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Abstract: This paper presents a new approach to solve one dimensional system viscous 

Burgers’ equation with boundary conditions Dirichlet type using collocation method based 

on cubic trigonometric B-spline. The usual finite difference scheme is applied to discretize 

the time derivative. Cubic Trigonometric B-spline basis functions are used as an 

interpolating function in the space dimension. Two test problems are presented to confirm 

the accuracy and efficiency of the new scheme and to show the performance of trigonometric 

basis functions. The numerical results are found to be in good agreement with known exact 

solutions and also with earlier studies.  
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1. Introduction 

         Partial differential equations (PDEs) have numerous essential applications in various fields of 

science and engineering such as fluid mechanic, thermodynamics, heat transfer and physics. Most of 
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these equations are nonlinear partial differential equations. It is difficult to handle nonlinear part of these 

equations. Although most of scientists applied numerical methods to find the solution of these equations, 

solving such equations analytically is of fundamental importance since the existent numerical methods 

which approximate the solution of PDE don’t result in such an exact and analytical solution which is 

obtained by analytical methods.  

In this paper, we are discussing the numerical solutions of one dimensional system of Burgers’ 

equations, proposed by Esipov [1].  This system is a simple model of sedimentation or evolution of 

scaled volume concentrations of two kinds of particles in fluid suspensions or colloids under the effect 

of gravity [2]. The coupled Burgers’ equation is given by 

            
( ) 0 [ , ], 0

( ) 0 [ , ], 0

t x x xx

t x x xx

u uu uv u x a b t T

v vv uv v x a b t T

 

 

      

      
                             (1)         

with initial conditions  

0 0( ,0) ( ) , ( ,0) ( )u x u x v x v x                                                  (2)  

and boundary conditions  

       
1 2

1 2

( , ) ( ) , ( , ) ( )

( , ) ( ) , ( , ) ( )

u a t f t u b t f t

v a t g t v b t g t

 


 
                                        (3)                

where ,  and    are constant, and subscripts x and t denote differentiation of distance and time 

respectively. The coupled Burgers equations belong to an important class of basic flow equations [3], 

Ersoy and Idris solved nonlinear coupled Burger Equation by Exponential Cubic B-spline Finite Element 

[4]. Kutluay and Ucar solved coupled Burgers’ equation by the Galerkin quadratic B-spline finite 

element method [5]. Vineet et al. used the fully implicit Finite-difference to solve one dimensional 

Coupled Nonlinear Burgers’ equations [6]. Kaya solved the coupled viscous Burgers equation by the 

decomposition method [7]. Mittal and Tripathi used the Collocation Method for solved Coupled Burgers’ 

equations [8]. Mittal and Arora solved the coupled viscous Burgers’ equations using cubic B-spline 

collocation scheme on the uniform mesh points based on Crank–Nicolson formulation for time 

integration and cubic B-spline functions for space integration [9]. Mittal et al., in [10] used Haar wavelet-

based numerical investigation to solve coupled viscous Burgers’ equation. Ghotbi et al. employed the 

homotopy perturbation method [11].  Rashid and Ismail used the Fourier pseudo-spectral method for 

finding the approximate solutions of the coupled Burgers’ equation [12]. Abazari and Borhanifar 

obtained both numerical and analytical solutions of the Burgers’ and coupled Burgers’ equations using 

the differential transformation method [13]. Zhang et al. have extended the local discontinuous Galerkin 

method to solve Burgers’ and coupled Burgers’ equations [14]. Siraj-ul-Islam et al., in [15] solved 

coupled Burgers’ equation numerically by a simple classical RBFs collocation (Kansa) method without 

using a mesh to discretize the problem domain. Khater [16] and Rashid [17] solved the Burgers-type 
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equations using a Chebyshev spectral collocation method and Chebyshev–Legendre Pseudo-Spectral 

method respectively. 

