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The two-neutron halo nucleus 11Li has been investigated in this work. Jacobi coordi-
nates is used to describe the three-body system, using two configurations that are the
T-configuration and Y-configuration. The calculations have been calculated based on a
cluster model. The 11Li nucleus is considered as three-body system core (9Li) + n+ n.
The core here has been considered as a deformed core. The calculations confirmed that
the core has some deformation and has an oblate shape which in turn has effects on the
structure of three-body system.
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1. Introduction

The development of radioactive nuclear beams (RNB) through high-energy frag-

mentation has proven to be very useful in the study of the nuclear structure of

neutron-rich nuclei close to the so-called neutron-drip line, i.e., the threshold for

fragmentation into neutrons and other components. It was found in a series of

experiments1–3 on light nuclei that 11Li, 14Be and 17B have an abnormally large

root-mean-square (rms) radius. Hansen and Jonson have pointed out4 that this is

due to the neutron halo in the nucleus which gave new implications to the theory of

nuclear structure and nuclear reaction. Indeed studies on halo nuclei have attract

many nuclear physicists.

In general, the halo phenomenon is a threshold effect occurring in loosely bound

systems, in which particles are held in short-range potential wells. In favorable sta-

tus, a barely trapped particle or particles (or a cluster of particles) may tunnel out
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into the classically forbidden region. This “leakage” populates very dilute and frag-

ile structures near particle emission thresholds. The more loosely the halo particles

are confined, the more clearly “the halo stratosphere” is developed.5

In nuclear physics, the most obvious three-body halo candidates are light drip-

line nuclei with two neutrons encircling a core. Among them 11Li (= 9Li+n+n) is a

nuclear halo system. The first discovery of 11Li was back in the 1960s.6 There have

been a series of experiments to study 11Li. The interaction cross-section of lithium

isotopes colliding with nuclear targets was measured.7 The abnormally large values

for 11Li were soon interpreted as a consequence of extended neutron densities, a

neutron halo, consisting of a di-neutron coupled to a 9Li core.4 This was later

supported by a measurement of the momentum distribution of 9Li after the break-

up of 11Li.8 The material presented in this section is based on the paper.5 In the

paper, the value9 295 ± 26 keV was used for the two-neutron separation energy

in 11Li. However, as also commented in the paper, another experimental value10

376±5 keV was reported for the two-neutron separation energy and, this later value

was finally corrected to be 378 ± 5 keV.11 The di-neutron model suggested large

two-neutron removal cross-sections via Coulomb dissociation. The cross-sections

of electromagnetic dissociation of 11Li on high-Z targets at high12 and low beam

energies13 were found to reach abnormally large values. Later, charge-exchange

cross-sections of 8,9,11Li were calculated to be about the same,14 thus implying that

the 9Li core is little disturbed in 11Li. One of the first attempts to indirectly deduce

the neutron density of 11Li can be found in Ref. 15. The authors concluded that

only density distributions with very long tails consistently reproduce the observed

interaction cross-sections. Furthermore, the angular distributions of 9Li and 11Li

nuclei scattered elastically from protons are similar, but the elastic scattering cross-

section is smaller by about a factor of two for 11Li.16

β-decay denotes an interesting alternative for extracting information about halo

structure. Experimental efforts in this direction reported in Refs. 17, 18 and recently

in Ref. 19 give indication that the β-decay takes place basically in the halo of 11Li,

and that it proceeds mainly to the 9Li + d continuum, opening up a new means

to study the halo phenomenon in 11Li. The early reaction experiments were ex-

tended in later years, see for example reviews in Refs. 20 and 21. They contain

transfer, stripping and break-up reaction studies providing differential, rather than

integrated cross-sections. Reaction and decay experiments have been accompanied

by precise measurements of static properties: Measurements of two-neutron separa-

tion energy by methods of radio-frequency spectrometry22 and Penning trap23 for
11Li, nuclear charge radius determined by laser spectroscopy for 11Li,24 and elec-

tric quadrupole and magnetic moments of 11Li from nuclear magnetic resonance

experiments.25

There have been several theoretical studies of this nucleus. The early di-neutron

models of 11Li, such as,4 turned out to be too schematic to quantitatively describe

