Some Families of Chromatically Unique 5-Partite Graphs

R.Hasni and A.Shaman

School of Mathematical Sciences Universiti Sains Malaysia, 11800 Penang, Malaysia

Y.H.Peng

Department of Mathematics, and Institute for Mathematical Research University Putra Malaysia, 43400 UPM Serdang, Malaysia

G.C.Lau

Faculty of Computer and Mathematical Sciences Universiti Teknologi MARA (Segamat Campus), Johor, Malaysia

E-mail: hroslan@cs.usm.my

Abstract: Let $P(G, \lambda)$ be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. We write $[G] = \{H|H \sim G\}$. If $[G] = \{G\}$, then G is said to be chromatically unique. In this paper, we first characterize certain complete 5-partite graphs G with 5n + i vertices for i = 1, 2, 3 according to the number of 6-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 5-partite graphs G with certain star or matching deleted are obtained.

Key Words: Chromatic polynomial, chromatically closed, chromatic uniqueness.

AMS(2010): 05C15

§1. Introduction

All graphs considered here are simple and finite. For a graph G, let $P(G, \lambda)$ be the chromatic polynomial of G. Two graphs G and H are said to be *chromatically equivalent* (or simply χ -equivalent), symbolically $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. The equivalence class determined by G under \sim is denoted by [G]. A graph G is *chromatically unique* (or simply χ -unique) if $H \cong G$ whenever $H \sim G$, i.e, $[G] = \{G\}$ up to isomorphism. For a set \mathcal{G} of graphs, if $[G] \subseteq \mathcal{G}$ for every $G \in \mathcal{G}$, then \mathcal{G} is said to be χ -*closed*. Many families of χ -unique graphs are known (see [3,4]).

For a graph G, let V(G), E(G), t(G) and $\chi(G)$ be the vertex set, edge set, number of triangles and chromatic number of G, respectively. Let O_n be an edgeless graph with n vertices.

¹Received July 19, 2011. Accepted December 2 26, 2011.

Let Q(G) and K(G) be the number of induced subgraph C_4 and complete subgraph K_4 in G. Let S be a set of s edges in G. By G - S (or G - s) we denote the graph obtained from G by deleting all edges in S, and $\langle S \rangle$ the graph induced by S. For $t \ge 2$ and $1 \le n_1 \le n_2 \le \cdots \le n_t$, let $K(n_1, n_2, \cdots, n_t)$ be a complete t-partite graph with partition sets V_i such that $|V_i| = n_i$ for $i = 1, 2, \cdots, t$. In [2,5-7,9-11,13-15], the authors proved that certain families of complete t-partite graphs (t = 2, 3, 4, 5) with a matching or a star deleted are χ -unique. In particular, Zhao et al. [13,14] investigated the chromaticity of complete 5-partite graphs G of 5n and 5n+4 vertices with certain star or matching deleted. As a continuation, in this paper, we characterize certain complete 5-partite graphs G with 5n + i vertices for i = 1, 2, 3 according to the number of 6-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 5-partite graphs with certain star or matching deleted.

§2. Some Lemmas and Notations

Let $\mathcal{K}^{-s}(n_1, n_2, \cdots, n_t)$ be the family $\{K(n_1, n_2, \cdots, n_t) - S | S \subset E(K(n_1, n_2, \cdots, n_t))$ and $|S| = s\}$. For $n_1 \ge s+1$, we denote by $K_{i,j}^{-K_{1,s}}(n_1, n_2, \cdots, n_t)$ (respectively, $K_{i,j}^{-sK_2}(n_1, n_2, \cdots, n_t)$) the graph in $K^{-s}(n_1, n_2, \cdots, n_t)$ where the s edges in S induced a $K_{1,s}$ with center in V_i and all the end vertices in V_j (respectively, a matching with end vertices in V_i and V_j).

For a graph G and a positive integer r, a partition $\{A_1, A_2, \dots, A_r\}$ of V(G), where r is a positive integer, is called an *r*-independent partition of G if every A_i is independent of G. Let $\alpha(G, r)$ denote the number of r-independent partitions of G. Then, we have $P(G, \lambda) = \sum_{r=1}^{p} \alpha(G, r)(\lambda)_r$, where $(\lambda)_r = \lambda(\lambda - 1)(\lambda - 2)\cdots(\lambda - r + 1)$ (see [8]). Therefore, $\alpha(G, r) = \alpha(H, r)$ for each $r = 1, 2, \cdots$, if $G \sim H$.

For a graph G with p vertices, the polynomial $\sigma(G, x) = \sum_{r=1}^{p} \alpha(G, r) x^{r}$ is called the σ -polynomial of G (see [1]). Clearly, $P(G, \lambda) = P(H, \lambda)$ implies that $\sigma(G, x) = \sigma(H, x)$ for any graphs G and H.

For disjoint graphs G and H, G + H denotes the disjoint union of G and H. The join of G and H denoted by $G \vee H$ is defined as follows: $V(G \vee H) = V(G) \cup V(H)$; $E(G \vee H) = E(G) \cup E(H) \cup \{xy \mid x \in V(G), y \in V(H)\}$. For notations and terminology not defined here, we refer to [12].

Lemma 2.1 (Koh and Teo [3]) Let G and H be two graphs with $H \sim G$, then |V(G)| = |V(H)|, |E(G)| = |E(H)|, t(G) = t(H) and $\chi(G) = \chi(H)$. Moreover, $\alpha(G, r) = \alpha(H, r)$ for $r = 1, 2, 3, 4, \cdots$, and 2K(G) - Q(G) = 2K(H) - Q(H). Note that $\chi(G) = 3$ then $G \sim H$ implies that Q(G) = Q(H).

Lemma 2.2(Brenti [1]) Let G and H be two disjoint graphs. Then

$$\sigma(G \lor H, x) = \sigma(G, x)\sigma(H, x).$$

In particular,

$$\sigma(K(n_1, n_2, \cdots, n_t), x) = \prod_{i=1}^t \sigma(O_{n_i}, x)$$

Lemma 2.3(Zhao [13]) Let $G = K(n_1, n_2, n_3, n_4, n_5)$ and S be a set of some s edges of G. If $H \sim G - S$, then there is a complete graph $F = K(p_1, p_2, p_3, p_4, p_5)$ and a subset S' of E(F) of some s' of F such that H = F - S' with |S'| = s' = e(F) - e(G) + s.

