
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Solving Modified Regularized Long Wave Equation
Using Collocation Method
To cite this article: Hamad Salih et al 2018 J. Phys.: Conf. Ser. 1003 012062

 

View the article online for updates and enhancements.

Related content
Cubic Trigonometric B-spline Galerkin
Methods for the Regularized Long Wave
Equation
Dursun Irk and Pinar Keskin

-

The extended cubic B-spline algorithm for
a modified regularized long wave equation
. Da, D. Irk and M. Sar

-

Reply to Comment on ‘Coupled
anharmonic oscillators: the Rayleigh–Ritz
approach versus the collocation approach’
Arkadiusz Kuro and Anna Okopiska

-

This content was downloaded from IP address 62.201.200.213 on 13/07/2018 at 00:06

https://doi.org/10.1088/1742-6596/1003/1/012062
http://iopscience.iop.org/article/10.1088/1742-6596/766/1/012032
http://iopscience.iop.org/article/10.1088/1742-6596/766/1/012032
http://iopscience.iop.org/article/10.1088/1742-6596/766/1/012032
http://iopscience.iop.org/article/10.1088/1674-1056/22/4/040207
http://iopscience.iop.org/article/10.1088/1674-1056/22/4/040207
http://iopscience.iop.org/article/10.1088/0031-8949/83/04/047004
http://iopscience.iop.org/article/10.1088/0031-8949/83/04/047004
http://iopscience.iop.org/article/10.1088/0031-8949/83/04/047004
http://oas.iop.org/5c/iopscience.iop.org/276515351/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

IHSCICONF2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1003 (2018) 012062  doi :10.1088/1742-6596/1003/1/012062

Solving Modified Regularized Long Wave Equation Using 
Collocation Method 

Hamad Salih1,2, Luma Naji Mohammed Tawfiq3, Zainor Ridzuan  Yahya1, 
Shazalina Mat Zin1  
1Institute of Engineering Mathematics, Universiti Malaysia Perlis, 02600 Pauh, Perlis, 
Malaysia, 
2Department of Mathematics, University of Anbar, Al-anbar, Iraq, 
3Department of Mathematics, University of Bagdad, Bagdad, Iraq 

 
Abstract. In this paper, we suggest collocation method depending on Cubic trigonometric B-
spline (CuTBS) approach based on finite difference scheme to solve the modified regularized long 
wave equation. The single solitary wave motion was studied using the proposed method; thus the 

accuracy and efficiency of the suggested method were computed from the 2L
 ,

L�   norms. Also, 
the von-Neumann method was used to study the linear stability analysis. The obtained results 
through the tested two problems exhibited that, the method is an effective numerical scheme to 
solve Modified Regularized Long Wave equation (MRLW). 

Key word: Cubic Trigonometric B-spline method, Finite Difference, Regularized 
Long Wave Equation ,Von-Neumann method. 

1. Introduction 
Nonlinear partial differential equations can be effectively employed to express an assortment of physical 
and applied mathematical concerns. A non-linear partial differential equation is defined as a partial 
differential equation that comes with nonlinear terms. The numerical solutions derived from nonlinear 
partial differential equations are particularly useful for deciphering solitary waves of pulses or wave 
packets [1]. A model of the MRLW eq. can be utilized to symbolize the nonlinear PDEs 

2 0t x x xxtz z z z z� �� � � �                                                                                                   (1) 

with boundary conditions (BC)  

( , ) 0 , ( , ) 0z a t z b t� �                                                                                                       (2) 

and the initial condition(IC)  

( ,0) (x)z a f a x b� � �                                                                                                       (3) 

