
Future Generation Computer Systems 135 (2022) 172–180

a

b

c

c
r
w
t
a
(
f
s
o
o
d
c
u
r
t

b

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Near-optimal responsive traffic engineering in software defined
networks based on deep learning
Mohammed I. Salman a,b,c,∗, Bin Wang a

Wright State University, Dayton, OH, USA
Miami University, Oxford, OH, USA
Anbar University, Ramadi, Anbar, Iraq

a r t i c l e i n f o

Article history:
Received 10 July 2021
Received in revised form 28 January 2022
Accepted 28 April 2022
Available online 6 May 2022

Keywords:
Traffic engineering
Network traffic control
Software defined networking
Oblivious routing
Optimization
Deep learning

a b s t r a c t

The routing problem for traffic engineering can be solved using different techniques. For example, the
problem can be formulated as a linear program (LP) or a mixed-integer linear program (MILP) that
requires solving a complex optimization problem. Thus, this approach typically cannot be used for
solving a large problem in real time. Alternatively, heuristic algorithms may be devised that, though
fast, do not guarantee an optimal decision. This work proposes a novel design of a system that employs
a deep learning model trained on optimal decisions to solve the routing problem. The model learns
to adapt to traffic dynamics by updating the traffic split ratios to distribute traffic to a few paths
between a source and a destination instead of frequently computing a single path for a source and
destination pair. This solves the problem of network disturbance and traffic disruption. Specifically,
we train two deep learning models: DNN (MLP), which is fully connected layers of neurons, and DNN
(LSTM) that consists of a few layers of LSTM neural network and a dense layer. The two models are
evaluated in a TE simulator. The system offers two important features of a good traffic engineering
system: producing close to optimal traffic engineering results and responding to traffic dynamics in
real time. We perform simulations on two topologies, the ATT North America topology, and a 4x4
grid topology. The results show that our proposed system can learn from optimal decisions to attain
a responsive traffic engineering system.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Recently, there have been many proposals that exploit Ma-
hine Learning (ML)/Deep Learning (DL) techniques to solve the
outing problem in Traffic Engineering (TE) to minimize the net-
ork congestion or delay [1–12]. Regardless of the different op-
imization objectives, most past research treats the TE problem
s finding a dynamic single path between any source–destination
SD) pair. It has been shown that multi-path routing, i.e., traf-
ic splitting across different paths, is more advantageous than
ingle-path routing, as we will show in Section 2. A dynamic
ptimal single path in a production network can cause additional
verhead to network elements, i.e., switching or routing devices,
ue to the need for installing new paths whenever there is a
hange in the network traffic patterns. It has been shown that,
nder real network settings, traffic splittings between paths are
elatively fast operation compared to installing new routes in
he system that may take several minutes to update on many

∗ Corresponding author at: Miami University, Oxford, OH, USA.
E-mail addresses: salmanmi@miamioh.edu (M.I. Salman),

in.wang@wright.edu (B. Wang).
ttps://doi.org/10.1016/j.future.2022.04.036
167-739X/© 2022 Elsevier B.V. All rights reserved.
geo-distributed networking devices [13]. Besides, installing and
deleting routes may introduce network disruption and stability
problems. Thus, it is more advisable to choose static multi-path
routing over dynamic single-path routing.

Considerably, the most prevalent solutions to the TE problem
is to model it using LP or MILP. The use of such mathematical
modeling can give an optimal solution, but requires significant
amount of computation, and therefore is not responsive to real
time requirements [2]. As a result, researchers have designed
heuristic solutions to solve for the same objective function, a
task that is non-trivial in many cases and does not guarantee an
optimal or near-optimal solution [14,15].

ML/DL offers promising solutions to the TE problem. Research-
ers often use a Supervised Learning (SL) model that was trained
on sub-optimal or local optimal data, e.g., training data obtained
from standard routing protocols [1] such as the Open-Shortest
Path First (OSPF) protocol. However, an ML model trained on such
data cannot produce optimal or quasi-optimal routing decisions.
This is the reason why researchers tend to use Reinforcement
Learning (RL). However, reinforcement learning has two major
problems that have not been addressed yet, proof of optimality
and speed of convergence [16].

https://doi.org/10.1016/j.future.2022.04.036
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.04.036&domain=pdf
mailto:salmanmi@miamioh.edu
mailto:bin.wang@wright.edu
https://doi.org/10.1016/j.future.2022.04.036

M.I. Salman and B. Wang Future Generation Computer Systems 135 (2022) 172–180

d

s
t
(
u
a
f
t
f

w
p
e
d
T
R
u
t
f
m
w
l

w
p

w
e
s
f
S
w

2

M

u
p
g
s
t
o
l
(
p
F
u
f
t
a

s
c
o
t

In this work, we strive for a TE system with the following
esirable characteristics:

• Multipath TE The TE system makes use of more than one
path between each SD pair to take full advantage of network
resources.

• Optimality The TE solution is optimal or quasi-optimal.
• Responsiveness The TE systemmust quickly adapt to chang-

ing traffic patterns while producing the optimal or quasi-
optimal solutions.

• Stability The TE system must ensure stability by using a
few precomputed paths or dynamic paths but with mini-
mal changes to these paths in response to changing traffic
patterns.

Deep Neural Networks (DNNs) can generalize from previously
een examples and process a new input instantaneously after the
raining process is finished. Unlike traditional Machine Learning
ML) techniques, DNN can perform feature engineering with the
nderlying learning system instead of selecting features manu-
lly. In addition, it is challenging to perform feature engineering
or the routing problem as all the input features we use are of
he same type, a quantity of demand that needs to be forwarded
rom a source to a destination.

