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In this paper, we consider a low initial population model. Our aim is to study the peri-
odicity computation of this model by using neutral differential equations, which are recognized in
various studies including biology. We generalize the neutral Rayleigh equation for the third-order
by exploiting the model of fractional calculus, in particular the Riemann-Liouville differential oper-
ator. We establish the existence and uniqueness of a periodic computational outcome. The tech-
nique depends on the continuation theorem of the coincidence degree theory. Besides, an
example is presented to demonstrate the finding.

© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Biocomputing is proposed as the procedure of constructing
models that use biological materials. The class of neutral dif-
ferential delay equations is the most popular model in Biocom-
puting. It was introduced by the famous British mathematical
biologist, Lord Rayleigh, as follows:
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X'() + (X' (1)) + ax(1) = 0. )

Eq. (1) is extended into a third order by various authors.
Abou-El-Ela et al. (2012) discussed a criterion for the existence
of periodicity to third order neutral delay differential equation
with one deviating argument as below:

X"(0) + ax"(1) + (X' (1 = (1) +/(x(t = (1)) = p(1).  (2)

Using the idea of the fractional calculus (see Podlubny,
1999), Eq. (1) is developed (see Ibrahim et al., 2016a,b.c).
Recently, Rakkiyappan et al. (2016) presented the periodicity
by applying fractional neural network model.

The objective of this work is to give new appropriate
conditions for guaranteeing the existence and uniqueness of
a periodic solution of fractional differential equation of order
3u (0 < p < 1) with two deviating arguments, taking the
form
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D) + P (ud (1))l (1) + (u(t))ud (1) + 0 (1, u(t — & (1))
+a(tu(r — &(1))) = p(1), 3)

where D is the Riemann-Liouville fractional differential
operator of order 3p, W,@,¢,6,p: R —R and 9,9, :
R x R — R are continuous functions ¢, & and p are periodic,
¥ and 9, are periodic in their first argument and 7 > 0.

2. Material and methods

For convenience, we let

1
T d
lul, = (/ \u(t)\“'dl> vk =1 ul = maxiepn|u(o)],
0

1T
|ploe = max,eon|p(1)] and p = ?/ p(n)dr.
0

Let the following sets
X ={uluc C*(R,R),u(t+T) =u(t), foralltc R}
and
T={lye CR,R),y(t+T) = y(1),

are be two Banach spaces with the norms

forallz e R}

el = max{ful o, W/ |, ||} and [[¥]]y = |y
Outline a linear operator L : Dom(L) C X — Y by setting
Dom(L) = {ulu € X, D*u(t) € C(R,R)},
and for u € Dom(L),
L, = D*u(). 4)
We as well term a nonlinear operator N : X — Y by setting
Ny = =Wl (0 (1) — ()il (1) — 1 (t,ult — 21 (1))
— da(t,u(t — e2(0))) + (). ()
Therefore, we have seen that KerL =R, dim(KerL) = 1,
ImL={ylyen, fOTy(g)dg =0} is a subset of Y and dim
(Y/ImL) = 1, which implies diom(Im L) = dim(KerL).

So the operator L is a Fredholm operator with index zero.
Now we define a nonlinear operator as follows:

L,=oN,, «€(0,1);

D¥u(t) + o ¥ (1)u" (1) + (u()u (1)
+ 01 (tu(r = &1(2))) + a1, u(t — (1)) } = ap(2), (6)

where the Riemann—Liouville fractional differential operator is
defined as follows:

1 d

t

/ (t—s) " u(s)ds, 0<1<oo.
0

We need the following outcome:

Method 2.1 (Continuation method) Assume that X and Y
be two Banach spaces. Supposing that L : Dom(L) C X — Y
is a Fredholm operator with index zero and N : X — Y is
L-compact on F, where F is an open bounded subset in
X. Furthermore, let the next conditions are satisfied:

(a) Lu # oNu, for allu € oF NDom(L), o € (0,1);
(b) Nu¢ ImL, forallu € wF NKerL;
(c) The Brower degree deg{ON, F N KerL,0}#0.