in which �  and � represent positive parameters. Recognized as one of the foremost equations for 
nonlinear dispersive waves, the MRLW equation is applicable for a wide variety of issues. This includes 
phonon packets in nonlinear crystals, ion-acoustic waves in plasma and magneto hydrodynamic, ion-
acoustic waves in plasma, pressure waves in liquid-gas bubble mixtures and down a tube, and transverse 
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waves in shallow water. The lumped galerkin technique based on cubic B-spline was employed to realize 
a solution to the MRLW equation. Karakoc et al. employed a numerical approach derived from a Petrow-
Galerkin procedure to scrutinize the movement of a solitary wave. Their investigation, which delivered 
precise results, involved the use of quadratic weight functions and cubic B-spline finite elements [2-4]. 
The arrival to a numerical solution of the MRLW equation can be realized by way of the extended cubic 
B-spline procedure [5]. When it comes to ascertaining the value of parameter k, the approximation 
derived through the extended cubic B-spline algorithm has proven to be more exact than that of the cubic 
B-spline.  Several methods have been introduced for realizing a numerical solution to the RLW equation 
for a solitary wave movement. Dag et al. [6-10] employed the collection method based on quartic B-
spline. Other methods include interpolation functions, the quintic B-spline Galerkin finite element 
method, cubic B-spline functions, the least squares quadratic B-spline finite element method, and the least 
squares finite element method based on cubic B-spline. The results obtained through these methods were 
found to be more precise than those previously recorded in related literature.  
       B-splines are frequently employed for solutions to linear or nonlinear partial differential equations in 
the domains of engineering and science. The trigonometric B-spline based function is an option to the 
famous polynomial B-spline based function [11]. While the structure of the former is based on 
trigonometric functions, the structure of the latter is based on polynomial functions [12]. This study 
focuses on the arrival at a solution to the MRLW equation through trigonometric B-spline collocation 
procedures. The cubic trigonometric B-spline (TCuBS) was employed to realize a numerical solution to 
the non-linear Benjamin-Bona-Mahony-Burger equation, the coupled viscous Burgers’ equation [13-14], 
as well as the generalized nonlinear Klein-Gordon wave equation [15-16].  
 
2. Numerical Solution of MRLW equation. 
    The standard finite difference formula is applied for estimating the time derivative. 

1n n nz z z

t t

�	 �
�

	 

                                                                                                                  (4) 

The use of (4) transforms equation (1) into 

11
2( ) ( )

( ) 0
n nn n

n nxx xx
x x

z zz z
z z z

t t
� �

�� ��
� � � �


 

                                                        (5) 

And the use of the�  weighted technique facilitates the expression of the space derivatives of the MRLW 
equation (1) as  

11
1 2 1 2( ) ( )

( ( ) ) (1 )( ( ) ) 0
n nn n

n n n nxx xx
x x x x

z zz z
z z z z z z

t t
� � � � �

��
� ���

� � � � � � �

 
      (6) 

The use of the rule [20]  

2 1 1 2 1 1 2( ) ( ) 2 2( )n n n n n n n n n
x x x xz z z z z z z z z� � � �� � �  

Allows for equation (6) to be generated as  

 
1 1 1 2 1 1

2

( ) 2

(1 ) (1 )( )

n n n n n n n n
xx x x x

n n n n n
xx x x

z z t z t z z t z z z

z z t z t z z

� � � �

� � �

� � � � �� � 
 �
 �


� � �
 � �
 �
                                            (7) 

The system is regarded an explicit scheme if 0� � , a completely implicit scheme if 1� � and a Crank-

Nicolson scheme if 
1

2
� � . As this study opted for the Crank-Nicolson procedure, equation (7) is 

converted into  
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                                                (8) 

 

3.1. CuTBS for Solving MRLW Equation 
The basis function of the CuTBS is expressed as: 

  
 
 
 
  (9) 

 

The values of '
4, j 4, j(x), (x)TB TB and ''

4, j(x)TB at the knots jx were calculated through equation (9) and 

registered in ( Table 1).                                
   Table 1: 4, ( )iTB x values and their derivatives. 

x  jx  1jx �  2jx �  3jx �  4jx �  

4, jTB  0 
1p  2p  1p  0 

'
4, jTB  0 

3p  0 
4p  0 

''
4, jTB  0 

5p  6p  5p  0 

 

where 

� 
 � 


� 
� 

� 
� 
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2 2 2

3cos3 1 3cos 2
,

3 sin 2 4cos16sin 2cos cos
22 2 2

h

p p p p
h h hh

h

h
h

p p
hh h h h

� �
� �
� �� � � � �

�� � � � � �
� � � � � �
� � � � � �

� �
� �� � �� � �

� � � �� � � � � � �� � �� �� � � � � � � �� � � � � �� �  
In keeping with the proposed procedure, the approximation algorithm for solving equation (1) is  

1

4,
3

( , ) ( ) ( )
N

j j j
j

z x t C t TB x
�

��

� �                                                                                                (10) 

in which (t)jC are unidentified time dependents that need to be ascertained, 4, ( )jTB x  is a CuTBS. The 

assessment process at each xj involves only three non-zero basis functions. This circumstance is attributed 
to the local support properties of basis function. As such, the approximate solution calls for the values of 

� 

� 
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2 3 1 4 1 1 2
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4, ( )jTB x and its derivatives at nodal points to be identified. Approximate functions (9) and (10) were 

utilized for tabulating these derivatives. Here, the values at the knots of and their derivatives until the 
second order are: 

  

� 
 1 3 2 2 1 1

3 3 4 1

2

5 3 6 2 5 12

,
n n n n

j j jj

n

n n
j j

j

n

n n n
j j j

j

z p C p C p C

z
p C p C

x

z
p C p C p C

x

� � �

� �

� � �

�
�

� � ��
�
	�� � � ��� �	� ��

�
� �	� � � �� �� 	� ��

                                                                                              (11) 

Equation (8) with the nodal values of w  and its derivatives uses (11) to realize the difference equation 

below with the variables , j 3,..., N 1jC � � � .  