To this end, we propose DNN models to learn traffic for-
arding based on traffic splitting instead of learning optimal
aths. We train the DNN to learn traffic routing based on traffic
ngineering decisions from a TE system known as RACKE+AD and
escribed in [17], that has been shown superiority over other
E systems in terms of throughput, delay, and congestion. The
ACKE+AD TE system forwards traffic based on routes computed
sing the Räcke’s oblivious routing algorithm [18–20] and split
raffic across these routes based on the average delay objective
unction, described in Section 2. Routes selected using the Räcke’s
odel mitigate congestion that occurs when the TE system al-
ays selects the shortest path without being aware of network

ink capacity.
The routing problem is not limited to communication net-

orks but can arise in many types of networks, such as trans-
ortation networks [21], and complex networks [22,23].
The contributions of this work are as follows:

• We propose two DL models, DNN (MLP) and DNN (LSTM),
for the routing problem. The models learn traffic split ratios
obtained from the optimal solutions as a result of solving the
routing problems using LP. Furthermore, we test the trained
models in a TE simulator and report the gap in throughput
between the optimal LP solution and the solution we get
from the trained models.

• We compare the performance of the two proposed DL mod-
els. The result confirms that the LSTM neural network per-
forms better than MLP.

• We show the effectiveness of multi-path routing over single-
path routing and their impact on network performance.

The rest of this paper is organized as follows. In Section 2,
e describe the motivation behind our proposal with some early
xperimental results that show the performance of different TE
ystems. In Section 3, we discuss prior work with a focus on the
ield of traffic engineering. We describe our system in Section 4. In
ection 5, we report and discuss our findings. Finally, in Section 6,
e present the conclusions.

. Motivation

To the best of our knowledge, most of the previously proposed

L/DL solutions for the routing problem involve a single path

173
Fig. 1. Piece-wise linear approximation of the delay function.

Fig. 2. Abilene topology.
Source: Regenerated
from [25].

planning [1–8] and ignore the effect of multipath routing on
network performance, i.e., the lack of modeling a TE system that
splits traffic across many available paths between the source
and destination nodes. In this section, we perform a series of
simulations to show the benefit of splitting traffic across a few
static paths between each SD pair over forwarding traffic on a
single but dynamic optimal path between each SD pair.

Simulation Setup. We compare six TE systems, four of which
se three static paths between each SD pair. These four multi-
ath systems are the combinations of two path selection strate-
ies and two traffic splitting objective functions. The two routing
trategies are the k-shortest paths and paths extracted from
he Räcke’s oblivious routing algorithm. The two traffic splitting
bjective functions are Load Balance (LB), also known in the
iterature as the minimization of the maximum link utilization
MLU), and Average Delay (AD) objective function which is a
iecewise linear approximation of the delay function depicted in
ig. 1. The other two TE systems are the optimal systems that
se a single dynamic path with the same two traffic objective
unctions mentioned earlier. We conduct the experiment using
he Abilene topology1 as depicted in Fig. 2. The traffic matrices
re generated using the gravity model [13,24].
Fig. 3 shows the cumulative distribution function of the six TE

ystems for 3 performance metrics: delay, throughput, and link
ongestion. The results confirm that TE systems with dynamic
ptimal single paths do not perform better than multi-path sys-
ems. For example, in Fig. 3(c), using 3 static paths over one single

1 Dataset available at: http://www.topology-zoo.org/dataset.html.

http://www.topology-zoo.org/dataset.html

M.I. Salman and B. Wang Future Generation Computer Systems 135 (2022) 172–180

w
m
d
r
u
b
n
f
6
p

s
r
D
t
h
s
m
a
p
s
s
s
w

b
D
i
f
A

Fig. 3. Three measured metrics for the Abilene topology for different routing
strategy settings.

path enhanced the utilization of about 40% when the LB objective
function was used. Thus, we propose a deep learning model that
learns traffic splitting instead of learning the best single path to
route traffic. Furthermore, we propose modeling a TE system with
paths chosen based on the Räcke’s oblivious routing model and
traffic splitting based on the AD objective function. This traffic
engineering approach achieves comparable performance in delay,
throughput, and link utilization with respect to the optimal traffic
engineering [17]. The AD objective function has shown better
performance than MLU [17] due to the degraded performance
174
of MLU under heavy traffic loads, which may limit the total
throughput of the network [26]. The aforementioned TE system
is referred to in the literature as RACKE+AD,SALMAN202155.

3. Related work

The usual approach to solve the routing problem is to use LP
for multi-path routing strategy and MILP for single-path rout-
ing strategy. In general, both strategies are intractable since the
runtime scales quadratically with the topology size [27,28]. Since
network traffic is dynamic, a new allocation of flows has to be
recomputed periodically and if routing configurations are not
updated in time, the network will be underutilized.

Some works have exploited ML/DL solutions to solve the rout-
ing problem. The work of [5] proposed a sequence-to-sequence
deep learning model to predict the forwarding path between each
SD pair from historical forwarding experiences. They further used
an attention mechanism [29] and beam search [30] to ensure
the connectivity and a proper ordering of nodes. However, as
mentioned earlier, relying on historical forwarding experiences
does not guarantee an optimal solution. In [2], in an approach
similar to our approach, they proposed a DL model trained on op-
timal decisions attained by solving MILP optimization problems
to predict the optimal single path between every two nodes. Our
approach is different from their approach in that we use multi-
path routing instead of a single path, and the TE system we use
to learn the model is also different from their system.