         In our paper, a numerical collocation finite difference technique based on cubic trigonometric B-

spline is presented for the solution of system of viscous Burgers’ equation (1) with initial conditions in 

equation (2) and boundary conditions in equations (3). A usual finite difference scheme is applied to 

discretize the time derivative while cubic trigonometric B-spline is utilized as an interpolating function 

in the space dimension.  

         The outline of this paper is as follows: In section 2, cubic trigonometric B-spline scheme is 

explained. In section 3, described the method and applied to the system of viscous Burgers’ equation. In 

section 4, stability of the method is discussed. In section 5, the accuracy and efficiency of suggested 

method are illustrated by examples. Conclusion is given in section 6. 

2. Cubic Trigonometric B-Spline Functions 

        In this section, we define the cubic trigonometric basis function as follows [7, 8]. 

 

 

3

1

2

2 3 1 4 1 1 24

2

4 1 3 4 2 3 2 3

3

4 3 4

( ), [ , )

( ) ( ) ( ) ( ) ( ) ( ) ( ), [ , )1
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ), [ , )

( ), [ , ]

j j j

j j j j j j j j j

j

j j j j j j j j j

j j j

q x x x x

q x q x p x p x q x p x p x x x x
T x

z p x p x q x q x p x p x q x x x x

p x x x x



      

       

  

 


  
 

  




   (4) 

where, 

 
3

( ) sin , ( ) sin , sin sin sin
2 2 2 2

j j

j j

x x x x h h
q x p x z h

        
         

      
 

where ( )h b a n   and 
4 ( )jT x is a piecewise cubic trigonometric function with some geometric 

properties like  2C continuity, non-negativity and partition of unity [18,19]. The values of
4 ( )jT x and its 

derivatives at nodal points are required and these derivatives are tabulated in Table 1. Secondly, we 

discuss the cubic trigonometric B-spline collocation method (CuTBSM) for the solving numerically the 

system of viscous Burgers’ system (1). 

 

Table 1: Values 
4 ( )jT x and its derivatives 

x  jx  
1jx 
 

2jx 
 

3jx 
 

4jx 
 

jT  0 𝑏1 𝑏2 𝑏1 0 

jT   0 3b  0 𝑏4 0 

jT   0 𝑏5 𝑏6 𝑏5 0 
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where 

 

2

1

sin
2

3
sin sin

2

h

b
h

h

 
 
 


 
 
 

, 

 2

2

1 2cos
b

h



, 

3

3

3
4sin

2

b
h

 
 
 
 

, 

4

3

3
4sin

2

b
h


 
 
 

, 

  
5

2

3 1 3cos

3
16sin 2cos cos

2 2 2

h
b

h h h




      
      

      

, 

  

2

6
2

3cos
2

sin 2 4cos
2

h

b
h

h

 
 
 

 
 

 
 

. 

3. Description of Numerical Method 

      This section discusses the cubic trigonometric B-spline collocation method for solving the system 

of viscous Burgers’ equation (1). The domain a x b  is equally divided by knots
jx into N subintervals,

 

1[ , ]j jx x  , 0,1,2,..., 1j N  where 0 1 ... Na x x x b     . 

       Our approach for system of Burgers’ equation (1) using cubic trigonometric B-spline is to seek 

an approximate solution as:  

1
4

3

1
4

3

( , ) ( ) ( )

( , ) ( ) ( )

N

j j j

j

N

j j j

j

U x t C t T x

V x t D t T x
















                                                       (5)                                                         

 

where ( )jC t  and (t)jD   are to be determined for the approximated solutions ( , ), ( , )j jV x t U x t to the exact 

solutions ( , ), ( , )exc excu x t v x t at the point ( , )j ix t . 