1 1 1
1 3 2 2 3 1 1 3 2 2 3 1

n n n n n n
j j j j j ja C a C a C bC b C b C� � �
� � � � � �� � � � �                                                                   (12) 

Here 

2 2
1 1 3 1 1 3

2 2 6 2 2 6

2 2
3 1 4 3 1 4

5 5

5 5

(1 ) ( (z ) ) , ( ( (z ) )
2 2 2 2

(1 ) ,

(1 ) ( (z ) ) , ( (z ) )
2 2 2 2

n n n n
x

n n
x

n n n n
x

t t t t
a tz z p p p b p p p

a tz z p p b p p

t t t t
a tz z p p p b p p p

� �� � �

� � �
� �� � �


 
 
 

� � 
 � � � � � � �

� � 
 � � �


 
 
 

� � 
 � � � � � � �

 

the simplification of (12) gives rise to a system comprising the ( 1)N �  linear equation in the ( 3)N �  

unknown 3 1[C ,...,C ]n n n
j NC � ��  at the time level 1nt t �� , Equation (10), which is applied for acquiring 

the solution to the boundary conditions (2) is expressed as: 

1 1 1
1 3 2 2 1 1

1 1 1
1 3 2 2 1 1

0, 0,

0,

n n n

n n n
j j j

p C p C p C j

p C p C p C j N

� � �
� � �

� � �
� � �

� � � �

� � � �
                                                                                   (13) 

For equations (12) and (13), the system comprising ( 3) ( 3)N N� � � is expressed as:  

1
( 3) ( 3) ( 3) 1 ( 3) ( 3) ( 3) 1

n n
N N N N N NM C Z C�
� � � � � � � � � ��

 

 

Initial state 

Based on the initial conditions will calculate the initial vector
0C . The values of 

0C were obtained using 
the initial conditions and boundary values of the derivatives for the initial condition as below  

0

0

0

( ) '(x ) 0

(x ) 0,1,...,

( ) '(x )

j x j

j j

j x j

z g j

z g j N

z g j N

� � �
�� � ��
�

� ���

                                                                                       (14) 
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This generates the following ( 3) ( 3)N N� � �  tridiagonal matrix system as follows. 

0
( 3) ( 3) ( 3) 1 ( 3) 1N N N NA K d� � � � � � ��

 
where  

0 0 0 0
3 2 1[C ,C ,...,C ]T

NK � � ��  ,
' '

0 0 1 1[ (x ), (x ), (x ),..., (x ), (x ), (x )]T
N N Nd g g g g g g��   

4. Stability Analysis 
 The Fourier method is introduced for an evaluation on the stability of the trigonometric cube B-spline 

method. For this purpose, Equation (1) is linearized by the assumption that quantity 2z  in the nonlinear 
term   is unvarying �  . The linearized configuration of the recommended procedure is expressed as 

1 1 1
1 3 2 2 3 1 1 3 2 2 3 1

k k k k k k
j j j j j jwC w C w C u C u C u C� � �
� � � � � �� � � � �                                                                (15) 

in which 

1 1 3 5 1 1 3 5

2 2 6 2 2 6

3 1 4 5 3 1 4 5

2p (1 ) p 2 p , 2p (1 ) p 2 p

2p 0 2 p , 2p 0 2 p

2p (1 ) p 2 p , 2p (1 ) p 2 p

w t u t

w u

w t u t

�� � �� �
� �
�� � �� �

� � 
 � � � �
 � �

� � � � � �

� � 
 � � � �
 � �  

the replaced Fourier mode (im )k k h
jC e ��� , 1i � �  in Equation(15) gives rise to 

X iY

X iY
� �
�

�
                                                                                                                           (16) 

Here, 

                             

1 5 2 6

4

X (4p 4 p )cos( ) (2p 2 p )

(2(1 )p )sin( h)

h

Y

� � �
�� �

� � � �

� �               

Thus, the stability condition | | 1� �  , the modulus of Eq. (16) yields | | 1� �  , and  as result the scheme 
will be unconditionally stable.  
 
