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Nuclear Structure of 14Be Nucleus
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We investigated in this work the two-neutron halo nuclei of 14Be. The cluster model was used in
the present work to study the properties of a three-body system. The three-body system described
depended on the Jacobi coordinates using two configurations: the T-configuration and the Y-
configuration. In this work, the binding energy, the root-mean-square (r.m.s.) radius and effect of
deformation of the core (12Be) on the properties of two-neutron halo were studied. The calculations
confirmed that the core had a prolate-shaped deformation, which affected the structure of the
three-body system.
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I. INTRODUCTION

The development of radioactive nuclear-beam facilities
has brought to light many interesting phenomena in nu-
clear physics, the study of nuclei far from the P-stability
line. It has been found in the experiments [1–3] on light
nuclei that 11Li, 14Be, and 17B have an abnormally large
root-mean-square r.m.s radii. Reference 4 pointed out
that this was due to the neutron halo in the nucleus,
which gave new implications to the theory of nuclear
structure and nuclear reaction. Studies on halo nuclei
have attracted many nuclear physicists and have led to
a series of experiments to study 14Be. The r.m.s matter
radius of the 14Be nucleus has been deduced from the
interaction cross-sections of light radioactive nuclei close
to the neutron drip line (14Be). Numerous matter radii
of 14Be have been found: 3.36 ± 0.19 fm [5], 3.11 ± 0.38
fm [1], and [3.10 ± 0.15]fm [6]. The separation energy of
the two-neutron halo nucleus of 14Be S2n, has been deter-
mined by using two experiments: a pion double-charge-
exchange measurement [7] that gave a value of 1.12 ±
0.16 MeV and a time-of-flight experiment [8] that gave a
value of 1.48 ± 0.14 MeV. The weighted average of S2n

= 1.34 ± 0.11 MeV [9] is the usual cited value.
The properties of 14Be have been studied using a

particle-particle random phase approximation (RPA)
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model. Two-body correlations within the RPA model
have provided good descriptions of the energies and the
amplitudes in comparison to models that assume a neu-
tron closed shell [10]. The dissociation process of light
exotic 14Be nuclei has been treated as two neutrons and
a core (two neutrons with an inert core) [11]. Similarly, a
three-body model has also been applied to describe two-
neutron halo nuclei of 14Be [12], with an antisymmetrized
molecular dynamics method being used to investigate its
excited states. The theoretical results of the study in-
dicated rotational bands with new cluster structures in
14Be [13].

The two-neutron pairing model has also been used
to calculate the two-neutron dissociation energy in 14Be
and the d5/2 resonance in 13Be at a measured energy of
2 MeV [14]. A three-body system of 14Be with the Efi-
mov effect, employing a separable potential for binary
systems, was found to be in agreement with the exper-
imental data [15]. A Skyrme-Hartree-Fock approach to
study the ground-state properties of the 14Be nucleus
(with new force parameters SKI4 of Reinhard and Flo-
card) has succeeded in reproducing neutron halos in the
14Be nucleus and provides good descriptions of the bind-
ing energy and the radii for Be isotopes [16]. The 14Be
nucleus described in a three-cluster generator coordinate
method [17] has provided the energy spectrum of 14Be
up to a 5-MeV excitation energy and matter densities
that support a halo structure of the ground state.
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Fig. 1. Jacobi coordinates for the three-body system.

In treating the 13Be and the 14B nuclei with a de-
formed 12Be core as a rigid rotor in a one-neutron halo
nucleus and a two-neutron halo nucleus, Tarutina et al.
[18], found that the deformation of the 12Be core has
a large positive quadrupole of about (β2 > 0.8) when
a Wood-Saxon potential between the core and neutrons
was used. Thompson and Zhukov [19] used the Faddeev
three-body approach with the 14Be treated as an inert
12Be core interacting with valence neutrons.

In the present work, the 14Be nucleus was investigated
using cluster model, and the binding energy of the two-
neutron halo 14Be nucleus, the r.m.s. matter radius of
the 14Be and the effect of deformation of the (12Be)
core on the binding energy and the r.m.s. radius of 14Be
were calculated. The 14Be nucleus was treated as having
a core(12Be)+n+n in a two-neutron halo nucleus. The
core is not inert, but has some deformation dependence
as it is not a closed shell for neutrons and protons while
the extra neutrons and protons outside the closed shell
contribute to some deformation in the core and has an
effect on the three-body energy in two-neutron halo nu-
clei. The 14Be nucleus was described using the Jacobi
coordinates for the three-body problem.