The approximations ,i i

j jU V at the point ( , )j ix t over subinterval
1[ , ]j jx x 

can be defined as: 
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1
4

3

1
4

3

( )

( )

j
i i

j k k

k j

i
i j

j k k

k i

U C T x

V D T x



 



 









                                                           (6)                                                         

where 0,1,2,...,j N . So as to get the approximations to the solution, the values of 4 ( )jT x  and its 

derivatives at nodal points are required and these derivatives are tabulated using approximate functions 

(4) and (6), the values at the knots of 
i

jU , i

jV and their derivatives up to second orders are: 

 

 

1 3 2 2 1 1

3 3 4 1

2

5 3 6 2 5 12

1 3 2 2 1 1

3 3 4 1

2

5 3 6 2 5 12

,

,

,

,

i i i i

j j jj

i

i i

j j

j

i

i i i

j j j

j

i i i i

j j jj

i

i i

j j

j

i

i i i

j j j

j

U b C b C b C

U
b C b C

x

U
b C b C b C

x

V b D b D b D

V
b D b D

x

V
b C b C b C

x

  

 

  

  

 

  

   

  
   

 

 

   
 


  

 
  

 

 
   

 











                                               (7)               

      The approximations for the solutions for system of viscous Burgers’ equation (1) at
1jt 
th time 

level can be given as: 

1 1

1 1

( ) (1 ) 0

( ) (1 ) 0

i i i

t j j j

i i i

t j j j

U A A

V B B

 

 

 

 

   

   
                                                    (8) 

where ( ) (( ) ) ( )i i i i

j x j x j xx jA UU UV U     and ( ) (( ) ) ( )i i i i

j x j x j xx jB VV UV V     the subscripts j and

1j  are successive time levels, 0,1,2,3,...j  Discretizing the time derivatives in the usual finite 

difference way and rearranging the equations, we get: 

1 1

1 1

(1 )

(1 ) B

i i i i

j j j j

i i j i

j j j j

U t A U t A

V tB V t

 

 

 

 

    

    
                                              (9) 

where t is the time step size. The nonlinear term 1( ) j

x iUU  , 1( ) j

x iVV   and 1(( ) ) j

x iUV   in equation (9) is 

linearized by using the following form [20]: 

1 1 1

1 1 1 1

1 1 1 1

(( ) ) ( ) ( )

( )

( )

i i i

x x x

j i i i i i i

x x x x

i i i i i i i

x x x x

UV VU UV

UU U U U U U U

VV V V V V V V

  

   

   

 

  

  

                                         (10)                   
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Substituting equation (10) into (9) and for Crank-Nicolson scheme [21] we set 0.5  , in this 

paper. The equation (10) yields the following 

1 1 1 1 1

1 1 1 1 1

(1 ) ( )
2 2 2 2 2 2 2

(1 ) ( )
2 2 2 2 2 2 2

i i i i i i i i i i i

x x x x x xx

i i

xx

i i i i i i i i i i i

x x x x x xx

i i

xx

t t t t t t t
U V U U V U U V V U U

U U

t t t t t t t
V U V V U V V U U V V

V V

     

     

    

    

      
      

 

      
      

 

 (11) 

       After simplifying (11) and using (7), the system consists 2( 1)N  linear equations known with

2( 3)N  unknowns 3 2 1 3 2 1, ,..., , , ,...,N NC C C D D D      at the time level 1jt t  .                                                   

        The boundary conditions given in (3) are applied for four additional linear equations to get a 

unique solution of the resulting system. 

1

0 1 1

1

2 1

1

0 1 1

1

2 1

( ) ( )

( ) ( )

( ) ( )

( ) ( )

i

j

i

N j

i

j

i

N j

U f t

U f t

V g t

V g t

























                                                              (12) 

        Thus, the system becomes a matrix system of dimension 2( 3) 2( 3)N N   which is a tri-diagonal 

system that can be solved by the Thomas Algorithm [18-19]. The system (11) can be written in the matrix 

form as follows: 

1i iMF NF b                                                         (13) 

where 

3 2 1 3 2 1[ , ,..., , , ,..., ]i i i i i i i T

N NF C C C D D D       

1 1 2 1 1 1 2 1[ ( ),0,0,0,.. ( ), ( ),0,0,0,.. ( )] , 0,12,..T

j j j jb f t f t g t g t j       

and M is an 2( 3) 2( 3)N N   dimensional matrix given by:  
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1 2 1

1 2 1

1 2 1

1 1 1 1 1

0 . . 0 0 0 0 . . . 0

0 . . 0 . . . 0

0 . . 0 0 0 0 . . . 0

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

0 0 . . 0 0 0 .

