. 153 – 158, Kuching, Sarawak, 12 – 14 July 2011.

[91] Mahmoud, M. A., Ahmad, M. S., Mohd Yusoff, M. Z., &
Mustapha, A. (2014). A review of norms and normative
multiagent systems. The Scientific World Journal, 2014.

[92] Savarimuthu B. T. R., S. Cranefield, M. Purvis, M. Purvis,
(2010). Obligation Norm Identification in Agent Societies.
Journal of Artificial Societies and Social Simulation, 13 (4).

[93] Alberti, M., Gomes, A. S., Goncalves, R., Leite, J., & Slota, M.,
(2011). Normative Systems Represented as Hybrid Knowledge
Bases, Proceedings of the 12th International Conference on
Computational Logic in Multi-agent Systems, CLIMA'11,
Lecture Notes in Computer Science, pp 330-346.

[94] C. D. Hollander and A. S. Wu, “The Current State of
Normative AgentBased Systems,” Journal of Artificial
Societies and Social Simulation, 14 (2), pp. 6, 2011.

[95] Hamid, A., Hamimah, N., Ahmad, M. S., Ahmad, A.,
Mahmoud, M. A., Mohd Yusoff, M. Z., & Mustapha, A. (2014,
November). Trusting norms in normative multi-agent systems.
In Information Technology and Multimedia (ICIMU), 2014
International Conference on (pp. 217-222). IEEE.

[96] Hsu, C. M., Chen, T. T., & Heh, J. S. (2014, July). Emotional
and Conditional Model for Pet Robot based on Neural Network.
In Ubi-Media Computing and Workshops (UMEDIA), 2014 7th
International Conference on (pp. 305-308). IEEE.

[97] Subramainan, L., Yusoff, M. Z. M., & Mahmoud, M. A. (2015,
August). A classification of emotions study in software agent

and robotics applications research. In Agents, Multi-Agent
Systems and Robotics (ISAMSR), 2015 International
Symposium on (pp. 41-46). IEEE.

[98] Harley, J. M., Bouchet, F., Hussain, M. S., Azevedo, R., &
Calvo, R. (2015). A multi-componential analysis of emotions
during complex learning with an intelligent multi-agent system.
Computers in Human Behavior, 48, 615-625.

[99] Nair, R., Tambe, M., & Marsella, S. (2005). The role of
emotions in multiagent teamwork. Who Needs Emotions,
311-329.

[100] Ngo, T. D., & Bui, T. D. (2015, January). A Vietnamese 3D
taking face for embodied conversational agents. In Computing
& Communication Technologies-Research, Innovation, and
Vision for the Future (RIVF), 2015 IEEE RIVF International
Conference on (pp. 94-99). IEEE.

[101] Velez, R. A. (2015). Sincere and sophisticated players in an
equal-income market. Journal of Economic Theory, 157,
1114-1129.

[102] Velez, R. A. (2013, January). Sincere and sophisticated players
in the envy-free allocation problem. In EC (pp. 853-854).

[103] Sullins, J. P. (2006). When is a robot a moral agent?

[104] Floridi, L., & Sanders, J. W. (2011). On the morality of
artificial agents. Machine ethics, 151-160.

[105] Floridi, L. (2013). Distributed morality in an information
society. Science and engineering ethics, 19 (3), 727-743.

[106] Ahmad, A., Ahmed, M., Yusof, M. Z. M., Ahmad, M. S., &
Mustapha, A. (2016). Resolving Conflicts between Personal
and Normative Goals in Normative Agent Systems. Journal of
IT in Asia, 4 (1), 1-12.

[107] Jaafar, N. H., Ahmad, M. S., & Ahmad, A. (2015). Operational
rules for implementing sincere software agents in corrective
and preventive actions environment. In Computational
Intelligence in Information Systems (pp. 307-314). Springer
International Publishing.

