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Abstract The existence of symmetric-periodic outcomes

for a class of fractional differential equations has been

increasingly studied. Such study has used various methods

such as fixed point theory, critical point theory, and

approximation theory. In this work, we study the m-pseudo

almost automorphic (m-PKK) outcomes for a category of

fractional neutral differential equations. To satisfy this aim,

we introduce composition results under suitable conditions

and employ them to establish some extant outcomes using

interpolation theory mixed with fixed point technique.

Examples are illustrated.
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Introduction

The symmetry in the field of differential equations is a

transformation that preserves its domestic of results

invariant. Symmetry study can be utilized to resolve some

classes of ordinary, partial, fractional differential equa-

tions, though defining the symmetries can be computa-

tionally concentrated like other mathematical methods. The

best method for symmetry is by finding the periodic solu-

tion of the differential equation.

In 1962, Bochner [1] introduced the concept of almost

automorphy, which is an important generalization of

almost periodicity. The concept of almost periodic func-

tions was introduced by Bohr [2]. It was named as PAA

functions because they originally presented themselves, in

their work in differential geometry, as scalars and tensors

on manifolds with (discrete) groups of automorphisms [3].

Later, PKK function has become one of the most attractive

topics in the qualitative theory of evolution equations, and

there have been several interesting, natural and powerful

generalizations of the classical PKK functions [4–9].

Recently, Digana et al., studied the concept for different

classes of ODF and PDE (see [10–14]). Xiao et al. [15]

introduced the concept of PKK functions for a natural and a

significant extension of PKK functions. Moreover, they

proved that the space of PKK functions is complete; so

they solve a key fundamental problem on this issue and

pave the road to further study the applications of PKK
functions. They investigated the existence of PKK to

u0ðtÞ ¼ KðtÞuðtÞ þ f ðtÞ

and

u0ðtÞ ¼ KðtÞuðtÞ þ f ðt; uðtÞÞ

in a Banach space. Chang and Luos [16] presented a

composition theorem for m-PKK function, which was

proved under appropriate conditions. They applied this

theorem to investigate whether the m-PKK solutions exist

in the neutral differential equation as follows:
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d

dt
½uðtÞ þ f ðt; uðtÞÞ� ¼ KuðtÞ þ gðt; uðtÞÞ; t 2 R:

Periodic motion is a very important and special phenomena

not only in natural science, but also in social science, such

as climate, food supplement, insecticide population and

sustainable development. Periodic solutions are desired

property in differential equations, constituting one of the

most important research directions in the theory of differ-

ential equations. The existence of periodic solutions is

often a desired property in dynamical systems, constituting

one of the most important research directions in the theory

of dynamical systems, with applications ranging from

celestial mechanics to biology and finance. Fractional dif-

ferential equations (FDEs) are the most important gener-

alizations of the field of ODE [17–21]. Recent

investigations in physics, engineering, biological sciences

and other fields have demonstrated that the dynamics of

many systems are described more accurately using FDEs,

and that FDE with delay are often more realistic to describe

natural phenomena than those without delay. Periodic

solution fractional differential equations have been studied

by many researchers. They studied periodic solutions of the

equation (see [17, 18])

DauðtÞ þ BDbuðtÞKuðtÞ ¼ f ðtÞ; 0� t� 2p;

where A and B are closed linear operators defined on a

complex Banach space X with domains D(A) and D(B),

respectively, 0� b\a� 2.

The aim of this paper is to study the existence of peri-

odic solutions for the following FDE:

Dl
�
tðtÞ þ uðt; tðtÞÞ

�
¼ KtðtÞ þ #ðt; tðtÞÞ; t 2 R ð1Þ

8l 2 ð0; 1�; where K : domðKÞ � v ! v is considered the

operator of a hyperbolic analytic semigroup TðtÞt� 0; and

u : R� v ! vdð\k\d\Þ; # R� v ! v are appropriate

continuous functions; vd refers to the appropriate interpo-

lation space and Dl is the Riemann–Liouville fractional

differential operator (R–L operator).

This paper is classified as follows. In ‘‘Setting’’, we

present some basic definitions, lemmas, and setting results

which will be used in this study. In ‘‘Findings’’, we intro-

duce some existence results of almost-periodic and mild

solutions of the fractional neutral differential equation.

Examples are illustrated in the sequel.