In [1,6,7] the authors proposed a decentralized deep learning
system where each node has several DL models equal to the
number of destinations in the network. This decentralized DL
model works in a hop-by-hop fashion by predicting the next hop
the packets should be forwarded to. All the DL models along the
path collaborate to form the path of the packet. The drawback
in this approach is that each node has to train as many models
as the number of destinations. They tested their approach on
a small topology, a 4 × 4 grid; however, only 12 actual nodes
ere used as edge routers. The other 4 intermediate nodes in the
iddle serve as forwarding nodes. In addition, they collected their
ata based on the OSPF routing protocol. OSPF routing protocol
equires calculating the shortest path periodically, increasing CPU
tilization, and disturbing network services. Furthermore, it has
een shown in the literature that utilizing the shortest path may
ot help minimize the congestion due to many flows competing
or the same highly utilized link [13,17]. Moreover, the work in [1,
,7] requires propagating the traffic patterns to all the models
eriodically, resulting in increased overhead.
In [31] the authors proposed a DL-based distributed routing

ystem that can guarantee connectivity with the help of the link
eversal theory. They have shown that even a small error in the
L model can result in routing loops/blackholes. However, similar
o [1,6,7], their approach is distributed hop-by-hop routing that
as difficulty in achieving optimality. Furthermore, they use the
hortest path routing, which may degrade performance because
any flows may compete for the same bottle-necked link. They
lso use the load balancing objective function, which has some
erformance issue under stressed traffic conditions [17,26]. In a
imilar approach in [3], they trained a separate model for each
ource and destination pair in the network. Furthermore, they use
upervised learning with data generated from heuristic solutions,
hich does not guarantee optimality.
Recently, there have been breakthroughs in the field of AI

y combining Deep Learning with Reinforcement Learning (RL),
eep Reinforcement Learning (DRL). One prominent example
n [32] where the authors created an agent that performed dif-
erent and challenging tasks of learning to play 49 games on the
tari 2600 platform. Another example in [33] where the agent

M.I. Salman and B. Wang Future Generation Computer Systems 135 (2022) 172–180

l
I
l
r
a
a
t
a
n
f
r
t
e
d
s
o
t
s
(
t
p
R

w
p
w
a

4

o
f
t

a
b

4

t
P
a
i

Fig. 4. A pipeline showing the steps of the proposed traffic engineering system that leverages Deep Learning.
earns to play the game of Go that has a gigantic search space.
n DRL, an agent is responsible for observing which set of actions
ead to better performance. The agent sends actions as input and
eceives observations and rewards as output. The reward serves
s feedback to the learning algorithm. From the TE perspective,
n input might be a set of selected routes as actions to forward
raffic, and an output might be congestion status as observations
nd the maximum utilized link as a metric (or a reward). Some
otable examples of RL/DRL for the routing problem can be
ound in [4,9–11]. There are two main drawbacks with deep
einforcement learning or reinforcement learning when it comes
o traffic engineering: (1) it learns to route traffic based on its own
xperience, without using labeled data. Learning from historical
ecisions, however, does not ensure the optimal or near-optimal
olutions. The algorithm may provide solutions that are locally
ptimal. According to a study in [16], proof of convergence is not
horoughly and convincingly addressed yet. To ensure the optimal
olution, the model may have to rely on optimally labeled data.
2) Another issue with RL is the speed of convergence. According
o the same study in [16], further investigation is required to
rovide the bounded delay of the routing decision made by the
L-based routing algorithm.
The paramount difference between previous work and our

ork is that the routing problem is usually treated as selecting
aths to send packets from sources to destinations in previous
ork. In contrast, our work treats the problem as splitting traffic
mong a few paths that are preselected for each SD pair.

. System description

This section describes our proposed model that learns near-
ptimal traffic split ratios that will be used to route traffic flows
or better delay, throughput, and resource utilization. Fig. 4 shows
he three main steps of the proposed system.

Please note that the first two steps, training data preparation
nd model training, happen offline, then the resulting model can
e applied online through the third step, the running phase.

.1. Training data preparation

Training data are generated, in an offline mode, by solving
ens of thousands of problem instances in parallel using a Linear
rogram (LP). One LP instance takes the topology information
nd TM as input. It produces the corresponding routing strategy,
.e., split ratios over a fixed set of routes as output. We use
175
the Gurobi optimization software [34] to solve these problem
formulations in parallel. To output a valid routing prediction, data
should not be scaled or normalized on a per column basis. Instead,
the whole dataset should be normalized or scaled altogether
as there are dependencies between individual columns in the
dataset. Alternatively, data can be generated on a scaled topology,
i.e., link capacities are scaled in the range [0, 1]. This is necessary
to match the output of activation functions (for example, ReLU
and Sigmoid).

4.2. Model training

We train two deep learning models, DNN (MLP) and DNN
(LSTM), that, once trained, can find the routing decision instan-
taneously. They learn mapping traffic matrices to their corre-
sponding near-optimal traffic split ratios, with routes selected
statically using the Räcke’s oblivious routing model [19,20]. To
ensure unbiased evaluation, each traffic matrix (TM) is gener-
ated independently from a distribution of a sparsified gravity
model. The split ratios are calculated based on the piecewise
linear approximation (PLA) [17,35] of the average delay objective
function [36]. One of the motivations for considering demands
only as input features is that they directly relate to network
status. When a new flow arrives, some links will be affected.
Likewise, when an existing flow terminates, some links’ loads will
be reduced. The traffic matrices can be easily collected due to
SDN technology. The neural network models are trained using
a dataset generated as described in Section 4.1 by solving many
optimization problems using LP. LP is an optimal method to solve
the routing problem but may not be efficient, especially for a large
network. Thus, in this work, we try to utilize the output we get
from LP to train a neural network model to do the job instead.
In our case, the routing strategy is to obtain only split ratios of
traffic per each SD pair over a limited number of static routes.
These routes are calculated based on the Racke’s oblivious routing
model that has shown superiority [13,17] over the shortest path-
based techniques [37]. Similar to the first step in Section 4.1, this
step is also done in an offline mode.