0 . . . 0 0 0 . . . 0

0 0 . . . . 0 0 . . 0

. . . 0 0 . . 0

. . . . . . 0 0 0 . . . . .

. . . . . , . . . . . . . .

. .

b b b

a b c d e f

a b c

a b c d e f

b b b

M

b b b

d e f a k c

              

1 1 1 1 1

1 2 1

.

. . . . . . . . . . . .

. . . . . . . . . . . . . .

0 0 . . 0 0 . .

0 0 . . . 0 0 0 0 . .

d e f a k c

b b b

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

Also N is an 2( 3) 2( 3)N N   dimensional matrix given by:  

 

 

1 1 1

1 1 1

1 1 1

2 2 2

0 0 0 0 . . 0 0 0 0 . . . 0

0 . . 0 0 0 0 . . . 0

0 . . 0 0 0 0 . . . 0

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

0 0 . . 0 0 0 . 0 0 0

0 . . . 0 0 0 0 0 0 . . . 0

0 0 . . . . 0 0 0 0 0 . . 0

0 0 0 . . . 0 0 . . 0

. . . . . . 0 0 0 . . . . .

. . . . . , . . . . . . . .

. . . .

p q z

p q z

p q z

N

p q z

              

2 2 2

.

. . . . . . . . . .

. . . . . . . . . . . . . .

0 0 . . 0 0 0 0 0 . .

0 0 . . . 0 0 0 0 . . 0 0 0

p q z

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

where 
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1 3 5(1 ) ( )
2 2 2 2 2

i i i i

x x

t t t t t
a u v b u v b b   

    
      , 

2 6(1 )
2 2 2

i i

x x

t t t
b u v b b 

  
     , 

1 4 5(1 ) ( )
2 2 2 2 2

i i i i

x x

t t t t t
c u v b u v b b   

    
      , 

1 3

2

1 4

1 1 5

1 2 6

1 1 5

,
2 2

,
2

,
2 2

,
2

,
2

,
2

i i

x

i

x

i i

x

t t
d u b u b

t
e u b

t t
f u b u b

t
p b b

t
q b b

t
z b b

 



 

 
 




 
 


 


 


 

  

1 1 3 5(1 ) ( ) ,
2 2 2 2 2

i i i i

x x

t t t t t
a v u b v u b b   

    
       

2 6(1 )
2 2 2

i i

x x

t t t
k v u b b 

  
     , 

1 1 4 5(1 ) ( )
2 2 2 2 2

i i i i

x x

t t t t t
c v u b u v b b   

    
      ,  

1 1 3

1 2

1 1 4

2 1 5

2 2 6

2 1 5

,
2 2

,
2

,
2 2

,
2

,
2

.
2

i i

x

i

x

i i

x

t t
d v b u b

t
e v b

t t
f v b u b

t
p b b

t
q b b

t
z b b

 



 

 
 




 
 


 


 


 
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3.1. Initial State            

        The initial vectors
0D and 0C   are computed from the initial conditions, the approximate solution 

𝑈𝑗
𝑖+1 and 𝑉𝑗

𝑖+1 at a particular time can be calculated repeatedly the recurrence relation. 
0 0,CD  can be 

provided from initial condition and boundary values of the derivatives as follows:  

 
0

0

0

0

0

0

( ) ( ) 0

( ) 0,1,...,

( ) ( )

j x j

j j

j x j

U u x j

U u x j N

U u x j N

  