experimental data and were soon followed by more sophisticated three-body ap-

proaches. In the first generation, the three-body models of these nuclei treated the
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core as a fully inert object. Several methods of treating the three-body problem

were applied to 11Li. They include the Faddeev approach,26–28 the hyperspherical

harmonics method,26,29 the variational method on a harmonic oscillator basis,30 the

two-body Green’s function,31 and the cluster-orbital shell model.32,33 Some calcu-

lations within a pairing model were reported in Ref. 34. In all their generosity, the

three-body models of the next generation rewarded the core with some degrees of

freedom, namely with rotational modes.35 The no-core shell model36 is another so-

phisticated approach, which as its name suggests, is a shell model with all particles

active in harmonic oscillator shells; i.e., there is no inert core like in standard shell

model calculations. The model has been applied to 11Li.37 Somewhere between few-

body and truly microscopic models are microscopic cluster models, in which some

degrees of freedom are frozen to reduce the computational demands.

This is achieved through the formation of microscopic clusters with a simplified

internal structure within the nucleus being modeled. To a certain extent, cluster

structures can also be recognized in some of the microscopic models mentioned

above. The stochastic variational model38 and its multi-cluster version39 has been

applied to lithium40 isotopes. With simpler phenomenological forces of adjusted

strength, the model has been able to reproduce basic (three-body-like) properties

of 11Li.

2. Theoretical Framework

The three-body system or two-neutron halo nuclei should be defined in terms of

core and valence neutrons.

The distances between each pair of particles rjk and the distance between the

center of mass of the pair and the corresponding third particle (represented in

Fig. 1), can be expressed in terms of the Jacobian coordinates (x,y)

where x =
√

Ajkrjk =

√

AjAk

Aj +Ak
rjk

��

��

����

��	��������
����
��	��������
����

Fig. 1. Jacobi coordinates for three-body system.
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and yi =
√

A(jk)ir(jk)i =

√

(AjAk)Ai

Ai +Aj +Ak
r(jk)i .

The intrinsic Hamiltonian of the core determines a set of eigenstates φcore and

eigenvalues ξcore

with ĥcore(ξcore)φcore(ξcore) = εcoreφcore(ξcore) . (1)

The total wave function of the system from Jacobi coordinates

ΨJM(x, y, ξ) = φcore(ξcore)ψ(x, y) (2)

Ψ(x, y) contains the radial, angular and spin of the remaining two particles relative

to the core. The hyperspherical method was used here to convert two-dimensional

partial differential equation into a set of coupled one-dimensional equations. The

Jacobi coordinates (x, y) are transformed into the hyperspherical coordinates

(hyper-radius ρ and hyper-angle θ) defined as

ρ2 = x2 + y2 and θ = arctan

(

x

y

)

.

The hyperspherical expansion of the three-body radial and angular wave

functions is

Rn(ρ) =
ρ

5

2

ρ3o

√

n!

(n+ 5)!
L5
n lag(z) exp

(

−z

2

)

, (3)

where z = ρ/ρo.

ψ
lxly
k (θ) = N

lxly
k (sin θ)lx(cos θ)lyP

lx+
1

2
,ly+

1

2

n (cos 2θ) . (4)

The wave function of the valence neutrons is

ψ
lxly
n,k (ρ, θ) = Rn(ρ)ψ

lxly
k (θ) . (5)

So ψ(x, y) in Eq. (2) is

ψ(x, y) = ψ
lxly
n,k (ρ, θ) ,

where L5
n lag(z) are Associated Laguerre Polynomials of the n lag = 0, 1, 2, . . . ,

P
lx+

1

2
,ly+

1

2

n (cos 2θ) is the Jacobi Polynomial. Equation (3) is function of (ρ) be-

cause of the z dependence on (ρ) with z = ρ/ρo. Values of ρ and ρo are explained

in Sec. 3. n = lx + 1 and we assumed n lag = n. N
lxly
k is a normalization coeffi-

cient and k is the hyperangular momentum quantum number k = lx + ly + 2n for

(n = 0, 1, 2, . . .). The wave function of the system comes from the internal wave

function of every body in that system. The internal wave function of each neutron

were obtained by solving the Schrödinger equation in spherical coordinates. More

details about the formalism of the hyperspherical harmonics method is presented

in Refs. 41 and 42. The total Hamiltonian Ĥ , of the system is

Ĥ = T̂ + ĥcore(ξ) + V̂core-n1(rcore-n1, ξ) + V̂core-n2(rcore-n2, ξ) + V̂n−n(rn−n) .