5. Numerical Experiments 
This segment focuses on the computation for the 2L  and L� error norms by way of the formula below: 

                               max | |exact num
i iL z z� � � , 

                              2
2 ( | |

n
exact num
i i

i

L h z z� ��  

 

Also computed are the conservation laws through the formula [19]. In this formula 1C  represents the 

mass, 2C  the momentum and 3C   the energy. 
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1

2
2

2 3
3

( , )d ,

( , ) d ,

1
[ ( , ) ( , ) ]d ,

3

b

a

b

a

b

a

C z x t x

C z x t x

C z x t z x t x

�

�

� �

�

�

�
 

Example 1 

The MRLW equation has an precise solution 2 1
( (1 ) )02 1

z( , ) 3 sec c
x c t x

c
x t c h � �

� �� � �� ��� �
� , initial conditions 

� 
12
02 1

z( ,0) 3 sec ( )c

c
x c h x x

�
� �

 
and boundary conditions z(0, ) 0, z(100, ) 0t t� �  . 1v c� �  

represents wave velocity and 0 40x �  [1]. The calculation for numerical answers to this problem was 

derived through the cubic trigonometric B-spline procedure. The norms errors as well as the conservation 
laws at distinct time levels with the parameters  1� �� �  , c=0.3.0.09, 0.025t
 �  and  0.2x
 �  were 

computed and registered Tables 2 and 3 respectively .The computations of L� and 2L errors at various 

times revealed that the margin of error escalated in tandem with the increase in time. This gave rise to 

minor disparities in the 1C  , 2C and 3C values which amounted to below 3 610 ,10� � and 710� respectively . 

The space–time graph for the approximation and exact solutions at t=5 and t=10 and c=0.3 is displayed in 
Figure 1.The table and figure show that the of L� and 2L errors are increasing as time increases 

Table 2: c=0.3 , 0.025t
 �  , 0.2x
 �  , 0 100x� �   cubic trigonometric b-spline 

T  2L  L�  3C  2C  1C  
5 0.007226 0.001888 0.008865 0.127301 2.107066 

10 0.014416 0.003845 0.008863 0.127302 2.106733 
15 0.021575 0.005848 0.008858 0.127303 2.106135 
20 0.028686 0.007867 0.008851 0.127304 2.104627 

  

     Table 3:  00.2, 0.1, 40, 0.09,0 100h t x c x� 
 � � � � �  cubic trigonometric b-spline 

T  2L  L�  3C  2C  1C  
5 0.072146 0.024671 0.142305 0.688049 3.759237 
10 0.142238 0.049605 0.141782 0.688360 3.759894 
15 0.208868 0.072388 0.140899 0.688638 3.760450 
20 0.271397 0.092359 0.139735 0.688889 3.760882 
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Figure 1: Approximation and exact solution by CuTBS at c=0.3 at different time levels 

Example 2 
We consider the motion of single wave equation (1) has exact solution in the form [21-23] 

� 
0
2z( , ) 3 sec ( ( ) )x t b c h k x x b c t� � � � �  where b,c are constant and 

1

2 (b c)

c
k

�
�

�
 with initial 

condition � 
0
2z( , ) 3 sec k( )x t b c h x x� � � .We choose 01, 40, 0.3, 1x c b� �� � � � � and 0 80x� �  

the interval divided element of equal length 0.2x
 �  at time T =1 and 0.01t
 � . In Tables 4 lists the 

calculations of 2L error at different time as observed the error increased when the time increased. This led 

to trivial differences in the 1C , 2C and 3C values. These differences did not exceed 210� .  

Table 4: 00.3, 1, 40, 0.2, 0.01,0 80, 1c x h t x T� �� � � � � 
 � � � �  

T 
2L  3C  2C  1C  

0.1 1.099427 115.094176 97.940786 85.500228 
0.2 1.102576 115.093482 97.952850 85.496447 
0.3 1.107873 115.087847 97.971810 85.489544 
0.4 1.115286 115.077166 97.998092 85.479538 
0.5 1.124764 115.061282 98.032325 85.466455 
0.6 1.136247 115.039984 98.075382 85.450329 
0.7 1.149666 115.012988 98.128423 85.431207 
0.8 1.164942 114.979925 98.192978 85.409143 
0.9 1.181990 114.940312 98.271044 85.384209 
1.0 1.200722 114.893519 98.365247 85.356491 
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 6-Conclusion 
The primary objective of this study is to confirm the effectiveness of the CuTBS procedure. This is in the 
context of realizing a solution to the unique kind of PDE by way of a one-dimensional nonlinear adapted 
regularized long wave equation. Two cases in point were investigated. Tables 2, 3 and 4 portray the errors 
acquired through the application of the proposed procedure on the MRLW equation. It was discovered 
that the errors increased in tandem with the rise in time. The applicability of this procedure is further 
enhanced by its elevated level of stability. This was verified through the Von Neumann stability analysis. 
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