 


 

                                                (14)                                      

Also to approximate another solution 1i

jV   

   

0

0

0

0

0

0

( ) ( ) 0

( ) 0,1,...,

( ) ( )

j x j

j j

j x j

V v x j

V v x j N

V v x j N

 

 

 

                                                 (15)                                       

Thus, equations (14) and (15) provided a 2( 3) 2( 3)N N   matrix system, of the form:  

0AF d  

Where  

3 4

1 2 1

1 2 1

1 2 1

3 4

3 4

1 2 1

0 0 . . 0 0 0 0 . . . 0

0 . . 0 0 0 0 . . . 0

0 . . 0 0 0 0 . . . 0

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

0 0 . . 0 0 0 . . . 0

0 . . . 0 0 0 0 . . . 0

0 0 . . . . 0 0 0 . . 0

0 0 . . . . 0 0 . . 0

. . . . . . 0 0 0 . . . . .

. . . . . , . . . . . .

b b

b b b

b b b

b b b

b b

A

b b

b b b

              

1 2 1

3 4

.

. .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

0 0 . . . 0 0 0 0 . .

0 0 . . . 0 0 0 0 . . 0

b b b

b b

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

0 0 0 0 0 0 0

3 2 1 3 2 1[ , ,..., , , ,..., ]T

N NF C C C D D D       
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0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0[ ( ), ( ), ( ),... ( ), ( ), ( ), ( ), ( ),... ( ), ( )]T

N N N Nd u x u x u x u x u x v x v x v x v x v x      

  

4. Stability Analysis 

          A solution of numerical method is said to be unstable, if errors introduced at some stage in the 

calculations (for example, from erroneous boundary conditions or local truncation or round-off errors) 

are propagated without bound throughout subsequent calculations. Thus a method is stable if the 

difference between the theoretical and numerical solutions remains bounded at a given t, as time and 

space steps tend to zero or time step remains fixed at every level and t → ∞.  

         Following, suppose the errors are given by: 

           𝐸𝑢𝑚
2n+1 = Uexact(xm) – Uapprox.(xm)   

And    𝐸𝑣𝑚
2n+1 = Vexact(xm) – Vapprox.(xm)         (16) 

Uexact(xm) and Vexact(xm) is the exact solution and Uapprox.(xm) and Vapprox. is the solution with suggested 

method of the scheme so that Uapprox.(xm) and Vapprox. contains approximate errors.   

        We suggest the following condition: 

lim
𝑛→∞

║ Em
2n+1 ║ = 0 

4.1. Conditioning  

         A small change to the differential equation or initial or boundary condition, results in a small 

change to the solution must be considered, a problem has this property is said to be well-conditioned. 

Otherwise, the problem is said to be ill-conditioned.   

          Consider the problem: 

uxx = f(x, t, ux, vx, ut, vt) 

vxx = g(x, t, ux, vx, ut, vt)                                                                                     (17) 

       For a well-posed problem we now make the following assumptions:  

1) Problem (17) has an approximate solution with this solution and ρ > 0, associate the spheres: 

           Sρ(Uapprox.(x)) ={ U  IRn: | Uapprox.(x) − Uexact(x) | ≤ ρ } 

           Sρ(Vapprox.(x)) = { V  IRn: | Vapprox.(x) − Vexact(x) | ≤ ρ }  

2) f(x, t, ux, vx, ut, vt) is continuously differentiable with respect to u, v and 
∂f(x,t,ux,vx,ut,vt)

∂u
, 

∂g(x,t,ux,vx,ut,vt)

∂v
,  are continuous. 

          This property is important due to the error associated with approximate solutions to the problem. 

Depending on the suggested method, approximate solution may exactly satisfy the perturbed: 

         u xx approx. = f(x, t, ux, vx, ut, vt) + r(x);     

          v xx approx. = g(x, t, ux, vx, ut, vt) + s(x);                                                 (18)  
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where r, s: R → Rm. 