Setting

The researchers allocated this section to investigate some

results required in the sequel. In this paper, the notations

ðv; k � kÞ and ð!; k � k!Þ denote the two Banach spaces,

whereas BCðR; vÞ refers to the Banach space of all boun-

ded continuous functions from R to v, qualified with the

supremum norm kuk1 ¼ supt2RkuðtÞk: Let vk be a space

mediated between domðKÞ and v:BðR; vkÞ for k 2 ð0; 1Þ
refers to Banach space of all bounded continuous functions

r : R ! vk when supported with the k	 sup norm:

krkk;1 :¼ supt2RkrðtÞkk
for r 2 BCðR; vkÞ: Throughout this paper, } denotes the

Lebesgue field of R and @ the set of all positive measures

m on } satisfying mðRÞ ¼ þ1 and mð½a; b�Þ\þ1; for

all a; b 2 Rða\bÞ:

Definition 2.1 [3] A continuous function u : R ! v is

referred to as automorphic in the case that every sequence

of real numbers ð1gÞg2N has a subsequence ð10gÞg2N �
ð1gÞg2N ; such that

lim
g;n!1

kuðt þ 1g 	 1nÞ 	 uðtÞk ¼ 0:

Define

qKK0ðR;vÞ ¼ U 2BCðR;vÞ lim
T!1T

Z T

	T

kuðsÞkds¼
� �

:

Likely, qKK0ðR� v;vÞ is defined as the gathering of

combined continuous functions u :R� v! v which

belong to BCðR� v;vÞ and satisfy

lim
T!1

1

2T

Z T

	T

kuðs; xÞkds ¼ 0

uniformly in a compact subset of v.

Definition 2.2 [15] A continuous function u : R ! v
(respectively, R� v ! vÞ represents pseudo automorphic

when decomposed as u ¼ #þ U; where # 2 KKðR; vÞ
(respectively, KKðR� v; vÞ) and U 2 qKK0ðR; vÞ(re-
spectively, qKK0ðR� v; vÞÞÞ. Denote by qKKðR; vÞ (re-

spectively, qKKðR� v; vÞ) the set of all such functions.

Definition 2.3 [19] Let m 2 @. A bounded continuous

function u : R ! v is referred to as m-ergodic if u is

ergodic with respect to m (measure) i.e.

lim
r!1

1

mð½	r; r�Þ

Z

½	r;r�
kuðtÞkdmðtÞ ¼ 0:

The space of all such functions is denoted as fðR; v;mÞ
and ðfðR; v;mÞ; k � k1Þ is a Banach space (see

[19], Proposition 2.13]). The word ergodic (work) is

employed to explain the dynamical system which has the

same behavior averaged during the item time as averaged

over the phase space.

Definition 2.4 [19] Let m 2 @. A continuous function u :
R ! v is stated to be m-PKK if u comes in the form
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u ¼ #þ U; where # 2 KKðR; vÞ and U 2 fðR; v;mÞ: So,
all such functions have a space denoted by qKKðR; v;mÞ:
Most clearly, we have KKðR; vÞ � qKKðR; v;mÞ
� BCðR; vÞ:

Lemma 2.5 [20, Theorem 2.2.6] If u : R� v 7!v is PKK,
and assume that uðt; �Þ is uniformly continuous on each

bounded subset j � v uniformly for t 2 R, that is for any

f[ 0; there exists S[ 0 such that x; y 2 j and kx	 yk\S

imply that kuðt; xÞ 	 uðt; yÞk\f for all t 2 R. Let U :
R 7!v be P KK. Then the function F : R 7!v defined by

FðtÞ ¼ uðt;UðtÞÞ is PKK.

Lemma 2.6 [19, Theorem 4.1] Let m 2 @ and u 2
qKKðR; v;mÞ be such that u ¼ #þ U, where # 2
KKðR; vÞ and U 2 fðR; v;mÞ: If qKKðR; v;mÞ is trans-

lation invariant, then

f#ðtÞ : t 2 Rg � fuðtÞ t 2 Rg

(the closure of the range of u).

Lemma 2.7 [19, Theorem 2.14] Let m 2 @ and I be the

bounded interval (eventually I ¼ ;). Suppose that u 2
BCðR; vÞ: The assertions indicated as following are

equivalent.

(i) u 2 fðR; v;mÞ;
(ii) limr!þ1

1
mð½	r;r�nIÞ

R
½	r;r�nI kuðtÞkdmðtÞ ¼ 0;

(iii) For any f[0; limr!þ1
mðft2½	r;r�nI:kuðtÞk[fgÞ

mð½	r;r�nIÞ ¼ 0:

In the sequel, we need some notions and properties of

intermediate spaces and hyperbolic semi groups. Let v and

Z be Banach spaces, with norms k � kv; k � kZ ; respec-

tively, and assume that Z is continuously embedded in v,
that is, Z,!v.