4.3. Running phase

When the training is completed, the SDN controller can use the
model to provide switches with the new split ratios periodically.
The frequency at which the routing decision is updated is up to
the network operator. The real-time traffic matrix must be col-

lected by the SDN controller and fed to the model to decide on the

M.I. Salman and B. Wang Future Generation Computer Systems 135 (2022) 172–180

n
a
t
r
T
s
r
r

n
S
t
u
o
r
o
r
t
p

5

d
(
o
m

a
v
T
t
l
o
o
b
1
p
a
g
l
c
o
d
e
t
w
t
a
2
l
v
d

5

l
i
t
()
a
a
r
t
f
d
s
f
a

5

t
u
c
m
s
u
t

Fig. 5. A 4 x 4 grid topology used in evaluation.

Fig. 6. The ATT North America topology.
Source: Regenerated from [25]

ew ratios. The evaluation results have shown that this model is
ccurate enough to achieve the near-optimal performance. Using
his approach, the SDN controller does not need to install new
outes on switching devices; instead, the same routes are used.
raffic is adapted to changing traffic patterns by changing the
plit ratios only. In a production network, updating split ratios is a
elatively cheap operation compared to the operation of updating
outes on network elements [13].

The quantity of the split ratios might be quite large for large
etworks. A network of N nodes with 4 selected routes per each
D pair (assuming 4 routes per SD pair are available) will lead
o a total of N ∗ (N − 1) ∗ 4 split ratios. It has been shown that
sing only a few routes per SD pair can give a performance that is
nly a few percent away from the optimal [13,17,38]. Because the
unning phase relies on the trained model, this phase is applied
nline. Thus, the SDN controller can query the model and get the
outing configuration in real-time. This process of querying the
rained model is much faster compared to solving an optimization
roblem.

. Performance evaluation

This section evaluates the performance of the two proposed
eep learning models using two topologies, a 4 x 4 grid topology
Fig. 5) and ATT North America topology (Fig. 6). The information
f these two topologies is given in Table 1. We trained two

odels, DNN (LSTM) and DNN (MLP), for each topology. t

176
Table 1
Network topologies used in the evaluation.
Topology Nodes Directed links

4 x 4 grid 16 48
ATT North America 25 114

5.1. Evaluation setup

We conducted model training on a remote computer with an
Intel Xeon 2.20 GHz CPU, 16 GB RAM, and Tesla V100-SXM2-
16 GB GPU. Due to the large size of the output (routing decision)
that needs to be predicted by the neural network, we restricted
our evaluation on two backbone topologies, a 4 x 4 grid topology
nd the ATT North America topology. The length of the input
ector represents the number of demands between all SD pairs.
hus the input vector length is 240 and 600 for the 4 x 4 grid
opology and the ATT North America topology, respectively. The
ength of the output vector that needs to be predicted depends
n the input vector, i.e., the number of demands and the number
f paths used between each SD pair. Thus, with only 3 paths used
etween each SD pair, the length of the output vector is 720 and
800 for the two topologies, respectively. However, although 3
aths are allocated for each SD pair, some paths are not used at
ll as this depends on the objective function being used. We use
rid search to decide on the number of neurons and number of
ayers in the DNN and other hyperparameters. We tried different
onfigurations regarding the learning rate, drop rate, and the
ptimization algorithm. The rest of the used hyperparameters are
epicted in Table 2. We checked the performance of the model for
ach configuration by testing it on a validation set, and selected
he model with the least Mean Absolute Error (MAE). The MAE
as also used to compare the performance of the two men-
ioned DNN architectures. For DNN (MLP), the best performance is
chieved with two layers. The first layer has a number of neurons
5% larger than the length of the input vector, and the second
ayer has a number of neurons equal to the length of the output
ector. For the DNN (LSTM), 2 layers of LSTM cells with one last
ense layer were used.

.2. Evaluation

In this section, the performance of our two proposed deep
earning models is evaluated. We evaluated the performance
n two stages. First, we show how the models are learning
raffic splitting with decreasing model training error over time
Figs. 7(a) and 8(a)). Second, we performmodel inference (Figs. 7(b
nd 8(b)) by integrating the best model obtained in stage 1 into
TE simulator from [17]. The response time for each approach is
eported in Table 4. Using the TE simulator, we show how close
he throughput from the DL model to the throughput obtained
rom solving the LP in two cases, RACKE+AD and optimal. We
efine the optimal solution as using all the paths between all the
ource–destination pairs in the network with the AD objective
unction described in Section 2. We refer to this optimal solution
s OPTIMAL (AD).

.2.1. Model training
As can be seen in Figs. 7(a) and 8(a), both models are able

o learn the splitting ratios for both topologies. The model that
ses LSTM results in a slightly better prediction performance. This
ould be attributed to the fact that LSTM has memory and a much
ore complex architecture than MLP. However, the results show
light overfitting to the training data, which can be mitigated
sing the deep learning regularization techniques. Both models
ook less than one hour to finish training, making them feasible

o retrain in case of topology change.

M.I. Salman and B. Wang Future Generation Computer Systems 135 (2022) 172–180
Table 2
Hyperparameters used for training DNN (LSTM) and DNN (MLP) for two topologies. The best achieved model is with parameters
highlighted in a bold font.

4 x 4 grid ATT North America

DNN (MLP) DNN (LSTM) DNN (MLP) DNN (LSTM)

Learning rate α 0.01, 0.001 0.01, 0.001 0.01, 0.001 0.01, 0.001
Dropout rate 0, 0.1, 0.2 0, 0.1, 0.2 0, 0.1, 0.2 0, 0.1, 0.2
Optimizer Adam, RMSProp Adam, RMSProp Adam, RMSProp Adam, RMSProp
Layers information:
1 hidden layer [255] [65] [450] [80]

[240] [85] [600] [100]
[300] [95] [750] [120]
[360] [115] [900] [140]

2 hidden layers [240, 720] [65, 95] [600, 1800] [80, 120]
[300, 720] [85, 85] [750, 1800] [90, 110]
[360, 720] [95, 65] [900, 1800] [100, 100]

[110, 90]
Fig. 7. (a) Training errors for models; (b) network throughput achieved using
the two models for 4 × 4 grid topology.
177
Fig. 8. (a) Training errors for models; (b) network throughput achieved using
the two models for ATT North America topology.