Let $x_1 \leq x_2 \leq x_3 \leq x_4 \leq x_5$ be positive integers, $\{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}, x_{i_5}\} = \{x_1, x_2, x_3, x_4, x_5\}$. If there exists two elements x_{i_1} and x_{i_2} in $\{x_1, x_2, x_3, x_4, x_5\}$ such that $x_{i_2} - x_{i_1} \geq 2$, $H' = K(x_{i_1} + 1, x_{i_2} - 1, x_{i_3}, x_{i_4}, x_{i_5})$ is called an *improvement* of $H = K(x_1, x_2, x_3, x_4, x_5)$.

Lemma 2.4 (Zhao et al. [13]) Suppose $x_1 \leq x_2 \leq x_3 \leq x_4 \leq x_5$ and $H' = K(x_{i_1} + 1, x_{i_2} - 1, x_{i_3}, x_{i_4}, x_{i_5})$ is an improvement of $H = K(x_1, x_2, x_3, x_4, x_5)$, then

$$\alpha(H,6) - \alpha(H',6) = 2^{x_{i_2}-2} - 2^{x_{i_1}-1} \ge 2^{x_{i_1}-1}$$

Let $G = K(n_1, n_2, n_3, n_4, n_5)$. For a graph H = G - S, where S is a set of some s edges of G, define $\alpha'(H) = \alpha(H, 6) - \alpha(G, 6)$. Clearly, $\alpha'(H) \ge 0$.

Lemma 2.5 (Zhao et al. [13]) Let $G = K(n_1, n_2, n_3, n_4, n_5)$. Suppose that min $\{n_i | i = 1, 2, 3, 4, 5\} \ge s + 1 \ge 1$ and H = G - S, where S is a set of some s edges of G, then

$$s \leqslant \alpha'(H) = \alpha(H, 6) - \alpha(G, 6) \leqslant 2^s - 1,$$

and $\alpha'(H) = s$ iff the set of end-vertices of any $r \ge 2$ edges in S is not independent in H, and $\alpha'(H) = 2^s - 1$ iff S induces a star $K_{1,s}$ and all vertices of $K_{1,s}$ other than its center belong to a same A_i .

Lemma 2.6(Dong et al. [2]) Let n_1, n_2 and s be positive integers with $3 \leq n_1 \leq n_2$, then

- (1) $K_{1,2}^{-K_{1,s}}(n_1, n_2)$ is χ -unique for $1 \leq s \leq n_2 2$, (2) $K_{2,1}^{-K_{1,s}}(n_1, n_2)$ is χ -unique for $1 \leq s \leq n_1 - 2$, and
- (3) $K^{-sK_2}(n_1, n_2)$ is χ -unique for $1 \leq s \leq n_1 1$.

For a graph $G \in K^{-s}(n_1, n_2, \dots, n_t)$, we say an induced C_4 subgraph of G is of Type 1 (respectively Type 2 and Type 3) if the vertices of the induced C_4 are in exactly two (respectively three and four) partite sets of V(G). An example of induced C_4 of Types 1, 2 and 3 are shown in Figure 1.

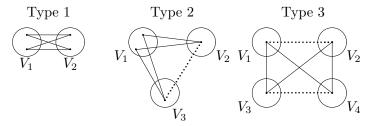


FIGURE 1. Three types of induced C_4

Suppose G is a graph in $K^{-s}(n_1, n_2, \dots, n_t)$. Let S_{ij} $(1 \le i \le t, 1 \le j \le t)$ be a subset of S such that each edge in S_{ij} has an end-vertex in V_i and another end-vertex in V_j with $|S_{ij}| = s_{ij} \ge 0$.

Lemma 2.7 (Lau and Peng [6]) For integer $t \ge 3$, Let $F = K(n_1, n_2, \dots, n_t)$ be a complete t-partite graph and let G = F - S where S is a set of s edges in F. If S induces a matching in F, then

/ \

$$Q(G) = Q(F) - \sum_{1 \le i < j \le t} (n_i - 1)(n_j - 1)s_{ij} + \binom{s}{2} - \sum_{1 \le i < j < l \le t} s_{ij}s_{il} - \sum_{\substack{1 \le i < j \le t \\ 1 \le k < l \le t \\ i < k}} s_{ij}s_{kl} + \sum_{1 \le i < j \le t} \left[s_{ij} \sum_{\substack{k \notin \{i,j\}}} \binom{n_k}{2} \right] + \sum_{\substack{1 \le i < j \le t \\ 1 \le i < k < l \le t \\ j \notin \{k,l\}}} s_{ij}s_{kl},$$

and

$$K(G) = K(F) - \sum_{1 \leq i < j \leq t} \left[s_{ij} \sum_{\substack{1 \leq k < l \leq t \\ \{i,j\} \cap \{k,l\} = \emptyset}} n_k n_l \right] + \sum_{\substack{1 \leq i < j \leq t \\ 1 \leq i < k < l \leq t \\ j \notin \{k,l\}}} s_{ij} s_{kl}.$$

By using Lemma 2.7, we obtain the following.

Lemma 2.8 Let $F = K(n_1, n_2, n_3, n_4, n_5)$ be a complete 5-partite graph and let G = F - Swhere S is a set of s edges in F. If S induces a matching in F, then

$$\begin{split} Q(G) &= Q(F) - \sum_{1 \leqslant i < j \leqslant 5} (n_i - 1)(n_j - 1)s_{ij} + \binom{s}{2} - s_{12}(s_{13} + s_{14} + s_{15} + s_{23} \\ &+ s_{24} + s_{25}) - s_{13}(s_{14} + s_{15} + s_{23} + s_{34} + s_{35}) - s_{14}(s_{15} + s_{24} + s_{34} + s_{45}) \\ &- s_{15}(s_{25} + s_{35} + s_{45}) - s_{23}(s_{24} + s_{25} + s_{34} + s_{35}) - s_{24}(s_{25} + s_{34} + s_{45}) \\ &- s_{25}(s_{35} + s_{45}) - s_{34}(s_{35} + s_{45}) - s_{35}s_{45} + \sum_{1 \leqslant i < j \leqslant 5} \left[s_{ij} \sum_{\substack{k \notin \{i, j\}}} \binom{n_k}{2} \right], \\ K(G) &= K(F) - \sum_{1 \leqslant i < j \leqslant 5} \left[s_{ij} \sum_{\substack{1 \leqslant k < l \leqslant 5 \\ \{i, j\} \cap \{k, l\} = \emptyset}} n_k n_l \right] + s_{12}(s_{34} + s_{35} + s_{45}) \\ &+ s_{13}(s_{24} + s_{25} + s_{45}) + s_{14}(s_{23} + s_{25} + s_{35}) + s_{15}(s_{23} + s_{24} + s_{34}) + s_{23}s_{45} \\ &+ s_{24}s_{35} + s_{25}s_{34}. \end{split}$$

Moreover, these equalities hold if and only if each edge in S joins vertices in the same two partite sets of smallest size in F.

