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Abstract The current research work presents an evidence

on overall synchronization of loosely bound strength in

chaotic systems along with a new coupled design based on

dual quantum dot light-emitting diodes (QDLEDs) in order

to generate n-scroll attractors. To characterize these phe-

nomena, the researchers used a theoretical approach on the

basis of time series and phase space maps, i.e., attractors.

In case of coupled QDLED attractors, the phases are gen-

erally locked during synchronous regime while the ampli-

tudes are correlated. With the proposed construction

scheme, both frequency detuning and coupling strength of

two systems can be tuned independently. Further, chaotic

attractors with even or else odd count of scrolls can also be

easily generated. The study also demonstrated distinct

attractors with n scrolls obtained using coupled design.

Keywords Optical feedback � Phase-coupled � Optical

injection � n-scrolls

Introduction

Semiconductor QDLED—as they are often called—are an

integral part of modern technology. QDLED is widely used

as incoherent light sources in applications such as lighting

and short-distance optical fiber communications. An

important performance characteristic of a QDLED is the

output efficiency, i.e., the amount of light extracted from

the structure at a given input current. Since higher modu-

lation speed implies a larger information capacity, a high

modulation speed is important for short-distance commu-

nication applications [1]. Some light sources exhibit

intensity and phase fluctuations. These fluctuations are of

great importance since they induce errors in optical mea-

surements. Their origin lies in the quantum nature of

transition process itself. In fact, every spontaneous emis-

sion event in the oscillating mode varying the phase of the

electromagnetic field (quantum noise) is responsible for the

carrier density variation [2, 3].

Various methods have been deployed by the researchers

since it was discovered. These methods are aimed at

improving the performance of lasers without external

influences, for instance, the injection process of other

lasers, controlling the quality parameter, pattern stabiliza-

tion, addition of feedback inside or outside the laser as the

latter gets delayed. It was found that this technique has a

significant effect on laser kinematics in general since it

affects the stability of the device and affects the width of

the emission line, etc.; this technique is the most preferred

one for several years now [4]; negative and positive late

optoelectronic feedback [5], controllable chaotic dynamics
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in semiconductor lasers (SCLs), optoelectronic-delayed

feedback [6] in synchronization process between lasers and

filtered optical-delayed feedback [3, 4] to control nonlinear

dynamics in SCLs and delayed nonlinear feedback [7].

When there is a delayed optical feedback, the semicon-

ductor lasers exhibit a several of complex dynamic

behaviors that are governed by nonlinearities among the

deterministic field, deterministic interactions of both elec-

tromagnetic and semiconductor material and the noise

produced by quantum mechanical processes of sponta-

neously emitted photons. The quality of the specific

behavior heavily depends on the distance measured from

reflective surface to laser and on the basis of amount of

reflectivity of the surface. Thus, low reflections from

optical fiber connections or CDs can significantly alter the

kinetics of semiconductor laser [8].

As per the literature [9, 10], wide ranges of nonlineari-

ties are exhibited by QDLEDs under optical injection. It is

possible to detail about the QDLED dynamics through the

frequency of the addition of optical injected signal to slave

laser. This detuning difference maintains a control on slave

system, whereas the master one is maintained as it is and

provides no disturbance. Here, injection locking remains a

highly beneficial tool in the stabilization of semiconductor

devices. But the injection-locked SCLs exhibit a prism of

dynamics as per the literature [11].

When it comes to framing the design for multi-scroll

attractors, it is always a challenge to design multiple

equilibrium points that may scroll a messy attractant, on

the basis of changes brought by nonlinear treatment fea-

ture. In the literature [12], this change is brought through

the submission of additional breakpoints in Chua circuit’s

nonlinear characteristic through which one can attain

double n-scroll attractants.

In the study conducted earlier [13], the same modifica-

tion was done using sine function. In the studies conducted

earlier [14] and [15], the authors used a set of step func-

tions and hyperbolic smooth tangent functions to conduct

the modifications. Indeed, both design and realization of

multi-scroll attractants rely upon nonlinear assembly with

electricity circuit. The question arises whether an electri-

cian drives a device that can naturally allow multi-pass

mess design attractant.