         If u xx approx. and v xx approx. is a reasonably good approximate solution to (1), then ║r(x)║ and 

║s(x)║ is small. However, this may not imply that the approximate is close to the exact solution. A 

measure of conditioning that relate ║r(x)║ and ║s(x)║ to the error in the approximate solution can be 

determined. 

4.2. Error / Defect Weights 

Every known BVP software package reports an estimate of either the relative error or the 

maximum relative defect. The weights used to scale either the error or the maximum defect differs among 

BVP software. Therefore, the BVP component of pythODE allows users to select the weights they wish 

to use. The default weights depend on whether an estimate of the error or maximum defect is being used. 

If the error is being estimated, then the BVP component of pythODE uses. In this paper we modify this 

package to consist our problem with named "pythCuTBSM", which defined as: 

‖u xx approx.  −  f(x, t, ux, vx, ut, vt)‖
∞

1 +  ‖f(x, t, ux, vx, ut, vt)‖∞
 

‖v xx approx.  −  g(x, t, ux, vx, ut, vt)‖
∞

1 + ‖g(x, t, ux, vx, ut, vt)‖∞
 

                                                                        

 5. Numerical Illustrations 

        To illustrate the accuracy and efficiency of suggested method, two examples are solved in this 

section with L and relative 2L  error norms are calculated by: 

2

2

2

max ,

N

exci i

i

exci i
Ni

exci

i

U U

L U U L

U





  





    

          The numerical order of convergence p for numerical solution ( , )U x t and ( , )V x t is obtained by 

using the formula [9, 19]  

 

 

( ) (2 )

2

Log L N L N
p

Log N N

 
  

where ( )L N and (2 )L N are the errors at number of partitions n and 2n respectively. We compare the 

numerical solutions obtained by cubic trigonometric B-spline collocation method for system of viscous 

Burgers’ equation (1) with known exact solutions and those numerical methods which were exiting in 

literature. Numerical results are computed by cubic trigonometric B-spline collocation method for 
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system of viscous Burgers’ equation (1) at different time levels which are tabulated and depicted in 

different Tables and Figures respectively. The feasibility of the method is shown by test problems and 

the approximated solutions are found to be in good agreement with the exact solutions. The proposed 

method is superior to Mittal and Arora [9], Rashid et al. [12], Khater et al. [16] and Rashid et al. [17]. 

 

Problem 1 

      Consider the one dimensional system of viscous Burgers’ equation (1) with 1.0   and 2    

which leads equation (1) – (2) as [9, 12, 17]: 

2 ( ) 0

2 ( ) 0

t xx x x

t xx x x

u u uu uv

v v vv uv

   


   
 

with the initial conditions given by 

 0 0( ) ( ) sin ,u x v x x x       

and boundary conditions as follows: 

1 2 1 2( ) ( ) 0, ( ) ( ) 0, 0f t f t g t g t t T       

The known solutions of this problem is  ( , ) ( , ) sint

exc excU x t V x t e x  . The proposed method is applied 

to calculate the numerical solutions for system of viscous Burgers equation (1)-(3) by taking domain

x     with 0.001t  . The absolute errors at different time levels and different number of 

partitions are reported in Table 2. The ratio in absolute errors L  and order of convergence of the 

proposed method at different time levels and different number of partitions which are tabulated in Table 

3 and it shows that the method has an approximately two order of convergence. Figure 1 depicts the 

graphs of comparison between exact and numerical solutions at different time levels with

200, 0.001N t   . Figure 2 shows the space-time graph of exact and approximate solutions at 1.0T 

with 1 200, 0.001h t   . Due to symmetric initial and boundary conditions, the numerical results are 

similar for ( , )V x t . The numerical solution of suggested method gives more accurate than Mittal and 