§3. Characterization

In this section, we shall characterize certain complete 5-partite graph $G = K(n_1, n_2, n_3, n_4, n_5)$ according to the number of 6-independent partitions of G where $n_5 - n_1 \leq 4$.

Theorem 3.1 Let $G = K(n_1, n_2, n_3, n_4, n_5)$ be a complete 5-partite graph such that $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 1$ and $n_5 - n_1 \leq 4$. Define $\theta(G) = [\alpha(G, 6) - 2^{n+1} - 2^n + 5]/2^{n-2}$. Then

Proof In order to complete the proof of the theorem, we first give a table for the θ -value of various complete 5-partite graphs with 5n + 1 vertices as shown in Table 1.

- (i) G_1 is the improvement of G_2 and G_3 with $\theta(G_2) = 1$ and $\theta(G_3) = 3$;
- (ii) G_2 is the improvement of G_3 , G_4 , G_5 , G_6 and G_7 with $\theta(G_3) = 3$, $\theta(G_4) = 2$, $\theta(G_5) = 4$, $\theta(G_6) = 2\frac{1}{2}$ and $\theta(G_7) = 4\frac{1}{2}$;
- (iii) G_3 is the improvement of G_5 , G_7 , G_8 and G_9 with $\theta(G_5) = 4$, $\theta(G_7) = 4\frac{1}{2}$ and $\theta(G_8) = 10$ and $\theta(G_9) = 10\frac{1}{2}$;
- (iv) G_4 is the improvement of G_5 , G_6 and G_{10} with $\theta(G_5) = 4$, $\theta(G_6) = 2\frac{1}{2}$ and $\theta(G_{10}) = 5\frac{1}{2}$;
- (v) G_5 is the improvement of G_7 , G_8 , G_{10} , G_{11} , G_{12} , G_{13} and G_{14} with $\theta(G_7) = 4\frac{1}{2}$, $\theta(G_8) = 10$, $\theta(G_{10}) = 5\frac{1}{2}$, $\theta(G_{11}) = 7$, $\theta(G_{12}) = 11$, $\theta(G_{13}) = 7\frac{1}{2}$ and $\theta(G_{14}) = 11\frac{1}{2}$;
- (vi) G_6 is the improvement of G_7 , G_{10} , G_{15} and G_{16} with $\theta(G_7) = 4\frac{1}{2}$, $\theta(G_{10}) = 5\frac{1}{2}$, $\theta(G_{15}) = 4\frac{1}{4}$ and $\theta(G_{16}) = 6\frac{1}{4}$;

$G_i \ (1 \leqslant i \leqslant 21)$	$\theta(G_i)$	$G_i \ (22 \leqslant i \leqslant 41)$	$\theta(G_i)$
$G_1 = K(n, n, n, n, n + 1)$	0	$G_{22} = K(n-2, n-2, n+1, n+2, n+2)$	9
$G_2 = K(n - 1, n, n, n + 1, n + 1)$	1	$G_{23} = K(n-2, n-2, n+1, n+1, n+3)$	13
$G_3 = K(n - 1, n, n, n, n + 2)$	3	$G_{24} = K(n-3, n-1, n+1, n+2, n+2)$	$9\frac{1}{4}$
$G_4 = K(n - 1, n - 1, n + 1, n + 1, n + 1)$	2	$G_{25} = K(n - 3, n - 1, n + 1, n + 1, n + 3)$	$13\frac{1}{4}$
$G_5 = K(n - 1, n - 1, n, n + 1, n + 2)$	4	$G_{26} = K(n-2, n-1, n-1, n+2, n+3)$	$14\frac{1}{2}$
$G_6 = K(n-2, n, n+1, n+1, n+1)$	$2\frac{1}{2}$	$G_{27} = K(n-2, n-1, n-1, n+1, n+4)$	$26\frac{1}{2}$
$G_7 = K(n-2, n, n, n+1, n+2)$	$4\frac{1}{2}$	$G_{28} = K(n-2, n-2, n, n+2, n+3)$	15
$G_8 = K(n - 1, n - 1, n, n, n + 3)$	10	$G_{29} = K(n - 3, n - 1, n, n + 2, n + 3)$	$15\frac{1}{4}$
$G_9 = K(n-2, n, n, n, n+3)$	$10\frac{1}{2}$	$G_{30} = K(n-4, n+1, n+1, n+1, n+2)$	$8\frac{1}{8}$
$G_{10} = K(n-2, n-1, n+1, n+1, n+2)$	$5\frac{1}{2}$	$G_{31} = K(n-4, n, n+1, n+2, n+2)$	$10\frac{1}{8}$
$G_{11} = K(n - 1, n - 1, n - 1, n + 2, n + 2)$	7	$G_{32} = K(n-4, n, n+1, n+1, n+3)$	$14\frac{1}{8}$
$G_{12} = K(n-1, n-1, n-1, n+1, n+3)$	11	$G_{33} = K(n-4, n, n, n+2, n+3)$	$16\frac{1}{8}$
$G_{13} = K(n-2, n-1, n, n+2, n+2)$	$7\frac{1}{2}$	$G_{34} = K(n-3, n-2, n+2, n+2, n+2)$	$12\frac{3}{4}$
$G_{14} = K(n-2, n-1, n, n+1, n+3)$	$11\frac{1}{2}$	$G_{35} = K(n-3, n-2, n+1, n+2, n+3)$	$16\frac{3}{4}$
$G_{15} = K(n-3, n+1, n+1, n+1, n+1)$	$4\frac{1}{4}$	$G_{36} = K(n-4, n-1, n+2, n+2, n+2)$	$13\frac{1}{8}$
$G_{16} = K(n-3, n, n+1, n+1, n+2)$	$6\frac{1}{4}$	$G_{37} = K(n-4, n-1, n+1, n+2, n+3)$	$17\frac{1}{8}$
$G_{17} = K(n-3, n, n, n+2, n+2)$	$8\frac{1}{4}$	$G_{38} = K(n-5, n+1, n+1, n+2, n+2)$	$12\frac{1}{16}$
$G_{18} = K(n-3, n, n, n+1, n+3)$	$12\frac{1}{4}$	$G_{39} = K(n-5, n+1, n+1, n+1, n+3)$	$16\frac{1}{16}$
$G_{19} = K(n-1, n-1, n-1, n, n+4)$	25	$G_{40} = K(n-5, n, n+2, n+2, n+2)$	$14\frac{1}{16}$
$G_{20} = K(n-2, n-1, n, n, n+4)$	$25\frac{1}{2}$	$G_{41} = K(n-5, n, n+1, n+2, n+3)$	$18\frac{1}{16}$
$G_{21} = K(n-3, n, n, n, n+4)$	$26\frac{1}{4}$		