Then Lu = Nu has at least one solution on F N Dom(L).
Moreover, we need the following assumptions in the sequel:

(1) Suppose that there exist non-negative constants A;; 4,
By, B,; C; and C, such as

YW < 4y, [¥On) = Y00l < Aoy — 2l
For all y,y,,», € R,

lp(u)] < Ci, lo(ur) — @(u2)| < Crluy — us
For all u,u;,u, € R and

[9,(t,v) = ,(¢,v)| < B,Jo — V|

Forall yu,veR, 1=1,2.

(i1) Assume that the subsequent conditions are satisfied:

(H;) One of the next conditions holds

(1) (9,(¢,0) =9,(t,v))(v—v) >0 forallt,v,v € R, v#v,
1=1,2,

2) (0,(t,0) = 9,(t,v))(v—v) <0 forallt,v,v € R, v#v,
1=1,2;

(H;) There exists d > 0 like one of the following conditions
holds

(1) u{0(t,u) + O,(t,u) —p} >0 forallte R, |u| >d,
) u{V,(t,u) + 02(t,u) — p} <0 forallt € R,|u| > d,

If u(z) is a periodic solution of (6), then

1
. < d+ 5 VT, )
(iii) Assume that (i) and (if) hold such that
(iv)
T T T

If u(z) is a periodic solution of (3), then
[(B) + B))d+ M+ |p| ]T
Z{m*/ll I-a L - (B +Bz)%}

4SS

RS :K7

M = max{]9,(t,0)| 4+ |9.(2,0)| : 0 < ¢t < T}.

(v) Assume that (i)—(iii) hold. Also let the next condition
holds

T 7 T
F(3u+ 1) A1§+(A1K+C1)T(Bl +B2)+C2K§ < 1. (9)

3. Results

We impose the periodicity computation of the generalized neu-
tral equation (3) in the following result:

Result 3.1: Assume that (i) - (iv) hold. Then (3) has a unique
periodic solution.

Demonstration: Condition (iv) implies that (3) has at most
one periodic solution. Therefore, it is enough to prove that
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(3) has at least one periodic solution. Let the set of periodic
solutions of (6) be bounded (by the boundedness of D*u(t)).
Let u(t) be T-periodic solution of (6). Multiplying (4)
byD*(¢) and then by integrating it over [0; T], we get
T T
/ (D*u(1))’dt = —o / (i ()" (1) D u(t)dt
0 0
T
foc/ o(u(t))ud (1) D*u(f)dt
0
T
- oc/ 91 (¢, u(t — £1(1))) D u(t)dt
0
T
s / ot ult — Ex(1))) D¥u(t)dt
0

+ oc/()Tp(t)D3"u(t)dt.

Using the fractional Taylor series (Tarasov, 2016), accord-
ing to the condition (i), inequality (7) and the Cauchy—Schwarz
inequality, we obtain

2 T T* T\, o)np
[D*ul; K TBu+1) A.§+C17+(B.+Bz)§ [ ()]

+ T3+ D[(B) + B.)d+ M|P|_VT||u® (1),

Thus, there exists My > 0 such as |[D*ul, < M, with the
following inequalities:

1
|M”|OQ < Eﬁgﬁo,

| G
|Z/II|Oo < Z ﬁﬂﬁo,

|

Let M = max{d + L My, 1 T2y, /TN, }, now we have
F = {ulu € X, ||u|| < M} as a non-empty open bounded subset
of X. Thus, condition (a) in Method 2.1 holds. According to
(H»)(1) and (H>)(2), we aim to study two cases:

Case (i) Let (H,)(1) hold. Since

T
ONu= = [ OV )+ plul)d (o) + 91 (1, u(s
0

—&1(1))) + 02(t, u(t — (1)) — pir,

For any u € oF N KerL = oF NR, then u is a constant
with u(r) = M or u(t) = =M. Then

ON (M) = JT / T{ﬁl(t, M) + Va1, M) — pldr < 0, (10)
0

T
ON(—M) = —%/ {01 (2, 90) + 9,(¢, M) — p}dt > 0,
0

The condition (b) of Method 2.1 is fulfilled. Moreover, we
define a continuous function H(u,h)by setting

H(u,h)=—hu+ (1 —h)ONu=—hu—(1-h)

! W (2)u" (1) + p(u(0))ud (1) +
- /0 {ﬂl(hu(l —a(0)+ 0 (Gu(t—eal(n) —p }dl’