Definition 2.8 The Riemann–Liouville fractional integral

is defined as follows:

IluðtÞ ¼ 1

CðlÞ

Z t

0

ðt 	 1Þl	1
uð1Þd1;

where C denotes the gamma function (see [22, 23]).

Definition 2.9 The Riemann–Liouville fractional

derivative is defined as follows:

DluðtÞ ¼ 1

Cð1	 lÞ
d

dt

Z t

0

ðt 	 1Þ	l
uð1Þd1; 0\t\1:

Definition 2.10 [8, Definition 2.5] A semi group

ðTðtÞÞt� 0 on v is stated to be hyperbolic if there is a pro-

jection q and constants @; S[ 0 such that each T(t) com-

mutes with q;Kerq is invariant with respect to

TðtÞ; TðtÞ : ImQ ! ImQ is invertible and for every x 2 v

kTðtÞqxk�M.	stkxk; fort� 0; ð2Þ

kTðtÞQxk�M.	stkxk; fort� 0; ð3Þ

where Q :¼ I 	 q and, for t\0; TðtÞ ¼ Tð	tÞ	1:

Definition 2.11 [14] A linear operator K : domðKÞ �
v ! v (not necessarily densely defined) is referred to as

sectorial if the following hold: there exist constants f 2
R; h 2 ðp ; pÞ and M[ 0 such that

pðKÞ � 1h;f :¼ fa 2 ‘ : a 6¼ f; jargða	 fÞj\hg;

kRða;KÞk� M

ja	 fj0
; a 2 1h;f:

Definition 2.12 [8, Definition 2.7] Let 0� k� 1: A

Banach space ! such that Z,!!,!v refers to the class Jk
between v and Z if there is a constant c[ 0 such that

kxk! � ckxk1	kkxkkZðx 2 ZÞ:

In this case, we write ! 2 JkððXÞ; ZÞ:

Definition 2.13 [8, Definition 2.8] Let K : domðKÞ �
v ! v be a sectorial operator. A Banach space ðvk; k �
kkÞ; k 2 ð0; 1Þ is said to be an intermediate space between v
and domðKÞ if vk 2 Jk:

For the problem (1), we list the following assumptions:

(H1) If 0� k\d\1; then we let k1 be the bound of the

embedding vk,!v; that is

ktk� k1ktkk for t 2 vk:

(H2) Let 0� k\d\1 and the function u : R� v ! vd
belongs to qKKðR; vd;mÞ; while # : R� v ! v
belongs to qKKðR; v;mÞ: Moreover, the functions

u; # are uniformly Lipschitz in rotation to the

second following argument: there exist K[ 0 such

that

kuðt; tÞ 	 uðt; tÞkd �Kkt	 mk

and

k#ðt; tÞ 	 #ðt; tÞk�Kkt	 mk

for all t; m 2 v and t 2 R.

Findings

In the present section, a composition theorem is proved for

m-PKK functions under appropriate conditions. Then, we

apply this composition theorem to obtain some results

regarding Eq. (1).
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Auxiliary outcomes

Theorem 3.1 Let m 2 @ and u ¼ #þ h	2 qKKðR�
v; v;mÞ: Suppose that

(H3) uðt; vÞ is uniformly continuous on any bounded

subset j � v uniformly in t 2 R;

(H4) #ðt; vÞ is uniformly continuous on any bounded

subset j � v uniformly in t 2 R.

If U 2 qKKðR; v;mÞ then Fð�Þ :¼ uð�;Uð�ÞÞ 2
qKKðR� v;mÞ:

Proof Let u ¼ #þ h	with # 2 KKðR� v; vÞ; h	2 fðR�
v; v;mÞ and U ¼ tþ m; with t 2 KKðR; vÞ and m 2
fðR; v;mÞ: Define a function f as follows:

f ðtÞ :¼ #ðt; tðtÞÞ þ uðt;UðtÞÞ 	 #ðt; tðtÞÞ
¼ #ðt; tðtÞÞ þ uðt;UðtÞÞ 	 uðt; tðtÞÞ þ h	ðt; tðtÞÞ:

Let us restate

GðtÞ ¼ #ðt; tðtÞÞ;/ðtÞ ¼ uðt;UðtÞÞ 	 uðt; tðtÞÞ;HðtÞ ¼ h	ðt; tðtÞÞ:

Therefore, we obtain f ðtÞ ¼ GðtÞ þ /ðtÞ þ HðtÞ: By

Lemma 2.5, we conclude that GðtÞ 2 KKðR; vÞ and obvi-

ously /ðtÞ 2 BCðR; vÞ: We proceed to show that /ðtÞ 2
fðR; v;mÞ: It suffices to prove that

Limr!1
1

mð½	r; r�Þ

Z

½	r;r�
k/ðtÞkdmðtÞ ¼ 0:

By Lemma 2.6 , tðRÞ � UðRÞ which is a bounded set.