Table 1 Complete 5-partite graphs with 5n + 1 vertices.

By the definition of improvement, we have the followings:

- (vii) G_7 is the improvement of G_9 , G_{10} , G_{13} , G_{14} , G_{16} , G_{17} and G_{18} with $\theta(G_9) = 10\frac{1}{2}$, $\theta(G_{10}) = 5\frac{1}{2}$, $\theta(G_{13}) = 7\frac{1}{2}$, $\theta(G_{14}) = 11\frac{1}{2}$, $\theta(G_{16}) = 6\frac{1}{4}$, $\theta(G_{17}) = 8\frac{1}{4}$ and $\theta(G_{18}) = 12\frac{1}{4}$;
- (viii) G_8 is the improvement of G_9 , G_{12} , G_{14} , G_{19} and G_{20} with $\theta(G_9) = 10\frac{1}{2}$, $\theta(G_{12}) = 11$, $\theta(G_{14}) = 11\frac{1}{2}$, $\theta(G_{19}) = 25$ and $\theta(G_{20}) = 25\frac{1}{2}$;
- (ix) G_9 is the improvement of G_{14} , G_{18} , G_{20} and G_{21} with $\theta(G_{14}) = 11\frac{1}{2}$, $\theta(G_{18}) = 12\frac{1}{4}$, $\theta(G_{20}) = 25\frac{1}{2}$ and $\theta(G_{21}) = 26\frac{1}{4}$;
- (x) G_{10} is the improvement of G_{13} , G_{14} , G_{16} , G_{22} , G_{23} , G_{24} and G_{25} with $\theta(G_{13}) = 7\frac{1}{2}$, $\theta(G_{14}) = 11\frac{1}{2}$, $\theta(G_{16}) = 6\frac{1}{4}$, $\theta(G_{22}) = 9$, $\theta(G_{23}) = 13$, $\theta(G_{24}) = 9\frac{1}{4}$ and $\theta(G_{25}) = 13\frac{1}{4}$;
- (xi) G_{11} is the improvement of G_{12} , G_{13} and G_{26} with $\theta(G_{12}) = 11$, $\theta(G_{13}) = 7\frac{1}{2}$ and $\theta(G_{26}) = 14\frac{1}{2}$;
- (xii) G_{12} is the improvement of G_{14} , G_{19} , G_{26} and G_{27} with $\theta(G_{14}) = 11\frac{1}{2}$, $\theta(G_{19}) = 25$, $\theta(G_{26}) = 14\frac{1}{2}$ and $\theta(G_{27}) = 26\frac{1}{2}$;
- (xiii) G_{13} is the improvement of G_{14} , G_{17} , G_{22} , G_{24} , G_{26} , G_{28} and G_{29} with $\theta(G_{14}) = 11\frac{1}{2}$, $\theta(G_{17}) = 8\frac{1}{4}$, $\theta(G_{22}) = 9$, $\theta(G_{24}) = 9\frac{1}{4}$, $\theta(G_{26}) = 14\frac{1}{2}$, $\theta(G_{28}) = 15$ and $\theta(G_{29}) = 15\frac{1}{4}$;
- (xiv) G_{15} is the improvement of G_{16} and G_{30} with $\theta(G_{16}) = 6\frac{1}{4}$ and $\theta(G_{30}) = 8\frac{1}{8}$;

- (xv) G_{16} is the improvement of G_{17} , G_{18} , G_{24} , G_{25} , G_{30} , G_{31} and G_{32} with $\theta(G_{17}) = 8\frac{1}{4}$, $\theta(G_{18}) = 12\frac{1}{4}$, $\theta(G_{24}) = 9\frac{1}{4}$, $\theta(G_{25}) = 13\frac{1}{4}$, $\theta(G_{30}) = 8\frac{1}{8}$, $\theta(G_{31}) = 10\frac{1}{8}$ and $\theta(G_{32}) = 14\frac{1}{8}$;
- (xvi) G_{17} is the improvement of G_{18} , G_{24} , G_{29} , G_{31} and G_{33} with $\theta(G_{18}) = 12\frac{1}{4}$, $\theta(G_{24}) = 9\frac{1}{4}$, $\theta(G_{29}) = 15\frac{1}{4}$, $\theta(G_{31}) = 10\frac{1}{8}$ and $\theta(G_{33}) = 16\frac{1}{8}$;
- (xvii) G_{22} is the improvement of G_{23} , G_{24} , G_{28} , G_{34} and G_{35} with $\theta(G_{23}) = 13$, $\theta(G_{24}) = 9\frac{1}{4}$, $\theta(G_{28}) = 15$, $\theta(G_{34}) = 12\frac{3}{4}$ and $\theta(G_{35}) = 16\frac{3}{4}$;
- (xviii) G_{24} is the improvement of G_{25} , G_{29} , G_{31} , G_{34} , G_{35} , G_{36} and G_{37} with $\theta(G_{25}) = 13\frac{1}{4}$, $\theta(G_{29}) = 15\frac{1}{4}$, $\theta(G_{31}) = 10\frac{1}{8}$, $\theta(G_{34}) = 12\frac{3}{4}$, $\theta(G_{35}) = 16\frac{3}{4}$, $\theta(G_{36}) = 13\frac{1}{8}$ and $\theta(G_{37}) = 17\frac{1}{8}$;
- (xix) G_{30} is the improvement of G_{31} , G_{32} , G_{38} and G_{39} with $\theta(G_{31}) = 10\frac{1}{8}$, $\theta(G_{32}) = 14\frac{1}{8}$, $\theta(G_{38}) = 12\frac{1}{16}$ and $\theta(G_{39}) = 16\frac{1}{16}$;
- (xx) G_{31} is the improvement of G_{32} , G_{33} , G_{36} , G_{37} , G_{38} , G_{40} and G_{41} with $\theta(G_{32}) = 14\frac{1}{8}$, $\theta(G_{33}) = 16\frac{1}{8}$, $\theta(G_{36}) = 13\frac{1}{8}$, $\theta(G_{37}) = 17\frac{1}{8}$, $\theta(G_{38}) = 12\frac{1}{16}$, $\theta(G_{40}) = 14\frac{1}{16}$ and $\theta(G_{41}) = 18\frac{1}{16}$.