Arora [9] and Rashid et al [12, 17].  
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Table 2: Relative errors and maximum errors of Problem 1 for ( , )U x t with 0.001t   

 

time 

CuTBSM (Proposed)   CuBSM[9] 

2L (N=200)  L
  

2L  (N=400) L
 

2L (N=200)  L
  2L  (N=400) L

  

0.1 1.23E-05 6.96E-06 1.91E-06 1.73E-06 8.21E-06 7.45E-06 2.05E-06 1.86E-06 

0.5 3.85E-05 2.33E-05 9.59E-06 5.82E-06 2.49E-05 4.10E-05 1.02E-05 6.22E-06 

1.0 7.70E-05 2.83E-05 1.91E-05 7.06E-06 3.00E-05 8.21E-05 2.04E-05 7.56E-06 

 

 

   

time 

Rashid [12]   Rashid [17] 

2L (N=200)   L
  

2L (N=400) L
 

2L (N=200) L
 

2L  (N=200) L
 

0.1 No data No data No data No data No data No data No data No data 

0.5         

1.0 2.88E-05 1.16E-05   2.77E-05 1.05E-05   

 

Table 3: L errors, ratio and order of convergence of Problem 1 for ( , )U x t at different time  

Method    N   ( 0.1)L t   Ratio Order of Conv. (0.5)L       Ratio Order of Conv. 

CuTBSM 32 2.7336E-04 -------- ------- 9.1674E-04 -------- ------- 

64  6.8117E-05 4.0090 2.0034 2.2854E-04 4.0113 2.0440 

128 1.7029E-05 4.0036 2.0013 5.7076E-05 4.0040 2.0015 

256 4.2510E-06 4.0058 2.0021 1.4247E-05 4.0061 2.0022 

512 1.0570E-06 4.0215 2.0077 3.5428E-06 4.0216         2.0077 

CuBSM[9] 32 2.9104E-04 -------- ------- 9.7478E-04    -------- ------- 

64  7.2704E-05 4.0030 2.001 2.4361E-04    4.0014 2.005 

128  1.8178E-05 3.9996 1.999 6.0896E-05    4.0004 2.001 

256  4.5497E-05 3.9953 1.998 1.5223E-05    4.0003 2.001 

512 1.1430E-06 3.9806 1.993 3.8052E-05    4.0006          2.002 

 

 

Figure 1: A comparison between numerical and exact solutions of ( , )U x t for Problem 1  
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Figure 2: Space-time graph of approximate solution ( , )U x t for Problem 1 at 1.0t  and 0.001t   

 

Problem 2 

Consider the one dimensional system of viscous Burgers’ equation (1) for different values of

,   and 2   which leads equation (1) – (2) as [9, 12, 16-17]: 

2 ( ) 0

2 ( ) 0

t xx x x

t xx x x

u u uu uv

v v vv uv





   


   
 

with the initial conditions given by 

  

 

0 0

0 0

( ) 1 tanh

10 102 1
( ) tanh ,

2 1

u x a x

x
v x a x








  


     
    

  

 

and boundary conditions as follows: 

  

  
1 0

2 0

( ) 1 tanh ( 10 2 )
0

( ) 1 tanh (10 2 )

f t a t
t T

f t a t

 

 

    
 

  

 

and 

 

 

1 0

2 0

2 1
( ) tanh ( 10 2 )

2 1
0

2 1
( ) tanh (10 2 )

2 1

g t a t

t T

g t a t


 




 



   
      

   
 

          
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where
0 0.05a  and 0 4 1

2 2 1

a 




 
  

 
. The known solutions of this problem are

  0( , ) 1 tanh ( 2 )excU x t a x t    ,  0

2 1
( , ) tanh ( 2 )

2 1
excV x t a x t


 



  
    

  
. The proposed 

method is used to calculate the numerical solutions of the system equation (1)-(3) over the domain

10 10x    with 0.01t  , 100N  . The absolute errors at different time levels and different values 

of ,   for ( , )U x t  and ( , )V x t are tabulated in Table 4 and Table 5 respectively. Figures 3 and 4 show 

the space-time graph of exact and approximate solutions ( , )U x t and ( , )V x t  at 1.0T  with

0.01, 0.01h t   . The numerical results of this problem are more accurate than Mittal and Arora [9], 

Rashid et al [12, 17] and Khater [16]. 