The current study attempts to investigate the overall

synchronization of chaotic systems. With the help of

Poincaré map methods (which means that periodic orbits

start on the subspace flow through it and not parallel to it),

the researchers arrive at the conclusion that when non-

identical autonomous chaotic oscillators interact with each

other, it results in optimum locking of the phases with

chaotic amplitudes. In case of handling a weaker syn-

chronization type, most of the frequencies are locked while

the phase difference showcases a random-walk-type

motion. One such state variable is phase difference of the

junctions which produces the n-scroll attractor. Here we

made use of a closed chain of coupled identical n-scroll

attractors to analyze the n-scroll hypercube attractors. In

this work used QDLED leaving beside the QD lasers,

thanks to the broad emission of QDLED. This broad mis-

sion poses serious challenges to academicians in terms of

controlling the multi-mode output and fulfillment of

injection locking requirements.

QDLED model

In order to model the proposed QDLED rate equations

under external optical feedback, we are using multiple

equations given below. With complex electric field E,

(real) number of carriers denoted by QDs nQD and WL nwl,

the following equations are applicable [3, 9].

E� ¼ � 1

2
ð1 þ iaÞWnQDE � cs

E

2
þ k

2
Es e

�iH þ EspðtÞ

ð1aÞ

n�QD ¼ ccnwl 1 � nQD

2Nd

� �
� crQD

nQD

� EspðtÞ �WnQD Ej j2
� �

ð1bÞ

n�wl ¼
I

e
� crwl

nwl � ccnwl 1 � nQD

2Nd

� �
ð1cÞ

Here, EðtÞ ¼
ffiffiffi
S

p
e�iwðtÞ denotes the generalized mildly

differentiable complicated amplitude of the electrical field,

S denotes the number of photons, whereas w denotes the

phase. Here, a parameter denotes the linewidth enhance-

ment factor, xo denotes single optical mode frequency

while the symbol k is the parameter which can measure the

injection feedback strength. At the time of one-round trip

in external cavity (s ¼ 2l=c) where l is length of external

cavity, the phase shift value is derived using H ¼ xos.

Here, c denotes the light speed. Since the field contains two

subscripts such as s and Es, so, the symbol ws denotes the

electric field amplitude followed by optical phase consid-

ered for the delayed time (t-s). The Rind ¼ WnQDS models

the induced processes of absorption in which W denotes the

Einstein coefficient. crQD
and crwl

denote the nonradiative

decay rates for the count of carriers in QD and WL,

respectively. Here, Nd denotes the overall count of QDs, I

corresponds to injection current, e corresponds to ele-

mentary charge, cc is pointed at the capture rate from WL

into dot, and finally, cs corresponds to the output coupling

rate of photons in optical mode. In both WL and QD, the

population distributions is explicitly considered so as to

correlate between absorption and spontaneous emission

spectra. Esp(t) corresponds to the stochastic function which
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in turn point toward the zero-mean random field for

spontaneous emissions. As per the literature [8], the field

relation is shown herewith empirically EspðtÞE�ðtÞ
� �

¼
Rsp

	
2 [8]. According to the equation, (*) symbol corre-

sponds to complex conjugate. Here, the notation Rsp is

utilized for the impact created by spontaneous emission in

photon number equation and is given in equation [9].

Rsp ¼ Wn2
QD

Furthermore, when the fundamental dynamics of instability

and chaos in nonlinear systems are investigated, the

deterministic terms can be treated after considering the

statistical noises.

Phase controlling is one of the direct methods to operate

a QD in single mode. Figure 1 shows that the light can

travel the controlled frequencies through the cavity.

In Eq. (1), a delay term k
2
Eðt � sÞe�iwos models the

feedback from external flat mirror. In order to analyze the

phase controlling dynamics using the optically injected

QD, Eq. (1) is once again inducted into the photon number

for master and slave lasers, i.e., Sm(t) and Ss(t), while the

equations for phase w(t) and carrier number (t) are as

follows.