Hence, by Lemma 2.4 and the above arguments, we know (i) to (xiv) holds. Thus the proof is completed. $\hfill \Box$

Similarly to the proof of Theorem 3.1, we can obtain Theorems 3.2 and 3.3.

Theorem 3.2 Let $G = K(n_1, n_2, n_3, n_4, n_5)$ be a complete 5-partite graph such that $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 2$ and $n_5 - n_1 \leq 4$. Define $\theta(G) = [\alpha(G, 6) - 3 \cdot 2^n - 2^{n-1} + 5]/2^{n-2}$. Then

- (i) $\theta(G) = 0$ if and only if G = K(n, n, n, n+1, n+1);
- (*ii*) $\theta(G) = 1$ *if and only if* G = K(n-1, n, n+1, n+1, n+1);
- (iii) $\theta(G) = 2$ if and only if G = K(n, n, n, n, n + 2);
- (iv) $\theta(G) = 2\frac{1}{2}$ if and only if G = K(n-2, n+1, n+1, n+1, n+1);
- (v) $\theta(G) = 3$ if and only if G = K(n-1, n, n, n+1, n+2);
- (vi) $\theta(G) = 4$ if and only if G = K(n-1, n-1, n+1, n+1, n+2);
- (vii) $\theta(G) = 4\frac{1}{2}$ if and only if G = K(n-2, n, n+1, n+1, n+2);
- (viii) $\theta(G) = 6$ if and only if G = K(n-1, n-1, n, n+2, n+2);
- (*ix*) $\theta(G) = 6\frac{1}{2}$ if and only if G = K(n-2, n, n, n+2, n+2);
- (x) $\theta(G) = 7\frac{1}{2}$ if and only if G = K(n-2, n-1, n+1, n+2, n+2);
- (xi) $\theta(G) = 9$ if and only if G = K(n-1, n, n, n, n+3);
- (xii) $\theta(G) = 10$ if and only if G = K(n-1, n-1, n, n+1, n+3);

(xiii) $\theta(G) = 11$ if and only if G = K(n-2, n-2, n+2, n+2, n+2);

(xiv) $\theta(G) = 13$ if and only if G = K(n-1, n-1, n-1, n+2, n+3).

Theorem 3.3 Let $G = K(n_1, n_2, n_3, n_4, n_5)$ be a complete 5-partite graph such that $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 3$ and $n_5 - n_1 \leq 4$. Define $\theta(G) = [\alpha(G, 6) - 2^{n+2} + 5]/2^{n-1}$. Then

- (i) $\theta(G) = 0$ if and only if G = K(n, n, n+1, n+1, n+1);
- (*ii*) $\theta(G) = \frac{1}{2}$ if and only if G = K(n-1, n+1, n+1, n+1, n+1);
- (*iii*) $\theta(G) = 1$ *if and only if* G = K(n, n, n, n+1, n+2);
- (iv) $\theta(G) = 1\frac{1}{2}$ if and only if G = K(n-1, n, n+1, n+1, n+2);
- (v) $\theta(G) = 2\frac{1}{4}$ if and only if G = K(n-2, n+1, n+1, n+1, n+2);
- (vi) $\theta(G) = 2\frac{1}{2}$ if and only if G = K(n-1, n, n, n+2, n+2);
- (vii) $\theta(G) = 3$ if and only if G = K(n-1, n-1, n+1, n+2, n+2);
- (viii) $\theta(G) = 3\frac{1}{4}$ if and only if G = K(n-2, n, n+1, n+2, n+2);
- (ix) $\theta(G) = 4$ if and only if G = K(n, n, n, n, n + 3);
- (x) $\theta(G) = 4\frac{1}{2}$ if and only if G = K(n-1, n, n, n+1, n+3);
- (xi) $\theta(G) = 4\frac{3}{4}$ if and only if G = K(n-2, n-1, n+2, n+2, n+2);
- (xii) $\theta(G) = 5$ if and only if G = K(n-1, n-1, n+1, n+1, n+3);
- (xiii) $\theta(G) = 6$ if and only if G = K(n-1, n-1, n, n+2, n+3);

(xiv) $\theta(G) = 9\frac{1}{2}$ if and only if G = K(n-1, n-1, n-1, n+3, n+3).

§4. Chromatically Closed 5-Partite Graphs

In this section, we obtained several χ -closed families of graphs from the graphs in Theorem 3.1 to 3.3.

Theorem 4.1 The family of graphs $\mathcal{K}^{-s}(n_1, n_2, n_3, n_4, n_5)$ where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 1$, $n_5 - n_1 \leq 4$ and $n_1 \geq s + 5$ is χ -closed.

Proof By Theorem 3.1, there are 14 cases to consider. Denote each graph in Theorem 3.1 $(i), (ii), \dots, (xiv)$ by G_1, G_2, \dots, G_{14} , respectively. Suppose $H \sim G_i - S$. It suffices to show that $H \in \{G_i - S\}$. By Lemma 2.3, we know there exists a complete 5-partite graph $F = (p_1, p_2, p_3, p_4, p_5)$ such that H = F - S' with $|S'| = s' = e(F) - e(G) + s \ge 0$.