ST

According to (10) we have wuH(uh) <0 for all
u € oF NKerL and h e [0,1] therefore, H(u,h) is a homotopic
transformation. From the homotopy invariance theorem we
get

deg{OQN, F N KerL,0} = deg{—u, F N KerL,0}7#0,

Therefore, condition (c) is satisfied.
Case (ii): Let (H,)(2) hold. Since

oNu=—1 [ LR o) + ol 0
+ 01 (,u(t — & (1)) + D2(t, u(t — (1)) — pldt,

For any u€ owF NKerL=oFNR,u(t) =9 or u(t) =
-9
We have

ON(M) = =4 [7{91 (£, M) + (1, M) — phdt > 0,
ON (=) = — L [0, (1, M) + 92(2, M) — pydr < 0,

This means that the condition (b) of Method 2.1 is gratified.
Define

(11)

H(u,h) =hu+ (1 —h)QNu=hu— (1 —h)%
! W ()" (1) + pu(n))u (1) +
></0 {01(tvu(l

dt,
—&(1)) + 91 (1, ut — & (1)) *ﬁ}
According to (11) we have uH(u,h) >O0foralluew

F N KerL and h € [0,1]. Hence, H(u,h) is a homotopic transfor-
mation. Using the homotopy invariance theorem we find

deg{ON , F N KerL,0} = deg{u, F N KerL,0}70.

Therefore, the condition (c) of Method 2.1 is achieved.
Moreover, we conclude that (3) has at least one periodic
solution and the solution is unique. This completes our
result.

4. Discussion

To discuss our results, we apply the main Result 3.1, to obtain
a periodic solution. Let us consider the -periodic solution of
the fractional third-order delay differential equation with
two deviating arguments

D¥*u(t) +%(Sin W' (1) +%(cos u)u ()

+ 91 (t,u(t — cos 2t)) +U,(t,u(t — sin 2t)) = % cos 2t
(12)
where
T=m, &(t) =cos 2t, &(t) =sin 21,

1
9 (tu)=—— tan”!
1(1,) 907(1 + cos? 1) an -t

. 1
V5(t,u) = —— (1 +sin® ¢) tan~" u, and p(r) = — cos 21.
n

907
By (12) we have

1
A=Ay =— . B =— By =—— =C,=—
v=A =g Br=gon Br=gan G =G=13
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Observing that

’—l/T (z)dt—l/nlcos 2t dt =0, |p| -1
p_T b p - o T =Y, Pl =

T T

CaseI. (d<1)Weletd= %, (d is an arbitrary small posi-

tive constant). Then we attain
[(B1 + By)d + M + |p|. ]T
2 3
Ak - ad- k- B+ B)E)

IR (T o) CR

A - b - k5 G+ %)

When p = 1/3, we have xk = 0.519. In addition, When
p = 1/4, we have k = 0.45, while k > 1, when p > 1/2. In this
case, we conclude that 0 < p < 1/3. Similarly for the following
quantity, when p = 1/3:

T 7° T\ T°
rGGu+1) [A] 5+ (Ao + CI)T_‘_ (Bl + B, + Czlcz) §:|

20 30 20 4
0.519 E) I'GGu+1)n’

16 2 8

T@u+1)n (0.519 1>F(3,u+1)n2
B 2

=0.7<1.

1 1
* (@ T
It is understandable that all the assumptions (ii)—(iv) are

satisfied. Thus, by our Result 3.1, Equation (12) has a unique
7 -periodic solution.

Case II. (d>1) When d=5  npn=1/3, we have
K = 1305 =0.578 < 1, (in this case there is a periodic solution),

while when d = 35, p > 1/3, we have x =22 =1.06>1
(there is no periodic solution).

5. Conclusion

The advantage of a periodic solution appears when the initial
population is low and this situation may appear in the class of
fractional differential equations. We generalized a class of neu-
tral third order differential equations by applying the idea of
fractional calculus. The fractional differential operator is taken

in the sense of Riemann-Liouville calculus. We imposed the
periodicity computation of solutions. The method depends
on the continuation theory. We showed by example of a pop-
ulation model, that the periodic solution of the fractional dif-
ferential equation is approximated to the ordinary equation
when the fractional power satisfies the inequality
0 < p < 1/3. For future work, one can consider n- deviating
arguments depending on the actions of the population growth.
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