S�sðtÞ ¼ �WnQDðtÞSsðtÞ � csSsðtÞ þWn2
QDðtÞ

þ f
ffiffiffiffiffiffiffiffiffiffiffi
SmðtÞ

p
coswðtÞ ð2aÞ

w�ðtÞ ¼ 1

2
aWnQDðtÞ � f

ffiffiffiffiffiffiffiffiffiffiffi
SmðtÞ
SsðtÞ

s
sinwðtÞ � Dx ð2bÞ

n�QDðtÞ ¼ ccnwlðtÞ 1 � nQDðtÞ
2Nd

� �
� crQD

nQDðtÞ � ðWn2
QDðtÞ

�WnQDðtÞSsðtÞÞ
ð2cÞ

n�wlðtÞ ¼
I

e
� crwl

nwlðtÞ � ccnwlðtÞ 1 � nQDðtÞ
2Nd

� �
ð2dÞ

wðtÞ ¼ /sðtÞ � /mðtÞ � Dx

Here f ¼ Kin

2sin
is the coupling strength rate. A phase wðtÞ ¼

umðtÞ � usðtÞ � Dx is introduced in which Dx ¼ 2pDt ¼
xm � xs denotes the detuning process between angular

frequencies while xm and xs correspond to master and

slave systems, respectively. However, the phase control

plays a rule of injection. Then, it controls the selection of

frequency and phase shift of the electric field E in optical

mode.

Equation (2) is rewritten for numerical application in

dimensionless form. The new variables are thus introduced

as given herewith.

x ¼ S; w � w; y ¼ W
cs
nQD; z ¼ nwlcc

W ,

c ¼ cs

crwl

; c2 ¼ W
crwl

; c1 ¼ W
cs

, c3 ¼
crQD

crwl

; c4 ¼ cc
crwl

,

Nd � a; do ¼ I
We, t

0 ¼ crwl
t. The rate equation become

c1x
�
s ¼ ðcðy2 � c1xsðyþ 1ÞÞ þ c1C12

ffiffiffiffiffiffiffiffiffiffiffi
xmðtÞ

p
cosðwÞÞ ð3aÞ

w� ¼ ac
2
y� C12

ffiffiffiffiffiffi
xm

xs

r
sinðwÞ � dw ð3bÞ

y� ¼ c2zðc1 � y=aÞ � yðc3 þ cyÞ þ c2xsy ð3cÞ
z� ¼ c4ðdo � zþ yz=c1aÞ � z ð3dÞ

Here, dw ¼ Dx
	
crwl

and the injection ratio are also

normalized in the form of C12 ¼ f
	
crwl

. It is an established

assumption that the delay time s is higher compared to the

round trip time taken inside the active region.

QDLED dynamic results

A set of four coupled equations are necessary for the

functioning of QDLED with optical injection. These

equations exhibit dynamic oscillations and chaotic nature

in their output powers as shown in Eq. (3) coupled equa-

tions of Lorenz systems. In particular, the term of the

external optical feedback was added in Eq. (3a) which is

providing the degree of freedom needed to generate chaos.

The chaos dynamics, found in QDLED systems, are dis-

cussed in detail with external effect. Followed by, different

routes are shown for chaos within the threshold of

parameter differences. All the three system rate equations

are numerically solved with the help of 4th order Runge–

Kutta method and implemented in MATLAB/Simulink

system. The study used the following parameters for sim-

ulation process such as c = 0.158, c1 = 0.049, c2 = 0.026,

c3 = 0.03, c4 = 0.078 and a = 0.891. The initial values

were xo = 0.066, Øo = 0.066, yo = 0.99, zo = 0.0049.

These values were attained by resolving system (3) at

steady-state conditions.

The dynamics of two QDLED masters under optical

feedback, the dynamics of other slaves under optical

injection and the realization of phase coupling enable the

researchers to make use of a behavioral diagram drawn at

master dynamics through several processes, for instance,

frequency of phase. By keeping the master output under

control, the outputs of the master as well as slave are

incorporated. Master dynamic output is highly

Master  

Op�cal feedback 
Loop of QDLED 

Slave QDLED 

Fig. 1 Configuration of optical feedback system for both master and

silver QDLEDs
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predictable due to which the slave hand is also predicted in

advance. Due to the corresponding phase locking process,

the predictable output of the master can be utilized for the
slave as well. The coupling scheme’s performances were

evaluated. Some appropriate behaviors of systems were
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Fig. 2 Time series and phase plane of two coupled QD systems

(Eq. 1) for nonsynchronous a=2 and C12 ¼ 1 with phase differences

such as a dx ¼ 0:9, b dx ¼ 0:27 and c dx ¼ 0: 15
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Fig. 3 Time series and phase plane of two coupled QD systems for

nonsynchronous a=2 and dx ¼ 0 with coupled strength, a C12 ¼ 0:01

and b C12 ¼ 0: 4; and synchronous states, c C12 = 0.5, respectively
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found for a wide range of factors in communication

applications.