M.I. Salman and B. Wang Future Generation Computer Systems 135 (2022) 172–180

s
D
p
t
i
t
t
b
a
s
t
g
m
m
T
r
t
s
t
t
s
D
t
(
o
H
a
o
r
o
t
t
o
i
d
t
t
o
r

5

l
a
f
p

i
9
N
−

t

Table 3
Overall average of network throughput.
Topology Algorithm Mean

DNN (MLP) 89.836
4 x 4 grid DNN (LSTM) 89.992

RACKE+AD 90.990
OPTIMAL (AD) 91.177

DNN (MLP) 91.506
ATT North America DNN (LSTM) 91.771

RACKE+AD 97.136
OPTIMAL (AD) 98.807

5.2.2. Model inference
We would like to see how the learned models from the first

tage perform in the simulator. We integrated the two proposed
L models into the TE simulator to evaluate how the prediction
erforms against the original near-optimal solution obtained by
he RACKE+AD TE system and the optimal solution. As shown
n Figs. 7(b) and 8(b), network performance is evaluated for the
wo DL models, RACKE+AD TE, and the optimal solution, using
he throughput metric. Because of the consequent overlapping
etween lines in Fig. 7(b), the results in Figs. 7(b) and 8(b) are
ggregated in Table 3. The throughput on average, as can be
een in Table 3, is about 1% and 6% away from the RACKE+AD
hroughput for the 4 x 4 grid and the ATT North America topolo-
ies, respectively. The gap in the throughput between the learned
odels and the RACKE+AD system on the 4 x 4 grid topology is
uch smaller than the gap on the ATT North America topology.
his is due to the much smaller size of the predicted splitting
atios vector of the 4 x 4 grid compared to the output size in
he ATT North America topology which is 720 to 1800. In the
imulator, although it is not the case in practice, we assumed that
he RACKE+AD TE system could find the optimal solution instan-
aneously without accounting for the time required to find the
olution each time the TM is updated. Thus, we expect the learned
L models to perform much better in a real production network
han the solution obtained by solving LP, RACKE+AD and OPTIMAL
AD). We compare our results mainly with RACKE+AD because
ur two DL models are trained on data obtained from RACKE+AD.
owever, the result for the optimal model is also provided as
reference. RACKE+AD was 0.187% and 1.671% away from the
ptimal solution in 4 x 4 grid and ATT North America topologies,
espectively. It should be noted that although we provided the
ptimal solution in terms of performance (Figs. 7(b) and 8(b)) and
ime taken to find the solution (Table 4), in practice, it is difficult
o apply the optimal solution due to three reasons. First, the
ptimal solution uses all the available routes in the system which
ntroduces routes oscillation problem [13,17]. Second, switching
evices typically have limited TCAM memory and it is difficult
o store all available paths in that limited memory. Third, due
o the large number of variables and constraints in the LP of the
ptimal solution, the optimal solution is difficult to be realized in
eal-time as can be seen in Table 4.

.2.3. Responsiveness
Table 4 indicates that the two DL models require a remarkably

ess time in processing the input than the LP solutions, RACKE+AD
nd OPTIMAL (AD). The numbers in Table 4 (highlighted in a bold
ont) represent the total time in seconds an approach took to
rocess the inputs of 100 traffic matrices.
For 4 x 4 the grid topology, the two DL models process the

nput 80.92%–83.48% faster than RACKE+AD while it is 93.38%–
4.27% faster than OPTIMAL (AD). On the other hand, for the ATT
orth America topology, the two DL models process the input
77.99%–81.39% faster than RACKE+AD and 98.91%–99.07% faster

han OPTIMAL (AD). As there is a trade-off between performance
178
and responsiveness, we expect our learned approach to give
better than or comparable performance of that of LP as network
demands are dynamic in nature and frequent update is required.

6. Conclusions

We have presented the design and evaluation of a new DL-
based traffic engineering system for a software-defined network.
The new system achieves two important characteristics of a good
TE system, closeness to optimality and fast responsiveness. The
fast responsiveness is naturally achieved due to the instantaneous
inference of ML models. The closeness to optimality is achieved
by training DL models on optimal solutions calculated beforehand
using linear programming mathematical modeling. The proposed
system also achieves an important feature which is stability of
network operation. The stability is achieved by changing traffic
split ratios as needed rather than installing/deleting new/old
routes in the network in response to the change in traffic pat-
terns. The main difference between our work and previous work
is how we characterize the input and the output of the deep
learning model. We have shown that relying on traffic demand
pattern only, as features, can give a good performance due to
the direct relationship between demands and routing of demands
over multiple paths. The output of the DL models is characterized
by the traffic split ratios, as opposed to paths between SD pairs
in previous work. However, the proposed system has shown an
optimality gap with the ATT North America topology that is larger
than the optimality gap with the 4 x 4 grid topology due to the
much larger output for the ATT North American topology. The
optimality gap is relatively high only for large networks due to
the increased size in the output vector that needs to be predicted.
However, during the simulations, we assumed that the linear
program could make an instantaneous decision. While it actually
takes several seconds to find a solution for a single TM in a
production network. For future work, we would like to mitigate
the gap in optimality in two ways: (1) by investigating different
DNN architectures and (2) by training many DL models where
each model is in charge of predicting a small part of the large
output.