Case 1. Let $G = G_1$ with $n \ge s+2$. In this case, $H \sim F - S \in \mathcal{K}^{-s}(n, n, n, n, n+1)$. By Lemma 2.5, we have

$$\alpha(G-S,6) = \alpha(G,6) + \alpha'(G-S) \text{ with } s \leq \alpha'(G-S) \leq 2^s - 1,$$

$$\alpha(F-S',6) = \alpha(F,6) + \alpha'(F-S') \text{ with } 0 \leq s' \leq \alpha'(F-S').$$

Hence,

$$\alpha(F - S', 6) - \alpha(G - S, 6) = \alpha(F, 6) - \alpha(G, 6) + \alpha'(F - S') - \alpha'(G - S)$$

By the definition, $\alpha(F, 6) - \alpha(G, 6) = 2^{n-2}(\theta(F) - \theta(G))$. By Theorem 3.1, $\theta(F) \ge 0$. Suppose $\theta(F) > 0$, then

$$\alpha(F - S', 6) - \alpha(G - S, 6) \ge 2^{n-2} + \alpha'(F - S') - \alpha'(G - S)$$
$$\ge 2^s + \alpha'(F - S') - 2^s + 1 \ge 1,$$

contradicting $\alpha(F - S', 6) = \alpha(G - S, 6)$. Hence, $\theta(F) = 0$ and so F = G and s = s'. Therefore, $H \in \mathcal{K}^{-s}(n, n, n, n, n + 1)$.

Case 2. Let $G = G_2$ with $n \ge s+3$. In this case, $H \sim F - S \in \mathcal{K}^{-s}(n-1, n, n, n+1, n+1)$. By Lemma 2.5, we have

$$\alpha(G-S,6) = \alpha(G,6) + \alpha'(G-S) \text{ with } s \leq \alpha'(G-S) \leq 2^s - 1,$$

$$\alpha(F-S',6) = \alpha(F,6) + \alpha'(F-S') \text{ with } 0 \leq s' \leq \alpha'(F-S').$$

Hence,

$$\alpha(F - S', 6) - \alpha(G - S, 6) = \alpha(F, 6) - \alpha(G, 6) + \alpha'(F - S') - \alpha'(G - S).$$

By the definition, $\alpha(F, 6) - \alpha(G, 6) = 2^{n-2}(\theta(F) - \theta(G))$. Suppose $\theta(F) \neq \theta(G)$. Then, we consider two subcases.

Subcase 2.1 $\theta(F) < \theta(G)$. By Theorem 3.1, $F = G_1$ and $H = G_1 - S' \in \{G_1 - S'\}$. However, $G - S \notin \{G_1 - S'\}$ since by Case (i) above, $\{G_1 - S'\}$ is χ -closed, a contradiction.

Subcase 2.2 $\theta(F) > \theta(G)$. By Theorem 3.1, $\alpha(F, 6) - \alpha(G, 6) \ge 2^{n-2}$. So,

$$\begin{aligned} \alpha(F - S', 6) - \alpha(G - S, 6) & \geqslant \quad 2^{n-2} + \alpha'(F - S') - \alpha'(G - S) \\ & \geqslant \quad 2^s + \alpha'(F - S') - 2^s + 1 \geqslant 1, \end{aligned}$$

contradicting $\alpha(F - S', 6) = \alpha(G - S, 6)$. Hence, $\theta(F) - \theta(G) = 0$ and so F = G and s = s'. Therefore, $H \in \mathcal{K}^{-s}(n-1, n, n, n+1, n+1)$.

Using Table 1, we can prove (iii) to (xiv) in a similar way. This completes the proof. \Box Similarly, we can prove Theorems 4.2 and 4.3.

Theorem 4.2 The family of graphs $\mathcal{K}^{-s}(n_1, n_2, n_3, n_4, n_5)$ where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 2$, $n_5 - n_1 \leq 4$ and $n_1 \geq s + 6$ is χ -closed.

Theorem 4.3 The family of graphs $\mathcal{K}^{-s}(n_1, n_2, n_3, n_4, n_5)$ where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 3$, $n_5 - n_1 \leq 4$ and $n_1 \geq s + 6$ is χ -closed.

§5. Chromatically Unique 5-Partite Graphs

The following results give several families of chromatically unique complete 5-partite graphs having 5n + 1 vertices with a set S of s edges deleted where the deleted edges induce a star $K_{1,s}$ and a matching sK_2 , respectively.

Theorem 5.1 The graphs $K_{i,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5)$ where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 1$, $n_5 - n_1 \leq 4$ and $n_1 \geq s + 5$ are χ -unique for $1 \leq i \neq j \leq 5$.

Proof By Theorem 3.1, there are 14 cases to consider. Denote each graph in Theorem 3.1 $(i), (ii), \dots, (xiv)$ by G_1, G_2, \dots, G_{14} , respectively. The proof for each graph obtained from G_i $(i = 1, 2, \dots, 14)$ is similar, so we only give the detail proof for the graphs obtained from G_2 below.

By Lemma 2.5 and Case 2 of Theorem 4.1, we know that $K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1) = \{K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1)|(i,j) \in \{(1,2),(2,1),(1,4),(4,1),(2,3),(2,4),(4,2),(4,5)\}$ is χ -closed for $n \ge s+3$. Note that

$$\begin{split} t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1)) &= t(G_2) - s(3n+2) \text{ for } (i,j) \in \{(1,2),(2,1)\}, \\ t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1)) &= t(G_2) - s(3n+1) \text{ for } (i,j) \in \{(1,4),(4,1),(2,3)\}, \\ t(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1)) &= t(G_2) - 3sn \text{ for } (i,j) \in \{(2,4),(4,2)\}, \\ t(K_{4,5}^{-K_{1,s}}(n-1,n,n,n+1,n+1)) &= t(G_2) - s(3n-1). \end{split}$$