From the hypothesis (H3) with j ¼ UðRÞ yields that for

each f[ 0; there is an existence of a constant S[ 0 such

that for all t 2 R;

kU	 tk� S ) kuðt;UðtÞÞ 	 uðt; tðtÞÞk� f:

From the following set: Kr;f ¼ ft 2 ½	r; r� : kuðtÞk[ fg;
we get

Kr;fð/Þ ¼ Kr;fðuðt;UðtÞÞ 	 uðt; uðtÞÞÞ
� Kr;SðUðtÞ 	 tðtÞÞ ¼ Kr;SðmÞ:

Therefore, the following inequality carries:

mðft 2 ½	r; r� : kuðt;UðtÞÞ 	 uðt; tðtÞÞk[ fgÞ
mð½	r; r�Þ

� mðft 2 ½	r; r� : kUðtÞ 	 tðtÞk[ SgÞ
mð½	r; r�Þ :

Since UðtÞ ¼ tðtÞ þ mðtÞ and m 2 fðR; v;mÞ; Lemma 2.7

states that for the above-mentioned S, we have

lim
r!1

mðft 2 ½	r; r� : kuðt 	 tðtÞk[ fgÞ
mð½	r; r�Þ ¼ 0;

and then we get

lim
r!1

mðft 2 ½	r; r� : kuðt;UðtÞÞ 	 uðt; tðtÞÞk[ fgÞ
mð½	r; r�Þ ¼ 0: ð4Þ

Again, in view of Lemma 2.7 and Eq. (8), we attain

/ðtÞ 2 fðR; v;mÞ: Finally, we have to prove HðtÞ ¼
h	ðt; tðtÞÞ 2 fðR; v;mÞ: Since t is continuous on R as

PKK function, the set tð½	r; r�Þ can be taken as compact.

Therefore, the function # 2 KKðR� v; vÞ; and # is

uniformly continuous on ½	r; r� � tð½	r; r�Þ: Then, (H3)

implies that h	ðt; vÞ is uniformly continuous with X 2
tð½	r; r�Þ uniformly in t 2 ð½	r; r�Þ: Thus for any f[ 0; a

constant S[ 0 exists such that for X1;X2 2 tð½	r; r�Þ with
kX1 	 X2k\S; we have

kh	ðt;X1Þ 	 h	ðt;X2Þk\
f
2
; 8t 2 ½	r; r�: ð5Þ

By the compactness of the set tð½	r; r�Þ; we conclude

that there is an existence of finite balls HK with dK 2
tð½	r; r�Þ;K ¼ 1; . . .; n and radius S indicated above, such

that tð½	r; r�Þ � [K
nHK :

Then the sets UK :¼ ft 2 ½	r; r� : tðtÞ 2 HKg;K ¼
1; . . .; n are open in ½	r; r� ¼ [n

K¼1UK : Define VK by

V1 ¼ U1;VK ¼ UK 	 [K	1
i¼1 Ui; 2�K� n:

Then it is clear that Vi \ Vj ¼ ;; if i 6¼ j; 1� i; j� n: So,

we obtain

^ :¼ ft 2 ½	r; r� : kHðtÞk� fg ¼ ft 2 ½	r; r� : kh	ðt; tðTÞÞk� fg
� [n

K¼1ft 2 VK : kh	ðt; tðtÞÞ 	 h	ðt; dKÞk þ kh	ðt; dKÞk� fg

� [n
K¼1 t 2 VK : kh	ðt; tðtÞÞ 	 h	ðt; dKÞk�

f
2

� ��

[ t 2 VK : kh	ðt; dKÞk�
f
2

� ��
:

By (9), we obtain

t 2 VK : kh	ðt; tðtÞÞ 	 h	ðt; dKÞk�
f
2

� �
¼ ;; K ¼ 1; . . .; n:

Thus , if we set Kr;f
2
ðh	KÞ :¼ Kr;f

2
ðh	ðt; dKÞÞ; then Kr;fðHÞ �

Un
K¼1Kr;f2

ðh	KÞ and

1

mð½	r; r�Þ

Z

½	r;r�
kHðtÞkdmðtÞ�

Xn
K¼1

1

mð½r;	r�Þ

Z

½r;	r�
kHðtÞkdmðtÞ:

Since h	2 fðR� v; v;mÞ; we have

lim
r!1

1

mð½r;	r�Þ

Z
½r;	r�

kh	KðtÞkdmðtÞ ¼ 0; K ¼ 1; . . .; n:

It indicates that limr!1
1

mð½r;	r�Þ
R
½r;	r� kHðtÞkdmðtÞ ¼ 0:

According to Lemma 2.7, we impose
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HðtÞ ¼ h	ðt; tðtÞÞ 2 fðR; v;mÞ:

This ends the proof. h

Throughout the remaining parts of this paper, it is

proposed that there is existence of two real numbers k; d
such that 0\k\d\1 and 2d[ kþ 1: Moreover, we

define the following fractional operators cl1 ; c
l
2 ; c

l
3 ; and cl4

by

ðcl1ðtÞðtÞÞ :¼
Z t

	1

KTlðt 	 1Þq
CðlÞ uð1; tð1ÞÞd1;

ðcl2ðtÞðtÞÞ :¼
Z 1

t

KTlðt 	 1ÞQ
CðlÞ uð1; tð1ÞÞd1;

ðcl3ðtÞðtÞÞ :¼
Z t

	1

KTlðt 	 1Þq
CðlÞ #ð1; tð1ÞÞd1;

ðcl4ðtÞðtÞÞ :¼
Z 1

t

KTlðt 	 1ÞQ
CðlÞ #ð1; tð1ÞÞd1;

where l 2 ð0; 1� and TðtÞt� 0 is the analytic semigroup. It is

clear that, if Tl ¼ ðt 	 1Þl	1; then we obtain the RL-inte-

gral operator.

Lemma 3.2 Let m 2 @; t 2 qKKðR; vk;mÞ and (H1)–

(H2) hold. Then,

cl3 ; c
l
4 : qKKðR; vk;mÞ 	! qKKðR; vk;mÞ:

Proof Let t 2 qKKðR; vk;mÞ: Putting h	ðtÞ ¼ #ðt; tðtÞÞ
and by Theorem 3.1, it indicates that h	2 qKKðR; v;mÞ for
each t 2 qKKðR; vk;mÞ: Setting h	¼ Uþ n; where U 2
KKðR; vÞ and n 2 fðR; v;mÞ: Therefore, cl3t can be read

as

ðcl3ðtÞðtÞÞ :¼
Z t

	1

Tlðt 	 1Þq
CðlÞ Uð1Þd1þ

Z t

	1

Tlðt 	 1Þq
CðlÞ nð1Þd1:

Let

/ðtÞ ¼
Z t

	1

Tlðt 	 1Þq
CðlÞ Uð1Þd1

and

wðtÞ ¼
Z t

	1

Tlðt 	 1Þq
CðlÞ nð1Þd1;

for each t 2 R: It can be realized that / 2 KKðR; vkÞ:
Consider a sequence ð10gÞg2N ; then there is a subsequence

ð1gÞg2N such that

lim
g;n!1

kUðt þ 1g 	 1nÞ 	 UðtÞk ¼ 0: ð6Þ

Moreover, we have

/ðt þ 1g 	 1nÞ 	 /ðtÞ ¼
Z tþ1g	1n

	1

Tlðt þ 1g 	 1n 	 1Þq
CðlÞ Uð1Þd1

	
Z t

	1

Tlðt 	 1Þq
CðlÞ Uð1Þd1

¼
Z 0

	1

Tlð	1Þq
CðlÞ ½Uð1þ t þ 1g 	 1nÞ

	 Uð1þ tÞ�d1:

Then, we get

k/ðt þ 1g 	 1nÞ 	 /ðtÞkk

�
Z 0

	1

Tlð	1Þq
CðlÞ ½Uð1þ t þ 1g 	 1nÞ 	 Uð1þ tÞ�

����
����
k

d1:

Hence, by (4) and the fact that kTlkk �kTkk; we conclude

k/ðt þ 1g 	 1nÞ 	 /ðtÞkk

�
Z 0

	1

MðkÞ1	k.	�1

CðlÞ kUð1þ t þ 1g 	 1nÞ 	 Uð1þ tÞkd1:

The outcome obtains from (10) and the Lebesgue

dominated convergence theorem. Lastly, we aim to show

that wðtÞ 2 fðR; vk;mÞ: A computation yields

1

mð½	r; r�Þ

Z

½	r;r�
kwðtÞkkdmðtÞ

¼ 1

mð½	r; r�Þ

Z

½	r;r�

Z t

	1

Tlðt 	 1Þq
CðlÞ nð1Þd1

����
����
k

dmðtÞ

� 1

mð½	r; r�Þ

Z

½	r;r�

Z t

	1

Tlðt 	 1Þq
CðlÞ nð1Þ

����
����d1dmðtÞ

� 1

mð½	r; r�Þ

Z

½	r;r�

Z t

	1

MðkÞðt 	 1Þ	lk.	�ðt	1Þ

CðlÞ knð1Þkd1dmðtÞ

� MðkÞ
CðlÞ

Z 1

0

1	lk.	�1 1

mð½	r; r�Þ

Z

½	r;r�
knðt 	 1ÞkdmðtÞ

 !
d1:

In fact, the space fðR; v;mÞ is invariant (preserved by

some function); it shows that t 7!nðt 	 1Þ belongs to

fðR; v;mÞ for each 1 2 R and hence

lim
r!1

1

mð½	r; r�Þ

Z

½	r;r�
knðt 	 1ÞkdmðtÞ ¼ 0:

Consequently, by utilizing the Lebesgue dominated

convergence theorem, we have

lim
r!1

MðkÞ
CðlÞ

Z 1

0

1	k.	�1 1

mð½	r; r�Þ

Z

½	r;r�
knðt 	 1ÞkdmðtÞ

 !
d1 ¼ 0;

similarly, by applying (5) to cl4t: This completes the

proof. h
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Lemma 3.3 Let m 2 @; and t 2 qKKðR; v;mÞ: If (H1)–
(H2) are satisfied, then

cl1 ; c
l
2 : qKKðR; vd;mÞ 	! qKKðR; vd;mÞ:

Proof Let t 2 qKKðR; v;mÞ and h	ðtÞ ¼ uðt; v; tðtÞÞ:
Then in view of Theorem 3.1, it implies that h	2
qKKðR; vd;mÞ whenever t 2 qKKðR; vk;mÞ: In particular,

kh	k1;d ¼ supt2Rkuðt; tðtÞkd\1:

Now, we write h	¼ UþW; where U 2 KKðR; vdÞ;W 2
fðR; vd;mÞ; that is, cl1h	¼ EUþ EW where

EUðtÞ :¼
Z t

	1

KTlðt 	 1Þq
CðlÞ Uð1Þd1;

EWðtÞ :¼
Z t

	1

KTlðt 	 1Þq
CðlÞ Wð1Þd1:

First, we need to show that EUðtÞ 2 KKðR; vkÞ: Consider a
sequence ð10gÞg2N in t 2 R; since UðtÞ 2 KKðR; vdÞ; a

subsequence ðSgÞg2N exists such that

lim
g;n!1

kUðt;þ1g 	 1nÞ 	 UðtÞkd ¼ 0: ð7Þ

In addition, since

EUðt þ 1g 	 1nÞ 	 EUðtÞ

¼
Z tþ1g	1n

	1

KTlðt þ 1g 	 1n 	 1Þq
CðlÞ Uð1Þd1

	
Z t

	1

KTlðt 	 1Þq
CðlÞ Uð1Þd1

¼
Z 0

	1

ATlð	1Þq½Uð1þ t þ 1g 	 1nÞ 	 Uð1þ tÞ�
CðlÞ d1:

Then, a computation implies

kEUðt þ 1g 	 1nÞ 	 EUðtÞkk

�
Z 0

	1

KTlð	1Þq½Uð1þ t þ 1g 	 1nÞ 	 Uð1þ tÞ�
CðlÞ

����
����
k

d1:

Hence, by (6) and the fact that kKðTlÞk� kKðTÞk; we

receive

kEUðt þ 1g 	 1nÞ 	 EUðtÞkk

�
Z 0

	1

c1d	k	1.	�1

CðlÞ kUð1þ t þ 1g þ 1nÞ 	 Uð1þ tÞkdd1:

The result comes from Eq. (11) and the Lebesgue’s dom-

inated theorem. Finally, we reveal that EWðtÞ 2
fðR; vk;mÞ: We have

1

mð½	r; r�Þ

Z

½	r;r�
kEWðtÞkkdmðtÞ

¼ 1

mð½	r; r�Þ

Z

½	r;r�

Z t

	1

ATlðt 	 1Þq
CðlÞ Wð1Þd1

����
����
k

dmðtÞ

� 1

mð½	r; r�Þ

Z

½	r;r�

Z t

	1

ATlðt 	 1Þq
CðlÞ Wð1Þ

����
����
k

d1dmðtÞ

� 1

mð½	r; r�Þ

Z

½	r;r�

Z t

	1

cðt 	 1Þd	k	1.	�ðt	1Þ

CðlÞ kWð1Þkdd1dmðtÞ

� c

CðlÞ

Z 1

0

1d	k	1.	�1 1

mð½	r; r�Þ

Z

½	r;r�
kWðt 	 1ÞkddmðtÞ

 !
d1:

Therefore, we obtain

lim
r!1

1

ð½	r; r�Þ

Z

½	r;r�
kWðt 	 1ÞkddmðtÞ ¼ 0

as

1 	! Wðt 	 1Þ 2 fðR; vd;mÞ

for every 1 2 R: The proof is completed by applying the

Lebesgue’s dominated convergence theorem and similarly

for cl2t using (7). h

m	PKKM outcomes

The rest of this section is conducted to find the existence of

m-PKK mild solutions (m-PKKM) of Eq. (1). Recently,

Ibrahim et al. studied the mild solution of a class of FDE,

by utilizing the fractional resolvent concept (see [24, 25]).