CRediT authorship contribution statement

Mohammed I. Salman: Conceptualization, Methodology, Soft-
ware, Data curation, Writing – original draft, Visualization. Bin
Wang: Validation, Formal analysis, Writing – review & editing,
Project administration, Supervision, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We would like to thank the anonymous reviewers for their
helpful comments and suggestions. We would like to thank the
staff of the Ohio Supercomputer Center for their support by
providing the computing facility during this study and installing
the Gurobi software and license on their system based on our
request.

M.I. Salman and B. Wang Future Generation Computer Systems 135 (2022) 172–180
Table 4
Total response time for 100 traffic matrices (in seconds). ∆1 is the percentage difference between the current model and RACKE+AD.
∆2 is the percentage difference between the current model and the optimal solution.
Algorithm 4 × 4 grid (∆1) (∆2) ATT N. A. (∆1) (∆2)

DNN (MLP) 20.85 (−83.48%) (−94.27%) 25.48 (−81.39%) (−99.07%)
DNN (LSTM) 24.09 (−80.92%) (−93.38%) 30.134 (−77.99%) (−98.91%)
RACKE+AD 126.26 (0.0%) (−65.32%) 136.94 (0.0%) (−95.04%)
OPTIMAL (AD) 364.10 (+188.37%) (0.0%) 2765.52 (+1919.51%) (0.0%)
References

[1] Z.M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, K. Mizutani,
State-of-the-art deep learning: Evolving machine intelligence toward to-
morrow’s intelligent network traffic control systems, IEEE Commun. Surv.
Tutor. 19 (4) (2017) 2432–2455.

[2] Joao Reis, Miguel Rocha, Truong Khoa Phan, David Griffin, Franck Le, Miguel
Rio, Deep neural networks for network routing, in: 2019 International Joint
Conference on Neural Networks, IJCNN, 2019, pp. 1–8, http://dx.doi.org/10.
1109/IJCNN.2019.8851733.

[3] Yanjun Li, Xiaobo Li, Yoshie Osamu, Traffic engineering framework with
machine learning based meta-layer in software-defined networks, in:
2014 4th IEEE International Conference on Network Infrastructure and
Digital Content, 2014, pp. 121–125, http://dx.doi.org/10.1109/ICNIDC.2014.
7000278.

[4] Junjie Zhang, Minghao Ye, Zehua Guo, Chen-Yu Yen, H. Jonathan Chao,
CFR-RL: Traffic engineering with reinforcement learning in SDN, IEEE J.
Sel. Areas Commun. 38 (10) (2020) 2249–2259, http://dx.doi.org/10.1109/
JSAC.2020.3000371.

[5] Yuan Zuo, Yulei Wu, Geyong Min, Laizhong Cui, Learning-based network
path planning for traffic engineering, Future Gener. Comput. Syst. 92
(2019) 59–67, http://dx.doi.org/10.1016/j.future.2018.09.043.

[6] N. Kato, Z.M. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, K. Mizutani, The
deep learning vision for heterogeneous network traffic control: Proposal,
challenges, and future perspective, IEEE Wirel. Commun. 24 (3) (2017)
146–153.

[7] B. Mao, Z.M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, K. Mizutani,
Routing or computing? The paradigm shift towards intelligent computer
network packet transmission based on deep learning, IEEE Trans. Comput.
66 (11) (2017) 1946–1960.

[8] Bomin Mao, Fengxiao Tang, Zubair Md Fadlullah, Nei Kato, An intelligent
route computation approach based on real-time deep learning strategy for
software defined communication systems, IEEE Trans. Emerg. Top. Comput.
(2019) 1, http://dx.doi.org/10.1109/TETC.2019.2899407.

[9] Albert Mestres, Alberto Rodriguez-Natal, Josep Carner, Pere Barlet-Ros,
Eduard Alarcón, Marc Solé, Victor Muntés-Mulero, David Meyer, Sharon
Barkai, Mike J. Hibbett, Giovani Estrada, Khaldun Ma’ruf, Florin Coras,
Vina Ermagan, Hugo Latapie, Chris Cassar, John Evans, Fabio Maino,
Jean Walrand, Albert Cabellos, Knowledge-defined networking, SIGCOMM
Comput. Commun. Rev. 47 (3) (2017) 2–10, http://dx.doi.org/10.1145/
3138808.3138810.

[10] Jose Suarez-Varela, Albert Mestres, Junlin Yu, Li Kuang, Haoyu Feng, Pere
Barlet-Ros, Albert Cabellos-Aparicio, Feature engineering for deep rein-
forcement learning based routing, in: ICC 2019 - 2019 IEEE International
Conference on Communications, ICC, 2019, pp. 1–6, http://dx.doi.org/10.
1109/ICC.2019.8761276.

[11] Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang,
Chi Harold Liu, Dejun Yang, Experience-driven networking: A deep
reinforcement learning based approach, in: IEEE INFOCOM’2018, 2018.

[12] Paulo Alexandre Regis, Suman Bhunia, Amar Nath Patra, Shamik Sengupta,
Deep-learning assisted cross-layer routing in multi-hop wireless network,
in: 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), 2021, pp.
35–39, http://dx.doi.org/10.1109/WF-IoT51360.2021.9595521.

[13] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr
Lapukhov, Chiun Lin Lim, Robert Soulé, Semi-oblivious traffic engineering:
The road not taken, in: Proceedings of the 15th USENIX Conference
on Networked Systems Design and Implementation, in: NSDI’18, USENIX
Association, USA, 2018, pp. 157–170.

[14] M.M. Tajiki, B. Akbari, M. Shojafar, S.H. Ghasemi, M.L. Barazandeh,
N. Mokari, L. Chiaraviglio, M. Zink, CECT: computationally efficient
congestion-avoidance and traffic engineering in software-defined cloud
data centers, Cluster Comput. 21 (4) (2018) 1881–1897, http://dx.doi.org/
10.1007/s10586-018-2815-6.