II. THEORETICAL FRAMEWORK

The three-body system or two-neutron halo nuclei
should be defined in terms of core and valence neutrons.
The distances between each pair of particles �rjk and the
distance between the center of mass of the pair and the
corresponding third particle (represented in Fig. 1) can
be expressed in terms of the Jacobi coordinates (�x, �y):

x =
√

Ajk�rjk =

√
AjAk

Aj + Ak
�rjk

and

yi =
√

A(jk)i�r(jk)i =

√
(AjAk)Ai

Ai + Aj + Ak
�r(jk)i.

The intrinsic Hamiltonian of the core determines a set

of eigenstates φcore and eigenvalues εcore with

ĥcore(ξcore)φcore(ξcore) = εcoreφcore(ξcore). (1)

The total wavefunction of the system from Jacobi coor-
dinates is

ΨJM (x, y, �ξ) = φcore(ξcore)ψ(x, y), (2)

where ψ(x, y) contains the radial, angular and spin of
the remaining two particles relative to the core. The
hyperspherical method was used to convert the two-
dimensional partial differential equation into a set of
coupled one-dimensional equations. The Jacobi coordi-
nates (x, y) are transformed into the hyperspherical co-
ordinates (hyper-radius ρ and hyper-angle θ) defined as
ρ2 = x2 + y2 and θ = arctan

(
x
y

)
.

The hyperspherical expansion of the three-body radial
and angular wave functions is

Rn(ρ) =
ρ5/2

ρ2
o

√
n!

(n + 5)!
L5

nlag(z) exp
(−z

2

)
, (3)

wherez = ρ/ρo and

ψ
lxly
k (θ) = N

lxly
k (sin θ)lx(cos θ)lyP

lx+ 1
2 ,ly+ 1

2
n (cos 2θ). (4)

The wave function of the valence neutrons is

ψ
lxly
n,k (ρ, θ) = Rn(ρ)ψlxly

k (θ). (5)

Using ψ(x, y) in Eq. (2) as

ψ(x, y) = ψ
lxly
n,k (ρ, θ),

where L5
nlag are associated Laguerre polynomials of or-

der nlag = 0, 1, 2, . . ., P
lx+ 1

2 ,ly+ 1
2

n (cos 2θ) is the Jacobi
Polynomial. Equation (3) is a function of (ρ) because of
the z dependence on (ρ), with z = ρ/ρo. The values of ρ
and ρo are explained in Sec. III. We assume that nlag =
n, where n = lx +1. N

lxly
k is a normalization coefficient,

and k is the hyperangular momentum quantum number
with for n = 0, 1, 2, . . ..

The wavefunction of the system comes from the in-
ternal wavefunction of every body in that system. The
internal wavefunction of each neutron was obtained by
solving the Schrödinger Equation in spherical coordi-
nates. More details about the formalism of the hyper-
spherical harmonics method are presented in Refs. 20
and 21. The total Hamiltonian Ĥ, of the system is

H = T + hcore(�ξ) + Vcore−n1(rcore−n1, �ξ)

+Vcore−n2(rcore−n2, �ξ) + Vn−n(rn−n). (6)

The Hamiltonian contains the kinetic energy T = Tx +
Ty, the intrinsic Hamiltonian of the core ĥcore(�ξ), which
depends on the internal variables �ξ, and two-body in-
teractions Vcore−n and Vn−n for all pairs of interacting
bodies. Here, the potential is taken as a deformed Wood-
Saxon potential, as well as a spin-orbit interaction.
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The rotational model is assumed for the structure of
the core; hence, the core is an axially deformed sym-
metric rotor where, in the body-fixed frame, the radius

of this deformed core is expanded in spherical harmonic
while for simplicity, we retain only the quadrupole term,
as in Eq. (9):

V̂core−n(rcore−n, �ξ) =
−V0[

1 + exp
(

rcore−n − R(θ, φ)
a

)]

+
−�

2

m2c2
(2l.s)

Vs.o

4rcore−n

d

drcore−n

[
1 + exp

(
rcore−n − Rso

aso

)]−1

. (7)

With the spin-orbit interaction being

Vn−n(rn−n) = − −�
2

m2c2
(2l.s)

Vs.o

4rn−n

d

drn−n

[
1 + exp

(
rn−n − Rso

aso

)]−1

(8)

with

R = R0[1 + β2Y20(θ, φ)] (9)

and R0 = 1.25A1/3
core. We assumed Rso = R. �l is the op-

erator of orbital momentum between core and a neutron,
�s is the operator of a neutron’s spin and m = mπ is the
mass of a pion.