(6)
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The Hamiltonian contains the kinetic energy T̂ = T̂x+T̂y, the intrinsic Hamiltonian

of the core ĥcore(ξ) which depends on the internal variables ξ, a two-body interac-

tion Vcore-n and Vn−n are for all pairs of interacting bodies. Here the potential is

taken as a deformed Wood–Saxon potential as well as a spin–orbit interaction.

The rotational model is assumed for the structure of the core, hence the core

is a deformed axially symmetric rotor, in the body-fixed frame the radius of this

deformed core is expanded in spherical harmonic and, for simplicity, we retain only

the quadrupole term, as Eq. (9).

V̂core-n(rcore-n, ξ)=
−V0

[

1 + exp

(

rcore-n −R(θ, φ)

a

)]

+
−~

2

m2c2
(2l · s)

Vso
4rcore-n

d

drcore-n

([

1 + exp

(

rcore-n−Rso

aso

)

−1])

,

(7)

Vn−n(rn−n) = −
~
2

m2c2
(2l · s)

Vso
4rn−n

d

drn−n

([

1 + exp

(

rn−n −Rso

aso

)

−1])

, (8)

with

R = R0[1 + β2Y20(θ, φ)] . (9)

R0 = 1.25A
1

3

core, we assumed Rso = R and l is the operator of orbital momentum

between core and a neutron, s is the operator of a neutron’s spin and m = mπ is the

mass of pion for practical calculations ( ~

mπ

) = 2.0 fm2, β2 is the core’s quadrupole

deformation and Acore is the mass number of the core. The operator for the average

squared distance of nucleons for an A-body system from the position of total center

of mass

rCM =
1

A

A
∑

i=1

ri , (10)

r2m =
1

A

A
∑

i=1

(ri − rCM)2 , (11)

where ri is the position of i nucleon, rCM is center of mass and the rms matter

radius 〈r2m〉
1

2 of the nucleus is

〈r2m〉
1

2 =
1

A
[Acore〈r

2
m(core〉+ 〈ρ2〉] . (12)

The total quadrupole moment for halo nuclei can be written as Q = Qj +Qc, Q is

the total quadrupole moment composed of Qj due to the loose nucleon and Qc due

to the core. Generally Qc ≫ Qj .
43

Qc = Q′

[

(3Ω2/2J2)−
1

2

]

. (13)
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Equation (13) can be written as

Qc = Q′
J

2J + 3

[

3Ω2

J(J + 1)
− 1

]

, (14)

where J is the total nuclear angular momentum, Ω is the projection of j (nuclear

angular momentum) and Q′ can be taken equal to

Q′ =
4

5
δZR2 ,

where Z is atomic number, R radius of the nucleus calculated before and δ is related

to the deformation parameter β2 (β2 = 2/3(4π/5)1/2δ).43

3. Calculation Method and Results

In Fig. 2, the three bodies are the core and two neutrons with the wave function

of each particle, as explained in the figure and described in the theoretical section.

Equation (5) describes a wave function of the valence neutrons, φ in Eq. (2) de-

scribes a wave function of the core, calculated by using shell model and Eq. (2)

itself describe a total wave function of three-body system.

The three-body Hamiltonian, Eq. (6) has been applied to calculate energy of

two-neutron halo nucleus. The relationship between the three-body depends on the

central Wood–Saxon potential and spin–orbit interaction as in Eq. (7). The two

configurations (T-configuration and Y-configuration) were used in the calculation

by using Jacobi coordinates. With assumption that the core is deformed and is

connected to the two neutrons. The bounded states energies of 11Li, the binding

energy, the matter rms radius and a deformation of 9Li were calculated. The values

of ρ and ρo in Eq. (3) were approximated from the formulas

ρo =
√

j(j + 1), where j = lx +
1

2
,

��������	
�������

����

��������
�������
�������

��

�����

����
������� ����
�������

�

Ȉ�������
������
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Fig. 2. Description of wave functions of three-body nucleus.
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ρ =
√

mj(mj + 1), where mj = −j,−j + 1, . . . , j ,

where the total angular momentum (j) of the valence neutron depends on the radius

of core-n, so using these approximations, ρ and ρo were calculated.