[15] W. Quan, N. Cheng, M. Qin, H. Zhang, H.A. Chan, X. Shen, Adaptive
transmission control for software defined vehicular networks, IEEE Wirel.
Commun. Lett. 8 (3) (2019) 653–656, http://dx.doi.org/10.1109/LWC.2018.
2879514.

[16] Zoubir Mammeri, Reinforcement learning based routing in networks: Re-
view and classification of approaches, IEEE Access 7 (2019) 55916–55950,
http://dx.doi.org/10.1109/ACCESS.2019.2913776.
179
[17] Mohammed I. Salman, Bin Wang, Boosting performance for software
defined networks from traffic engineering perspective, Comput. Commun.
167 (2021) 55–62, http://dx.doi.org/10.1016/j.comcom.2020.12.018.

[18] H. Räcke, Minimizing congestion in general networks, in: The 43rd Annual
IEEE Symposium on Foundations of Computer Science, 2002. Proceedings,
2002, pp. 43–52.

[19] Harald Räcke, Optimal hierarchical decompositions for congestion min-
imization in networks, in: Proceedings of the Fortieth Annual ACM
Symposium on Theory of Computing, in: STOC ’08, Association for Com-
puting Machinery, New York, NY, USA, 2008, pp. 255–264, http://dx.doi.
org/10.1145/1374376.1374415.

[20] Philipp Czerner, Harald Räcke, Compact oblivious routing in weighted
graphs, 2020.

[21] Roberta Di Pace, A traffic control framework for urban networks based on
within-day dynamic traffic flow models, Transportmetrica A 16 (2) (2020)
234–269, http://dx.doi.org/10.1080/23249935.2019.1692957.

[22] Henrique F. de Arruda, Filipi N. Silva, Luciano da F. Costa, Diego R. Amancio,
Knowledge acquisition: A complex networks approach, Inform. Sci. 421
(2017) 154–166, http://dx.doi.org/10.1016/j.ins.2017.08.091.

[23] Lucas Guerreiro, Filipi N. Silva, Diego R. Amancio, A comparative analysis
of knowledge acquisition performance in complex networks, Inform. Sci.
555 (2021) 46–57, http://dx.doi.org/10.1016/j.ins.2020.12.060.

[24] D. Applegate, E. Cohen, Making routing robust to changing traffic de-
mands: Algorithms and evaluation, IEEE/ACM Trans. Netw. 14 (6) (2006)
1193–1206, http://dx.doi.org/10.1109/TNET.2006.886296.

[25] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, M. Roughan, The internet
Topology Zoo, IEEE J. Sel. Areas Commun. 29 (9) (2011) 1765–1775, http:
//dx.doi.org/10.1109/JSAC.2011.111002.

[26] C. Zhang, S. Zhang, Y. Wang, W. Li, B. Jin, R. K. P. Mok, Q. Li, H.
Xu, Scalable traffic engineering for higher throughput in heavily-loaded
software defined networks, in: NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium, 2020, pp. 1–7, http://dx.doi.org/
10.1109/NOMS47738.2020.9110259.

[27] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard
Alimi, Kondapa Naidu B., Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu
Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat Ray, Malveeka
Tewari, Matt Tierney, Monika Zahn, Jonathan Zolla, Joon Ong, Amin
Vahdat, B4 and after: Managing hierarchy, partitioning, and asymmetry for
availability and scale in google’s software-defined WAN, in: Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, in: SIGCOMM ’18, Association for Computing Machinery,
New York, NY, USA, 2018, pp. 74–87, http://dx.doi.org/10.1145/3230543.
3230545.

[28] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Menache, Matei
Zaharia, Peter Bailis, Contracting wide-area network topologies to solve
flow problems quickly, in: 18th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 21, USENIX Association, 2021,
pp. 175–200.

[29] Thang Luong, Hieu Pham, Christopher D. Manning, Effective approaches to
attention-based neural machine translation, in: Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, Associ-
ation for Computational Linguistics, Lisbon, Portugal, 2015, pp. 1412–1421,
http://dx.doi.org/10.18653/v1/D15-1166.

[30] Graham Neubig, Neural machine translation and sequence-to-sequence
models: A tutorial, 2017, CoRR arXiv:1703.01619.

[31] Shihan Xiao, Haiyan Mao, Bo Wu, Wenjie Liu, Fenglin Li, Neural packet
routing, in: Proceedings of the Workshop on Network Meets AI & ML, in:
NetAI ’20, Association for Computing Machinery, New York, NY, USA, 2020,
pp. 28–34, http://dx.doi.org/10.1145/3405671.3405813.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, Demis Hassabis, Human-level control through deep reinforcement
learning, Nature 518 (7540) (2015) 529–533, http://dx.doi.org/10.1038/
nature14236.