Definition 3.4 Let k 2 ð0; 1Þ: A bounded continuous

function t : R ! vk is stated to be a mild solution to (1)

indicate that the function 1 ! KTlðt	1q
CðlÞ uð1; tð1ÞÞ is inte-

grable on ð	1; tÞ; 1 ! ATlðt 	 1ÞQuð1; tð1ÞÞ is inte-

grable on ðt;1Þ and

tðtÞ ¼ 	uðt; tðtÞÞ 	
Z t

	1

KTlðt; 1Þq
CðlÞ uð1; tð1ÞÞd1

þ
Z 1

t

KTlðt; 1ÞQ
CðlÞ uð1; tð1ÞÞd1þ

Z t

	1

Tlðt; 1Þq
CðlÞ #ð1; tð1ÞÞd1

	
Z 1

t

KTlðt; 1ÞQ
CðlÞ #ð1; tð1ÞÞd1

for each t 2 R:

Theorem 3.5 Let m 2 @: Under the assumptions (H1)

and (H2), Eq. (1) admits a unique m-PKKM solution for

some constants K[ 0:

Proof Consider the fractional integral operator ^ :

qKKðR; vk;mÞ 	! qKKðR; vk;mÞ such that
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^tðtÞ :¼ 	uðt; tðtÞÞ 	
Z t

	1

KTlðt; 1Þq
CðlÞ uð1; tð1ÞÞd1

þ
Z 1

t

KTlðt; 1ÞQ
CðlÞ uð1; tð1ÞÞd1þ

Z t

	1

Tlðt; 1Þq
CðlÞ #ð1; tð1ÞÞd1

	
Z 1

t

ATlðt; 1ÞQ
CðlÞ #ð1; tð1ÞÞd1:

It has been formerly shown that for every t 2 qKK
ðR; vk;mÞ; uð�; tð�ÞÞ 2 qKKðR; vk;mÞ (see Theorem 3.1).

In view of Lemmas 3.2 and 3.3, it documents that ^ :
qKKðR; vk;mÞ 	! qKKðR; vk;mÞ:Our aim is to show that

^ has a unique fixed point. For this purpose, we employ

Lemmas 2.14 and 2.15. Let m;- 2 qKKðR; vk;mÞ; then for

cl1 ; we conclude

kcl1ðmÞðtÞ 	 cl1ð-ÞðtÞkk�
Z t

	1

KTlðt 	 1Þq
CðlÞ ½uð1; mð1ÞÞ 	 uð1;-ð1ÞÞ�

����
����
k

d1

�
Z t

	1

KTðt 	 1Þq
CðlÞ ½uð1; mð1ÞÞ 	 uð1;-ð1ÞÞ�

����
����
k

d1

�
Z t

	1

cðt 	 1Þd	k	1.	�ðt	1Þ

CðlÞ kuð1; mð1ÞÞ

	 uð1;-ð1ÞÞkdd1�
j1K
CðlÞ km	 -kk;1:

Now, for cl2 ; we obtain

kcl2ðmÞðtÞ 	 cl2ð-ÞðtÞkk�
Z 1

t

KTlðt 	 1ÞQ
CðlÞ ½uð1; mð1ÞÞ 	 uð1;-ð1ÞÞ�

����
����
k

d1

�
Z 1

t

KTðt 	 1ÞQ
CðlÞ ½uð1; mð1ÞÞ 	 uð1;-ð1ÞÞ�

����
����
k

d1

�
Z 1

t

c.sðt	1Þ

CðlÞ kuð1; mð1ÞÞ 	 uð1;-ð1ÞÞkdd1

� j2K
CðlÞ km	 -kk;1:

Now, for cl3 and cl4 ; the following approximations can be

given:

kcl3ðmÞðtÞ 	 cl3ð-ÞðtÞkk�
Z t

	1

Tlðt 	 1Þq
CðlÞ ½#ð1; mð1ÞÞ 	 #ð1;-ð1ÞÞ�

����
����
k

d1

�
Z t

	1

Tðt 	 1Þq
CðlÞ ½#ð1; mð1ÞÞ 	 #ð1;-ð1ÞÞ�

����
����
k

d1

�
Z t

	1

MðkÞðt 	 1Þ	k.	�ðt	1Þ

CðlÞ k#ð1; mð1ÞÞ

	 #ð1;-ð1ÞÞkd1� j3K
CðlÞ km	 -kk;1:

Also, we attain

kcl4ðmÞðtÞ 	 cl4ð-ÞðtÞkk�
Z 1

t

Tlðt 	 1ÞQ
CðlÞ ½#ð1; mð1ÞÞ 	 #ð1;-ð1ÞÞ�

����
����
k

d1

�
Z 1

t

Tðt 	 1ÞQ
CðlÞ ½#ð1; mð1ÞÞ 	 #ð1;-ð1ÞÞ�

����
����
k

d1

�
Z 1

t

CðkÞ.sðt	1Þ

CðlÞ k#ð1; mð1ÞÞ 	 #ð1;-ð1ÞÞkd1

� j4K
CðlÞ km	 -kk;1:

Joining the above inequalities yields k ^ m	 ^-kk;1 �
KN; where

N :¼ j1 þ j2 þ j3 þ j4
CðlÞ :

Therefore, if K\N	1; then in view of the Banach fixed

point theorem, Eq. (1) has a unique solution, which

clearly is the only m-PKKM solution. This completes the

proof. h

Example 3.6 Consider the equation

Dl
�
ð1þ tÞtðtÞ

�
¼
�
ð1þ tÞtðtÞ

�
; t 2 ½0; 1�; l 2 ð0; 1�:

ð8Þ

Let l ¼ 0:15: It is clear that uðt; tðtÞÞ ¼ #ðt; tðtÞÞ ¼ ttðtÞ:
Thus, they are Lipschitz with K ¼ 1; t 2 ½0; 1�: Moreover,

j1 ¼ j2 ¼ j3 ¼ j4 ¼ 2:7=2; this implies that
j1þj2þj3þj4

Cð0:15Þ ¼ 4�1:11
6:22 ¼ 0:874 ! N	1 ¼ 1:14[K ¼ 1;

k1 ¼ 1 such that k ¼ 1=2 and ktk� k1ktkk: In addition, the
functions u and # are bounded and uniformly continuous

for all t 2 ½0; 1�: Hence, all the conditions of Theorem 3.5

are achieved; therefore, Eq. (12) has a unique periodic

solution. Note that if l ¼ 0:5; we obtain j1þj2þj3þj4
Cð0:5Þ ¼

4�1:11
1:77 ¼ 3:0 ! N	1 ¼ 0:3\K ¼ 1; then Theorem 3.5 is

field. From the above computation, Eq. (12) has a unique

periodic solution when 0\l\0:4:

Example 3.7 Consider the equation

Dl
�
ð1=4þ sin tÞtðtÞ

�
¼
�
ð1=2þ cos tÞtðtÞ

�
;

t 2 ½0; 2p�; l 2 ð0; 1�:
ð9Þ

Obviously, uðt; tðtÞÞ ¼ sin t tðtÞ; #ðt; tðtÞÞ ¼ cos t tðtÞ:
Thus, they are Lipschitz with K ¼ maxt2½0;2p� fsinðtÞ;
cosðtÞg ¼ 1; j1 ¼ j2 ¼ j3 ¼ j4 ¼ 2:7=4; this implies that
j1þj2þj3þj4

Cð0:15Þ ¼ 0:4 ! N	1 ¼ 2:5[K ¼ 1: Moreover, k1 ¼
1=2 such that k ¼ 1=4 and ktk� k1ktkk: In addition, the

functions u and # are bounded and uniformly continuous for

all t 2 ½0; 2p�: Hence, all the conditions of Theorem 3.5 are

achieved; therefore, Eq. (13) admits a unique periodic solu-

tion. If l ¼ 0:5; then we have N	1 ¼ 0:66\K ¼ 1 and

hence Theorem 3.5 is true when 0\l\0:4:

Conclusions

In the current study, we suggested symmetry of a class of

fractional differential equations (the fractional calculus

depends on the RL fractional operators) by utilizing its

periodic solutions. We studied a special class of FDEs.

This class is a generalization of the neutral equation. We
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proved a composition theorem for m-PKK functions under

appropriate conditions. Our technique is based on inter-

polation theory and Banach’s fixed point theorem. There-

fore, the solution, in this case, is unique. Moreover, we

investigated the mild solution, for such a class by illus-

trating a new fractional resolvent concept. This functional

is constructed to keep the periodicity of the solution and

consequently its symmetry.
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