For practical calculations
(

�

mπ

)2

= 2.0 fm2. β2 is the
core’s quadrupole deformation, and Acore is the mass
number of the core. The operator for the average squared
distance of nucleons for an A-body system from the po-
sition of the total center of mass is

�rCM =
1
A

A∑
i=1

�ri, (10)

r2
m =

1
A

A∑
i=1

(�ri − �rCM )2, (11)

where ri is the position of the ith nucleon, rCM is the
centre of mass and the r.m.s. matter radius

〈
r2
m

〉1/2 of
the nucleus is〈

r2
m

〉1/2
=

1
A

[
Acore〈r2

m(core)〉 + 〈ρ2〉] . (12)

The total quadrupole moment for a halo nucleus can be
written as Q = Qj +Qc, where Q is the total quadrupole
moment composed of Qj due to a loose nucleon and Qc

is due to the core. Generally, Qc � Qj [22]:

Qc = Q′
[(

3Ω2/2J2
) − 1

2

]
. (13)

Equation (13) can be written as

Qc = Q′ J

2J + 3

[
3Ω2

J(J + 1)
− 1

]
, (14)

where J is the total nuclear angular momentum, Ω is the
projection of j (nuclear angular momentum) and Ω′ can

Fig. 2. Description of the wave functions of a three-body
nucleus.

be taken equal to

Q′ =
4
5
δZR2, (15)

with Z being the atomic number, R radius of the nucleus
calculated before and δ being related with the deforma-
tion parameter β2 (β2 = 2/3(4π/5)1/2δ) [22].

III. CALCULATION METHOD AND
RESULTS

Figure 2 shows the three-body core and two neutrons
with the wave function of each particle, as described in
the theoretical section. Equation (5) describes the wave
function of the valence neutrons while φ in Eq. (2) de-
scribes the wave function of the core calculated using the
shell model, and Eq. (2) itself describe the total wave
function of the three-body system.

The three-body Hamiltonian in Eq. (6) has been ap-
plied to calculate the energy of a two-neutron halo nu-
cleus. The relationship between the three bodies de-
pends on the central Wood-Saxon potential and the spin-
orbit interaction as in Eq. (7). Two configurations (T-
configuration and Y-configuration) were applied in the
calculation using Jacobi coordinates. The core, assumed
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Table 1. Parameters used in the calculations.

lx ly n K ρ ρo ro (fm) a (fm) aso (fm) Vo (MeV) Vso (MeV)

0 0 1 2 0.866 0.866 1.25 0.65 0.65 –74 –7.5

1 1 2 6 0.866 1.936 1.25 0.65 0.65 –74 –7.5

– – – – 1.936 – 1.25 0.65 – – –

2 2 3 10 0.866 2.958 1.25 0.65 – – -

2 2 3 10 1.936 – 1.25 – – – –

2 – – - 2.958 – 1.25 – – – –

Table 2. Experimental data for the binding energy, matter radius of 14Be and deformation parameter of 12Be.

Nucleus Eexp (keV) Rexp
m (fm) Deformation parameter (β2)

14Be −1.12 ± 0.16 [7] 3.36 ± 0.19 [5]

– −1.48 ± 0.14 [8] 3.11 ± 0.38 [1]

– −1.34 ± 0.11 [9]
12Be 0.614(47) – 0.725(54) [23]

to be deformed, is connected with the two neutrons while
the bounded-state energies of 14Be, with the matter
r.m.s. radius and a deformation of 12Be, were calculated.
The values of ρ and ρo in Eq. (3) were approximated us-
ing the formulae

ρ0 =
√

j(j + 1) where j = lx +
1
2
,

ρ =
√

mj(mj + 1) where mj = −j,−j + 1, . . . , j,

where the total angular momentum (j) of the valence
neutron depends on the core-n radius. With these ap-
proximations, ρ and ρo were calculated.

In Eq. (9), Y20(θ, φ) is taken as

Y20(θ, φ) =
1
4

√
5
π

(3 cos2(θ) − 1). (16)

The central Wood-Saxon potential depends on the
core’s quadrupole deformation parameter β2 through the
radius R in Eq. (9). Throughout the present work, the
spin-orbit term was left deformed (with radius ro = 1.25
fm, where Ro = roA

1/3). The radius RSO was made
equal to R at any deformation. The diffuseness was fixed
to the standard value aws = aso = 0.65 fm, and the
calculations were performed for the full range of the de-
formation parameter β2 = [−0.7, 0.7]. The properties
of 14Be were calculated for various core deformations β2

with a fixed spin-orbit depth, Vso, at 7.5 MeV and a cen-
tral Wood-Saxon depth, Vo, at 74 MeV. Table 1 contains
all the parameters used in the calculations.