In Eq. (9), Y20(θ, φ) is taken as

Y20(θ, φ) =
1

4

√

5

π
(3 cos2(θ)− 1) .

The central Wood–Saxon depends on the core’s quadrupole deformation parameter

β2 through the radius R, Eq. (9). Throughout the present work, the spin–orbit

term was left deformed (with radius ro = 1.25 fm where Ro = roA
1/3). Radius Rso

was made equal to R at all deformation. The diffuseness was fixed to the standard

value aws = aso = 0.65 fm. The calculations were performed for the full range of the

deformation parameter β2 ∈ [−0.7, 0.7]. The properties of 11Li has been calculated

upon variation of the core deformation β2 with fix spin–orbit depth, Vso at 7.5 MeV

and the central Wood–Saxon depth, Vo at 74 MeV.

Table 1 contains all the parameters used in the calculations. To determine the

properties of three-body halo nuclei for 11Li, the properties of two-body system

of 10Li treated as the ground state for 11Li must be understood. The information

about 10Li is that, the 10Li nucleus consist of a core and valence neutron placed

in a 2s1/2 state with energy about 50 keV, 1p1/2 resonant state or p-resonance is

assumed to be about 500 keV28 and no evidence for a d-state, so will be considered

the d-resonance. Figure 3 shows the variation of potential with deformation, where

the core-n potentials have been effected by core deformation. The core-n potential

increases as β2 increases (for β2 > 0) and the nucleus has a prolate shape. This

influence the position of two-body energy state of 10Li as shown in Fig. 4. Note

that, the ground state of the core 9Li is Jπ(9Li) = 3/2−. The valence neutron may

be coupled to the ground state of the 9Li core to produce a nuclear state Jπ(10Li)

or the valence neutron may be coupled to the excited state of the 9Li core. We

can expect two p1/2-resonances built on an inert core [1p1/2 ⊗ 0+]1/2+ and on

the excited core [1d5/2 ⊗ 2+]1/2+. From Fig. 4, the unbound energy is at higher

deformation on the negative side (oblate shape) at β2 < −0.4. Also shown in Fig. 4,

Table 1. Parameters of calculations.

ro a aso Vo Vso

lx ly n K ρ ρo (fm) (fm) (fm) (MeV) (MeV)

0 0 1 2 0.866 0.866 1.25 0.65 0.65 −74 −7.5

1 1 2 6 0.866 1.936 1.25 0.65 0.65 −74 −7.5

— — — — 1.936 — 1.25 0.65 — — —

2 2 3 10 0.866 2.958 1.25 0.65 — — —

2 2 3 10 1.936 — 1.25 — — — —

2 — — — 2.958 — 1.25 — — — —
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Fig. 3. 9Li-n potential as function of deformation.

the second component disappear, suggesting that a neutron built on an excited core

is not entirely accurate.

In the present work, the binding energy, matter radius of the three-body system

(11Li) and deformation of the core (9Li) were calculated with normalization and

using experimental data. The deformation of the core plays a big role and has high

influence on the two-neutron halo nucleus of 11Li. Depending on the relationship

between deformation of the core and properties of two-neutron halo nucleus, these

properties have been calculated. The experimental data for the above properties

are given in Table 2.

Figure 5 describes variation of binding energy of three-body system with core

deformation. Two configurations have been shown in Fig. 5. The differences between

two configurations are not big, indicating that the spin–orbit interaction does not

have a large effect comparison to the central potential effect. The variation of matter

radius of three-body system with deformation is given in Fig, 6. As shown in Figs. 5

and 6 the properties of three-body system depended on the deformation of a core.

The normalization method was used to determine the above properties. The

experimental value of deformation parameter of 9Li (β2 = −0.2) from Table 2 has

been used both in Fig. 5 to obtain value of binding energy of three-body system
11Li, and also in Fig. 6. To get value of matter radius of two-neutron halo nucleus
11Li. All these values are given in Table 3.

The latest value of experimental data for the matter radius of 11Li (Rexp
m =

3.12 fm) was used to calculate the deformation of the core 9Li and binding energy

1250066-8
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Fig. 4. Energy of bound state in 10Li as function of deformation with ground state of the core
(9Li)p−

3/2
.