[33] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine

http://refhub.elsevier.com/S0167-739X(22)00165-0/sb1
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb1
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb1
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb1
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb1
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb1
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb1
http://dx.doi.org/10.1109/IJCNN.2019.8851733
http://dx.doi.org/10.1109/IJCNN.2019.8851733
http://dx.doi.org/10.1109/IJCNN.2019.8851733
http://dx.doi.org/10.1109/ICNIDC.2014.7000278
http://dx.doi.org/10.1109/ICNIDC.2014.7000278
http://dx.doi.org/10.1109/ICNIDC.2014.7000278
http://dx.doi.org/10.1109/JSAC.2020.3000371
http://dx.doi.org/10.1109/JSAC.2020.3000371
http://dx.doi.org/10.1109/JSAC.2020.3000371
http://dx.doi.org/10.1016/j.future.2018.09.043
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb6
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb6
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb6
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb6
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb6
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb6
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb6
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb7
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb7
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb7
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb7
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb7
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb7
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb7
http://dx.doi.org/10.1109/TETC.2019.2899407
http://dx.doi.org/10.1145/3138808.3138810
http://dx.doi.org/10.1145/3138808.3138810
http://dx.doi.org/10.1145/3138808.3138810
http://dx.doi.org/10.1109/ICC.2019.8761276
http://dx.doi.org/10.1109/ICC.2019.8761276
http://dx.doi.org/10.1109/ICC.2019.8761276
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb11
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb11
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb11
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb11
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb11
http://dx.doi.org/10.1109/WF-IoT51360.2021.9595521
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb13
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb13
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb13
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb13
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb13
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb13
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb13
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb13
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb13
http://dx.doi.org/10.1007/s10586-018-2815-6
http://dx.doi.org/10.1007/s10586-018-2815-6
http://dx.doi.org/10.1007/s10586-018-2815-6
http://dx.doi.org/10.1109/LWC.2018.2879514
http://dx.doi.org/10.1109/LWC.2018.2879514
http://dx.doi.org/10.1109/LWC.2018.2879514
http://dx.doi.org/10.1109/ACCESS.2019.2913776
http://dx.doi.org/10.1016/j.comcom.2020.12.018
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb18
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb18
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb18
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb18
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb18
http://dx.doi.org/10.1145/1374376.1374415
http://dx.doi.org/10.1145/1374376.1374415
http://dx.doi.org/10.1145/1374376.1374415
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb20
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb20
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb20
http://dx.doi.org/10.1080/23249935.2019.1692957
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1109/TNET.2006.886296
http://dx.doi.org/10.1109/JSAC.2011.111002
http://dx.doi.org/10.1109/JSAC.2011.111002
http://dx.doi.org/10.1109/JSAC.2011.111002
http://dx.doi.org/10.1109/NOMS47738.2020.9110259
http://dx.doi.org/10.1109/NOMS47738.2020.9110259
http://dx.doi.org/10.1109/NOMS47738.2020.9110259
http://dx.doi.org/10.1145/3230543.3230545
http://dx.doi.org/10.1145/3230543.3230545
http://dx.doi.org/10.1145/3230543.3230545
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb28
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb28
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb28
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb28
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb28
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb28
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb28
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb28
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb28
http://dx.doi.org/10.18653/v1/D15-1166
http://arxiv.org/abs/1703.01619
http://dx.doi.org/10.1145/3405671.3405813
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236

M.I. Salman and B. Wang Future Generation Computer Systems 135 (2022) 172–180
Leach, Koray Kavukcuoglu, Thore Graepel, Demis Hassabis, Mastering the
game of go with deep neural networks and tree search, Nature 529 (7587)
(2016) 484–489, http://dx.doi.org/10.1038/nature16961.

[34] Gurobi Optimization, LLC, Gurobi optimizer reference manual, 2020, URL
http://www.gurobi.com.

[35] X. Liu, S. Mohanraj, M. Pióro, D. Medhi, Multipath routing from a traffic
engineering perspective: How beneficial is it? in: 2014 IEEE 22nd In-
ternational Conference on Network Protocols, 2014, pp. 143–154, http:
//dx.doi.org/10.1109/ICNP.2014.34.

[36] L. Fratta, M. Gerla, L. Kleinrock, The flow deviation method: An ap-
proach to store-and-forward communication network design, Networks 3
(2) (1973) 97–133, http://dx.doi.org/10.1002/net.3230030202, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230030202.

[37] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill,
Mohan Nanduri, Roger Wattenhofer, Achieving high utilization with
software-driven WAN, in: Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, in: SIGCOMM ’13, Association for Computing
Machinery, New York, NY, USA, 2013, pp. 15–26, http://dx.doi.org/10.1145/
2486001.2486012.

[38] Victor Heorhiadi, Michael K. Reiter, Vyas Sekar, Simplifying software-
defined network optimization using SOL, in: Proceedings of the 13th
Usenix Conference on Networked Systems Design and Implementation, in:
NSDI’16, USENIX Association, USA, 2016, pp. 223–237.
180
Mohammed I. Salman is a Ph.D. student at the Col-
lege of Engineering and Computer Science, Wright
State University, Dayton, Ohio USA. He received his
master’s degree from Anbar University in 2013. His
research covers network design problems and network
optimization.

Prof. Bin Wang received his Ph.D. in electrical and
computer engineering from the Ohio State University
in 2000. He is a professor at the Department of Com-
puter Science and Engineering, Wright State University,
Dayton, Ohio USA. He received the US Department of
Energy Early Career Award in 2003. His research has
been supported by numerous federal agencies, includ-
ing the National Science Foundation, the Department
of Energy, and the DoD.

http://dx.doi.org/10.1038/nature16961
http://www.gurobi.com
http://dx.doi.org/10.1109/ICNP.2014.34
http://dx.doi.org/10.1109/ICNP.2014.34
http://dx.doi.org/10.1109/ICNP.2014.34
http://dx.doi.org/10.1002/net.3230030202
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230030202
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230030202
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230030202
http://dx.doi.org/10.1145/2486001.2486012
http://dx.doi.org/10.1145/2486001.2486012
http://dx.doi.org/10.1145/2486001.2486012
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb38
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb38
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb38
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb38
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb38
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb38
http://refhub.elsevier.com/S0167-739X(22)00165-0/sb38

	Near-optimal responsive traffic engineering in software defined networks based on deep learning
	Introduction
	Motivation
	Related work
	System description
	Training data preparation
	Model training
	Running phase

	Performance evaluation
	Evaluation setup
	Evaluation
	Model training
	Model inference
	Responsiveness

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