Figures 2 and 3 show the results of periodic pulsing

regime analysis for both normalized time series and phase

space, respectively.

In case of the simple attractor, it is straightforward to

introduce the phase, thanks to its symmetrical nature. In

Figs. 2 and 3, the researchers introduce the parameters dx
and C12 which govern frequency detuning and the strength

of coupling, respectively. Figure 2 shows the decline in the

fixed coupling strength for mismatch, dx ¼ 0:9, 0:27, 0.15.

From this result, one can understand a regime’s transition

where the phases tend to revolve around under different

velocities. This occurs in a phase synchronous state during

when the phase difference evolves in the due course of

time. With locked phases in this synchronous regime, the

amplitudes differ in a chaotic manner and there exists an

impractical correlation between them. In every figure, it is

shown that the time periodic interval gets changed due to

the master that developed to a state of extreme synchro-

nization related to two coupled QD systems, i.e., a = 2 and

strength coupled C12 = 1. It is stressed that, in comparison

with other synchronization kinds found in chaotic systems

[16], there is no coincidence available between the instant

fields such as x1 and x2. Further, even if the correlation is

present between x1 and x2, it remains pretty small (Fig. 2).

In spite of the fact that the phases are completely locked,

the motions remain highly coherent.

Figure 3 shows one more synchronization kind in which

the frequency detuning is entrained while the phase dif-

ference is unbounded, i.e., dx ¼ 0. Further, the coupling

strength remains changing i.e., C12 ¼ 0:01, 0: 4 and 0:5. In

the figures given above, it can be noticed that the slave’s

behavior got developed due to the increased strength of the

coupling. This is because the dynamics of the slave is

forced to meet the dynamics of the master completely. This

occurred in spite of the fact that the initial behavior of the

slave does not significantly agree with the elementary

behavior of master. Here the impulsive behavior or mixed-

mode behavior interrupted and changing this notion. When

coupling strength value reached half of the total value, the

total synchronization occurred, a result of commonly found

type and the most concerned application of secure

communications.

Figure 4 shows the relation between the correlation

amplitude and the properties of synchronization residue.

According to Fig. 4, the synchronization was achieved in

coupled QDLED systems, thanks to the appropriate choice

of detuning frequency in both systems that coincided

together.

Figure 4a shows the synchronization region in the plane

of parameters, whereas ‘‘coupling–frequency mismatch’’

was obtained using the residue map. It is to be noted that

there is no threshold when the frequency mismatch is

small, i.e., dx & 0. During this scenario, the synchro-

nization has already appeared for coupling. This is a par-

ticular feature of QDLED systems, where the motion is

highly coherent. On the other side, it is possible to predict

the synchronization of systems with frequency mismatch

from correlation coefficient plotting (see Fig. 4b).

A new approach was introduced and shown in Fig. 5 on

the basis of nonlinearity and dynamics of QDLED so as to

produce n-scroll attractors. The phase difference

(dx ¼ 0:18, 0:6) of the coupled QDLEDs (C12 = 0.5) was

one of the state variables for the resultant n-scroll attractor.

The production of the n-scroll attractors is shown in a

closed chain of coupled mismatched n-scroll attractors (see

Fig. 5). This chain of coupled mismatched n-scroll attrac-

tors is introduced from two coupling systems with the help

of a new coupling way. When the phase difference was

increased (dx ¼ 0:8, 0:9), by increasing the coupling

strength (C12 = 1), it in turn increased the chances of

obtaining even or odd scroll numbers as well as obtaining

some symmetry (see Fig. 6).

Conclusion

The current research work proposed a new coupling

method for two QDLEDs since it possesses distinct char-

acteristics that made them a special object of interest

among researchers. Initially, synchronization was investi-

gated by coupling strength and phase difference effects.

Two types of synchronizations were conducted such as

phase synchronization in case of a difference in the fre-

quency of two coupled systems and complete synchro-

nization of amplitude and phase in case of same frequency

of two systems. Subsequently, the generation of n scrolls in

slave output was investigated, due to complex nonlinear

behavioral properties of QDLED. Finally, the proposed

design yielded excellent and wide range of results.
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