Table 2. Experimental data of binding energy, matter radius of 11Li and
quadrupole moment of 9Li.

Nucleus Eexp (keV)44,11 R
exp
m (fm)45–47 Quadrupole (mb)48

11Li −369.15(65) 3.27± 0.24

— −378 ± 5 3.12± 0.66

— 3.55± 0.1
9Li −30.6(2) (β2 = −0.2)

of 11Li nucleus. This value has been used in Fig. 6, the deformation parameter of
9Li, was obtained about (β2 = −0.195) and this was used to determine the binding

energy from Fig. 5, as shown in Table 4.

Similarly, as above, the experimental data for binding energy of 11Li (Eexp =

−369.15(65) keV) has been used in Fig. 5 to determine value of core deformation

and then this value (of β2, deformation parameter of the 9Li core) was used in

Fig. 6 to calculate matter radius of 11Li, which was found to be about (2.6 fm), as

shown in Fig. 6 and also given in Table 5. On the figure both experimental data

and theoretical are in agreement that 9Li nucleus is deformed (oblate) but with a

bigger deformation parameter theoretically, and rms of about 2.6 fm.

Figure 7 shows the probabilities of the main components of three-body wave

function (s1/2)
2, (p1/2)

2 and (d5/2)
2. The β2 dependence of these probabilities has
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Fig. 5. Energy of bound state in 11Li as function of deformation with ground state of the core
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Fig. 6. Rms matter radius of 11Li as a function of deformation.
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Table 3. Experimental value of quadrupole moment of 9Li with theoretical value
(calculated) of binding energy and matter radius of 11Li.

Quadrupole (mb) Binding energy (keV) Matter radius (fm)
Nucleus exp. calculated calculated

9Li −30.6(2) (β2 = −0.2)48

11Li −520 3.25

Table 4. Experimental value of matter radius of 11Li with theoretical value (calculated)
of binding energy of 11Li and deformation parameter of 9Li.

Matter radius (fm) Deformation parameter (β2) Binding energy (keV)
Nucleus exp. calculated calculated

11Li 3.1246 −530
9Li −0.195

Table 5. Experimental value of binding energy of 11Li with theoretical value (calculated)
of matter radius of 11Li and deformation parameter of 9Li.

Binding energy (keV) Deformation parameter (β2) Matter radius (fm)
Nucleus exp. calculated calculated

11Li −369.15(65)44 2.6
9Li −0.35
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Fig. 7. Probabilities of the main components in the three-body wave function of 11Li as a function
of β2.
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been studied for fixed Vo and Vls. From Fig. 7, for high deformation (oblate shape),

the (p1/2)
2 probability is more than 90% and decreases quickly with β2, while for

high deformation but (prolate shape), the (s1/2)
2 probability is more than 90%. The

(s1/2)
2 component increases with positive β2, where on the whole the contribution

of the (d5/2)
2 is small which is about 10% when β2 = −0.7 and decreases with

β2. The (p1/2)
2 and (s1/2)

2 components were 70% and 14%, respectively for the

experimental value of β2 (β2 = −0.2). In general the contribution of the components

as shown in Fig. 7, are in agreement with that obtained in Ref. 5, but with some

contrasting values, especially for the (p1/2)
2 and (s1/2)

2 components, while in full

agreement with (d5/2)
2 component.

4. Conclusion

In the present work, a cluster model calculation was performed to determine the

properties of nuclear structure for the two-neutron halo nucleus of 11Li. Our cal-

culation for a three-body problem has treated 11Li as a core + n + n with the

core, considered deformed and the calculated effect that deformation on two-body

and three-body energies. The calculations have been performed base on Jacobi co-

ordinates for two configurations T-configuration and Y-configuration to describe

two-neutron halo nucleus of 11Li. The two-body system of 10Li throughout this

work has been confirmed as an unbound system and consequently the 11Li nucleus

has Borromean property. Through normalization and the using of experimental

data, the binding energy, matter radius of 11Li nucleus and also deformation of 9Li

were calculated. The dependence on this method of calculation has shown that the

core is deformed (oblate shape). This deformation has a clear effect on the bound

state of the two-body and three-body system. The loosely bound state of the last

two neutrons and the large matter radius of 11Li nucleus have been confirmed in

this work.
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