By Lemmas 2.2 and 2.6, we conclude that $\sigma(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1)) \neq \sigma(K_{j,i}^{-K_{1,s}}(n-1,n,n,n+1,n+1))$ for each $(i,j) \in \{(1,2), (1,4), (2,4)\}$. We now show that $K_{2,3}^{-K_{1,s}}(n-1,n,n,n+1,n+1)$ and $K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1)$ for $(i,j) \in \{(1,4), (4,1)\}$ are not χ -equivalent. We have

$$Q(K_{2,3}^{-K_{1,s}}(n-1,n,n,n+1,n+1)) = Q(G_2) - s(n-1)^2 + \binom{s}{2} + s\left[\binom{n-1}{2} + 2\binom{n+1}{2}\right],$$
$$Q(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1)) = Q(G_2) - sn(n-2) + \binom{s}{2} + s\left[2\binom{n}{2} + \binom{n+1}{2}\right]$$

for $(i, j) \in \{(1, 4), (4, 1)\}$ with

Ŧ 7

$$Q\Big(K_{2,3}^{-K_{1,s}}(n-1,n,n,n+1,n+1)\Big) - Q\Big(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1)\Big) = 0$$

since $s_{ij} = 0$ if $(i, j) \neq \{(1, 4), (4, 1), (2, 3)\}$. We also obtain

$$\begin{split} &K(K_{2,3}^{-K_{1,s}}(n-1,n,n,n+1,n+1)) = K(G_2) - s(3n^2 + 2n - 1); \\ &K(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1)) = K(G_2) - s(3n^2 + 2n) \end{split}$$

for $(i, j) \in \{(1, 4), (4, 1)\}$ with

$$K\Big(K_{2,3}^{-K_{1,s}}(n-1,n,n,n+1,n+1)\Big) - K\Big(K_{i,j}^{-K_{1,s}}(n-1,n,n,n+1,n+1)\Big) = s$$

since $s_{ij} = 0$ if $(i, j) \neq \{(1, 4), (4, 1), (2, 3)\}$. This means that $2K(K_{i, j}^{-K_{1, s}}(n - 1, n, n, n + 1, n + 1)) - Q(K_{i, j}^{-K_{1, s}}(n - 1, n, n, n + 1, n + 1)) \neq 2K(K_{2, 3}^{-K_{1, s}}(n - 1, n, n, n + 1, n + 1)) - Q(K_{2, 3}^{-K_{1, s}}(n - 1, n, n, n + 1, n + 1))$ for $(i, j) \in \{(1, 4), (4, 1)\}$, contradicting Lemma 2.1. Hence, $K_{i, j}^{-K_{1, s}}(n - 1, n, n, n + 1, n + 1)$ is χ -unique where $n \geq s + 3$ for $1 \leq i \neq j \leq 5$. The proof is thus complete.

Theorem 5.2 The graphs $K_{1,2}^{-sK_2}(n_1, n_2, n_3, n_4, n_5)$ where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 1$, $n_5 - n_1 \leq 4$ and $n_1 \geq s + 5$ are χ -unique.

Proof By Theorem 3.1, there are 14 cases to consider. Denote each graph in Theorem 3.1 $(i), (ii), \dots, (xiv)$ by G_1, G_2, \dots, G_{14} , respectively. For a graph $K(p_1, p_2, p_3, p_4, p_5)$, let $S = \{e_1, e_2, \dots, e_s\}$ be the set of s edges in $E(K(p_1, p_2, p_3, p_4, p_5))$ and let $t(e_i)$ denote the number of triangles containing e_i in $K(p_1, p_2, p_3, p_4, p_5)$. The proofs for each graph obtained from G_i $(i = 1, 2, \dots, 14)$ are similar, so we only give the proof of the graph obtained from G_1 and G_2 as follows.

Suppose $H \sim G = K_{1,2}^{-sK_2}(n, n, n, n, n+1)$ for $n \ge s+2$. By Theorem 4.1 and Lemma 2.1, $H \in \mathcal{K}^{-s}(n, n, n, n, n+1)$ and $\alpha'(H) = \alpha'(G) = s$. Let H = F - S where F = K(n, n, n, n, n+1). Clearly, $t(e_i) \le 3n + 1$ for each $e_i \in S$. So,

$$t(H) \ge t(F) - s(3n+1),$$

with equality holds only if $t(e_i) = 3n + 1$ for all $e_i \in S$. Since t(H) = t(G) = t(F) - s(3n + 1), the equality above holds with $t(e_i) = 3n + 1$ for all $e_i \in S$. Therefore each edge in S has an end-vertex in V_i and another end-vertex in V_j $(1 \leq i < j \leq 4)$. Moreover, S must induce a matching in F. Otherwise, equality does not hold or $\alpha'(H) > s$. By Lemma 2.8, we obtain

$$Q(G) = Q(F) - s(n-1)^2 + \binom{s}{2} + s \left[2\binom{n}{2} + \binom{n+1}{2} \right]$$

whereas

$$\begin{aligned} Q(H) &= Q(F) - s(n-1)^2 + \binom{s}{2} - s_{12}(s_{13} + s_{14} + s_{23} + s_{24} + s_{34}) \\ &- s_{13}(s_{14} + s_{23} + s_{24} + s_{34}) - s_{14}(s_{23} + s_{24} + s_{34}) - s_{23}(s_{24} + s_{34}) - s_{24}s_{34} \\ &+ s \left[2\binom{n}{2} + \binom{n+1}{2} \right] + s_{12}s_{34} + s_{13}s_{24} + s_{14}s_{23} \\ &= Q(G) - s_{12}(s_{13} + s_{14} + s_{23} + s_{24}) - s_{13}(s_{14} + s_{23} + s_{34}) - s_{14}(s_{24} + s_{34}) \\ &- s_{23}(s_{24} + s_{34}) - s_{24}s_{34}. \end{aligned}$$

Moreover, $K(G) = K(F) - s(3n^2 + 2n)$ whereas

$$K(H) = K(F) - s(3n^2 + 2n) + s_{12}s_{34} + s_{13}s_{24} + s_{14}s_{23}$$
$$= K(G) + s_{12}s_{34} + s_{13}s_{24} + s_{14}s_{23}.$$

Hence,

$$2K(H) - Q(H) = 2K(G) - Q(G) + 2(s_{12}s_{34} + s_{13}s_{24} + s_{14}s_{23}) + s_{12}(s_{13} + s_{14} + s_{23} + s_{24}) + s_{13}(s_{14} + s_{23} + s_{34}) + s_{14}(s_{24} + s_{34}) + s_{23}(s_{24} + s_{34}) + s_{24}s_{34},$$

and that 2K(H) - Q(H) = 2K(G) - Q(G) if and only if $s = s_{ij}$ for $1 \le i < j \le 4$. Therefore, we have $\langle S \rangle \cong sK_2$ with $H \cong G$.