 

Table 4: Relative errors and maximum errors of Problem 2 for ( , )U x t with 0.01t   

t       CuTBSM 

2L   

 

L
  

CuBSM[9] 

2L  

 

L
 

Khater[16] 

2L  

 

L
 

Rashid[12] 

2L  

 

L
 

0.5 0.10 0.30 3.21E-05 1.21E-05 6.74E-04 4.17E-05 1.44E-03 4.38E-05 3.25E-05 9.62E-04 

 0.30 0.03 1.98E-05 6.67E-05 7.33E-04 4.59E-05 6.68E-03 4.58E-05 2.73E-05 4.31E-04 

1.0 0.10 0.30 6.26E-05 2.33E-05 1.33E-03 8.26E-05 1.27E-03 8.66E-05 2.40E-05 1.15E-03 

 0.30 0.03 3.89E-04 1.32E-05 1.45E-03 9.18E-05 1.30E-03 9.16E-05 2.83E-05 1.27E-03 

Rashid[21] 

 

0.5 0.10 0.10  1.27E-05 3.26E-05 

 0.30 0.30 1.16E-05 3.23E-05 

1.0 0.10 0.10 1.14E-05 2.27E-05 

 0.30 0.30 1.13E-05 2.17E-05 

 

Table 5: Relative errors and maximum errors of Problem 2 for ( , )V x t with 0.01t   

t       CuTBSM 

2L   

 

L
  

CuBSM[9] 

2L  

 

L
 

Khater[16] 

2L  

 

L
 

Rashid[12] 

2L  

 

L
 

0.5 0.10 0.30 5.75E-05 1.66E-05 9.05E-04 1.48E-04 5.42E-04 4.99E-05 2.74E-05 3.33E-04 

 0.30 0.03 2.44E-05 9.65E-05 1.59E-03 5.73E-04 1.20E-03 1.81E-04 2.45E-04 1.15E-03 

1.0 0.10 0.30 1.13E-05 3.28E-05 1.25E-03 4.77E-05 1.29E-03 9.92E-05 3.74E-05 1.16E-03 

 0.30 0.03 4.73E-04 1.86E-05 2.25E-03 3.62E-04 2.35E-03 3.62E-04 4.52E-04 1.64E-03 

                                                                                                                                                                                   Rashid[17]    

0.5 0.10 0.30  1.12E-05 1.27E-05 

 0.30 0.03 1.17E-05 1.26E-05 

1.0 0.10 0.30 1.12E-05 1.21E-05 

 0.30 0.03 1.13E-05 1.22E-05 
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Figure 3: Space-time graph of approximate solution ( , )U x t for Problem 2 at 1.0t  and 0.01t   

 

 

Figure 4: Space-time graph of approximate solution ( , )V x t for Problem 2 at 1.0t  and 0.01t   

 6. Conclusions 

          This paper suggest the cubic trigonometric B-spline collocation method to find the numerical 

solution of the one dimensional system of viscous Burgers equation with initial - Dirichlet boundary 

conditions. A usual finite difference approach is used to discretize the time derivatives. The cubic 

trigonometric B-spline is used for interpolating the solutions at each time. The numerical results shown 

in Tables (2 – 5) and Figures (1- 4) indicate the reliability of results obtained. The obtained solution for 

various time levels has been compared with the exact solution and existing methods by calculating L

and 2L . It is found that suggested method has provided more accurate results as compared to Mittal and 

Arora [9], Rashid et al [12, 17] and Khater [16]. 
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