In the present work, the binding energy, matter radius
of the three-body system (14Be) and deformation of the
core (12Be) were calculated. Normalization was used to
determine the above properties by using experimental
data as given in Table 2.

The 12Be nucleus was shown to be a stable particle
with a ground-state spin and parity of about Jπ = 3/2−.

Fig. 3. 12Be-n potential as a function of the deformation.

Fig. 4. Energy of the bound state in 13Be as a function of
the deformation for the ground state of the p3/2-

12Be core.
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Table 3. Experimental value of the deformation parameter of 12Be with the theoretical values (present work) of the binding
energy and the matter radius of 14Be.

Nucleus
Deformation parameter (β2) Binding energy (MeV) Matter radius (fm)

exp present work present work
12Be 0.614 [23]
14Be −1.531 5.44

Table 4. Experimental value of the matter radius of 14Be with the theoretical values (this work) of the binding energy of
14Be and the deformation parameter of 12Be.

Nucleus
Matter radius (fm) Deformation parameter (β2) Binding energy (MeV)

exp present work present work
14Be 3.36 ± 0.19 [5] −1.02
12Be 0.1

Table 5. Experimental value of the binding energy of 14Be with the theoretical values (this work) of the matter radius of
14Be and the deformation parameter of 12Be.

Nucleus
Binding energy (MeV) Deformation parameter (β2) Matter radius (fm)

exp present work present work
14Be −1.34 ± 0.11 [9] 4.5
12Be 0.4

Fig. 5. Energy of the bound state in the 14Be T- config-
uration and Y-configuration as functions of the deformation
for the ground state of the p1/2

12Be core.

Figure 3 shows the relationship between the deforma-
tion of the core and the potential between the core and
a neutron in 13Be, where the potential increases with
the increasing deformation, suggesting that the prolate
shape of the core has a high interaction with the neu-
tron halo. Figure 4 indicates that the two-body energy
is unbounded especially when the core is oblate.

Through normalization, the experimental value of the
deformation of 12Be in Fig. 5 and Fig. 6 was used to de-
termine the values of the binding energy and the matter
radius of 14Be, respectively, and the results are given in

Fig. 6. Rms matter radius of 14Be as a function of the
deformation.

Table 3. The binding energy and the matter radius were
found to be −1.531 MeV and 5.44 fm, respectively. The
binding energy was close to the experimental value of
−1.48 + 0.14 MeV [8], but the matter radius was higher
than the experimental value, confirming that 14Be is a
halo nucleus.

Using experimental data for the matter radius of 14Be,
we calculated the deformation of the core (12Be) and the
binding energy of the 14Be nucleus. The deformation pa-
rameter of 12Be was determined, as shown in Fig. 6, while
the binding energy from Fig. 5 is given in Table 4. The
value of the matter radius of 14Be indicates a small de-
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formation of 12Be at about β2 = 0.1. In this respect,
the result was more accurate than the experimental data
becuase the core consists of 4 protons and 8 neutrons,
meaning a closed shell for neutrons and 2 protons out-
side first closed shell for protons. Thus, the two protons
outside the closed shell do not create a strong quadrapole
deformation.

Similarly to the above, using the experimental value
of the binding energy of 14Be from Table 2 as in Fig. 5,
we obtained the value of deformation parameter of 12Be,
and we used that value (value of deformation) in Fig. 6
to obtain the matter radius of 14Be, as shown in Table 5.
The deformation parameter β2 was found to be 0.4, and
matter radius was at 4.5 fm. This slightly differs with
the experimental data, but indicates that 14Be is a halo
nucleus.

IV. CONCLUSION

In the present work, a cluster model was used to cal-
culate the binding energy, the root-mean-square (r.m.s.)
radius and the effect of deformation of the core on
the two-neutron energy of the two-neutron halo nucleus
14Be. 14Be was considered in this work to be a core+n+n,
a three-body system that depended on the Jacobi coor-
dinates. The core was considered to be deformed, and we
calculated the effect of the deformation on the two-body
and the three-body energies.

By using experimental data and through normaliza-
tion, we calculated the binding energy, the matter radius
of the 14Be nucleus and the deformation of 12Be. This
calculation showed that the core was deformed (prolate
shape), which had a clear effect on the bound states of
the two-body and the three-body systems. The weakly
bound state of the last two neutrons and the abnormal
matter radius of the 14Be nucleus were confirmed in this
work, as shown in the results. This further indicates that
the cluster model can be successfully used to determine
the properties of halo nuclei, especially the 14Be nucleus.
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