Suppose $H \sim G = K_{1,2}^{-sK_2}(n-1, n, n, n+1, n+1)$ for $n \ge s+3$. By Theorem 4.1 and Lemma 2.1, $H \in \mathcal{K}^{-s}(n-1, n, n, n+1, n+1)$ and $\alpha'(H) = \alpha'(G) = s$. Let H = F - S where F = K(n-1, n, n, n+1, n+1). Clearly, $t(e_i) \le 3n+2$ for each $e_i \in S$. So,

$$t(H) \ge t(F) - s(3n+2),$$

with equality holds only if $t(e_i) = 3n + 2$ for all $e_i \in S$. Since t(H) = t(G) = t(F) - s(3n + 2), the equality above holds with $t(e_i) = 3n + 2$ for all $e_i \in S$. Therefore each edge in S has an end-vertex in V_1 and another end-vertex in V_j ($2 \leq j \leq 3$). Moreover, S must induce a matching in F. Otherwise, equality does not hold or $\alpha'(H) > s$. By Lemma 2.8, we obtain

$$Q(G) = Q(F) - s(n-1)(n-2) + \binom{s}{2} + s \left[\binom{n}{2} + 2\binom{n+1}{2}\right]$$

whereas

$$Q(H) = Q(F) - s(n-1)(n-2) + \binom{s}{2} - s_{12}s_{13} + s\left[\binom{n}{2} + 2\binom{n+1}{2}\right]$$

$$\leqslant Q(G),$$

and the equality holds if and only if $s = s_{1j}$ $(2 \leq j \leq 3)$. Moreover, $K(G) = K(H) = K(F) - s(3n^2 + 4n + 1)$. Hence, $2K(G) - Q(G) \neq 2K(H) - Q(H)$ and the equality holds if and only if $\langle S \rangle \cong sK_2$ with $H \cong G$. Thus the proof is complete.

Similarly to the proofs of Theorems 5.1 and 5.2, we can prove Theorems 5.3 to 5.6 following.

Theorem 5.3 The graphs $K_{i,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5)$ where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 2$, $n_5 - n_1 \leq 4$ and $n_1 \geq s + 6$ are χ -unique for $1 \leq i \neq j \leq 5$.

Theorem 5.4 The graphs $K_{i,j}^{-K_{1,s}}(n_1, n_2, n_3, n_4, n_5)$ where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 3$, $n_5 - n_1 \leq 4$ and $n_1 \geq s + 6$ are χ -unique for $1 \leq i \neq j \leq 5$.

Theorem 5.5 The graphs $K_{1,2}^{-sK_2}(n_1, n_2, n_3, n_4, n_5)$ where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 2$, $n_5 - n_1 \leq 4$ and $n_1 \geq s + 6$ are χ -unique.

Theorem 5.6 The graphs $K_{1,2}^{-sK_2}(n_1, n_2, n_3, n_4, n_5)$ where $n_1 + n_2 + n_3 + n_4 + n_5 = 5n + 3$, $n_5 - n_1 \leq 4$ and $n_1 \geq s + 6$ are χ -unique.

Remark 5.7 This paper generalized the results and solved the open problems in [9,10,11].

Acknowledgement

The authors would like to thank the referees for the valuable comments.

References

- F.Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math. Soc., 332(2)(1992), 729-756.
- [2] F.M. Dong, K.M.Koh and K.L.Teo, Sharp bounds for the number of 3-independent partitions and chromaticity of bipartite graphs, J. Graph Theory, 37(2001), 48-77.
- [3] K.M.Koh and K.L.Teo, The search for chromatically unique graphs, *Graphs Combin.*, 6(1990), 259–285.
- [4] K.M.Koh and K.L.Teo, The search for chromatically unique graphs II, Discrete Math., 172(1997), 59–78.
- [5] G.C.Lau and Y.H.Peng, Chromaticity of complete 4-partite graphs with certain star and matching deleted, Appl. Anal. Discrete Math., 4(2010), 253–268.
- [6] G.C.Lau and Y.H.Peng, Chromaticity of Turán graps with certain matching or star deleted, Ars Comb., 94(2010), 391–404.
- [7] G.C.Lau, Y.H.Peng and K.A.Mohd. Atan, Chromaticity of complete tripartite graphs with certain star or matching deleted, *Ars Comb.*, accepted.
- [8] R.C.Read and W.T.Tutte, Chromatic Polynomials, In: L.W. Beineke and R.J. Wilson, eds. Selected Topics in Graph Theory (II), New York: Academic Press, (1988), 15–42.
- [9] H.Roslan, A.Sh.Ameen, Y.H.Peng and H.X.Zhao, Chromaticity of complete 5-partite graphs with certain star and matching deleted, *Thai Journal of Mathematics*, accepted.
- [10] H.Roslan, A.Sh.Ameen, Y.H.Peng and H.X.Zhao, Classification of complete 5-partite graphs and chromaticity of 5-partite graphs with 5n+2 vertices, *Far East Journal of Mathematical Sciences*, Vol. 43, Num. 1, 2010, 59–72.
- [11] H.Roslan, A.Sh.Ameen, Y.H.Peng and H.X.Zhao, On chromatic uniqueness of certain 5partite graphs, *Journal of Applied Mathematics and Computing*, 35 (2011), 507-516.
- [12] D.B.West, Introduction to Graph Theory, second ed., Prentice Hall, New Jersey, 2001.
- [13] H.X.Zhao, R.Y.Liu and S.G.Zhang, Classification of Complete 5-Partite Graphs and Chromaticity of 5-Partite Graphs With 5n Vertices, Appl. Math. J.Chinese Univ. Ser. B, 19(1)(2004) 116–124.
- [14] H.X.Zhao, On the chromaticity of 5-partite graphs with 5n+4 vertices, J. of Lanzhou Univ. (Natural Sciences), 40(3)(2004) 12–16 (in Chinese, English summary).
- [15] H.X.Zhao, Chromaticity and Adjoint Polynomials of Graphs, Ph.D. Thesis University of Twente, 2005, Netherland.