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Abstract: Let P (G,λ) be the chromatic polynomial of a graph G. Two graphs G and H

are said to be chromatically equivalent, denoted G ∼ H , if P (G,λ) = P (H,λ). We write

[G] = {H |H ∼ G}. If [G] = {G}, then G is said to be chromatically unique. In this paper,

we first characterize certain complete 5-partite graphs G with 5n + i vertices for i = 1, 2, 3

according to the number of 6-independent partitions of G. Using these results, we investigate

the chromaticity of G with certain star or matching deleted. As a by-product, many new

families of chromatically unique complete 5-partite graphs G with certain star or matching

deleted are obtained.

Key Words: Chromatic polynomial, chromatically closed, chromatic uniqueness.

AMS(2010): 05C15

§1. Introduction

All graphs considered here are simple and finite. For a graph G, let P (G, λ) be the chromatic

polynomial of G. Two graphs G and H are said to be chromatically equivalent (or simply

χ−equivalent), symbolically G ∼ H , if P (G, λ) = P (H,λ). The equivalence class determined

by G under ∼ is denoted by [G]. A graph G is chromatically unique (or simply χ−unique) if

H ∼= G whenever H ∼ G, i.e, [G] = {G} up to isomorphism. For a set G of graphs, if [G] ⊆ G
for every G ∈ G, then G is said to be χ−closed. Many families of χ-unique graphs are known

(see [3,4]).

For a graph G, let V (G), E(G), t(G) and χ(G) be the vertex set, edge set, number of

triangles and chromatic number of G, respectively. Let On be an edgeless graph with n vertices.
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Let Q(G) and K(G) be the number of induced subgraph C4 and complete subgraph K4 in G.

Let S be a set of s edges in G. By G− S (or G− s) we denote the graph obtained from G by

deleting all edges in S, and 〈S〉 the graph induced by S. For t > 2 and 1 6 n1 6 n2 6 · · · 6 nt,

let K(n1, n2, · · · , nt) be a complete t−partite graph with partition sets Vi such that |Vi| = ni

for i = 1, 2, · · · , t. In [2,5-7,9-11,13-15], the authors proved that certain families of complete

t-partite graphs (t = 2, 3, 4, 5) with a matching or a star deleted are χ-unique. In particular,

Zhao et al. [13,14] investigated the chromaticity of complete 5-partite graphs G of 5n and 5n+4

vertices with certain star or matching deleted. As a continuation, in this paper, we characterize

certain complete 5-partite graphs G with 5n+ i vertices for i = 1, 2, 3 according to the number

of 6-independent partitions of G. Using these results, we investigate the chromaticity of G with

certain star or matching deleted. As a by-product, many new families of chromatically unique

complete 5-partite graphs with certain star or matching deleted are obtained.

§2. Some Lemmas and Notations

Let K−s(n1, n2, · · · , nt) be the family {K(n1, n2, · · · , nt) − S| S ⊂ E(K(n1, n2, · · · , nt))
and |S| = s}. For n1 > s+1, we denote by K

−K1,s

i,j (n1, n2, · · · , nt) (respectively, K−sK2

i,j (n1, n2,

· · · , nt)) the graph in K−s(n1, n2, · · · , nt) where the s edges in S induced a K1,s with center

in Vi and all the end vertices in Vj (respectively, a matching with end vertices in Vi and Vj).

For a graph G and a positive integer r, a partition {A1, A2, · · · , Ar} of V (G), where r is

a positive integer, is called an r-independent partition of G if every Ai is independent of G.

Let α(G, r) denote the number of r-independent partitions of G. Then, we have P (G, λ) =
∑p

r=1 α(G, r)(λ)r , where (λ)r = λ(λ − 1)(λ − 2) · · · (λ − r + 1) (see [8]). Therefore, α(G, r) =

α(H, r) for each r = 1, 2, · · · , if G ∼ H .

For a graph G with p vertices, the polynomial σ(G, x) =
∑p

r=1 α(G, r)xr is called the

σ-polynomial of G (see [1]). Clearly, P (G, λ) = P (H,λ) implies that σ(G, x) = σ(H,x) for any

graphs G and H .

For disjoint graphs G and H , G +H denotes the disjoint union of G and H . The join of

G and H denoted by G ∨ H is defined as follows: V (G ∨ H) = V (G) ∪ V (H); E(G ∨ H) =

E(G) ∪ E(H) ∪ {xy | x ∈ V (G), y ∈ V (H)}. For notations and terminology not defined here,

we refer to [12].

Lemma 2.1 (Koh and Teo [3]) Let G and H be two graphs with H ∼ G, then |V (G)| =

|V (H)|, |E(G)| = |E(H)|, t(G) = t(H) and χ(G) = χ(H). Moreover, α(G, r) = α(H, r) for

r = 1, 2, 3, 4, · · · , and 2K(G) − Q(G) = 2K(H) − Q(H). Note that χ(G) = 3 then G ∼ H

implies that Q(G) = Q(H).

Lemma 2.2(Brenti [1]) Let G and H be two disjoint graphs. Then

σ(G ∨H,x) = σ(G, x)σ(H,x).

In particular,

σ(K(n1, n2, · · · , nt), x) =
t∏

i=1

σ(Oni
, x)
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Lemma 2.3(Zhao [13]) Let G = K(n1, n2, n3, n4, n5) and S be a set of some s edges of G. If

H ∼ G− S, then there is a complete graph F = K(p1, p2, p3, p4, p5) and a subset S′ of E(F ) of

some s′ of F such that H = F − S′ with |S′| = s′ = e(F ) − e(G) + s.

Let x1 6 x2 6 x3 6 x4 6 x5 be positive integers, {xi1 , xi2 , xi3 , xi4 , xi5} = {x1, x2, x3, x4, x5}.
If there exists two elements xi1 and xi2 in {x1, x2, x3, x4, x5} such that xi2 − xi1 > 2, H ′ =

K(xi1 + 1, xi2 − 1, xi3 , xi4 , xi5 ) is called an improvement of H = K(x1, x2, x3, x4, x5).

Lemma 2.4 (Zhao et al. [13]) Suppose x1 6 x2 6 x3 6 x4 6 x5 and H ′ = K(xi1 + 1, xi2 −
1, xi3 , xi4 , xi5} is an improvement of H = K(x1, x2, x3, x4, x5), then

α(H, 6) − α(H ′, 6) = 2xi2−2 − 2xi1−1 > 2xi1−1.

Let G = K(n1, n2, n3, n4, n5). For a graph H = G− S, where S is a set of some s edges of

G, define α′(H) = α(H, 6) − α(G, 6). Clearly, α′(H) > 0.

Lemma 2.5 (Zhao et al. [13]) Let G = K(n1, n2, n3, n4, n5). Suppose that min {ni|i =

1, 2, 3, 4, 5} > s+ 1 > 1 and H = G− S, where S is a set of some s edges of G, then

s 6 α′(H) = α(H, 6) − α(G, 6) 6 2s − 1,

and α′(H) = s iff the set of end-vertices of any r > 2 edges in S is not independent in H, and

α′(H) = 2s − 1 iff S induces a star K1,s and all vertices of K1,s other than its center belong to

a same Ai.

Lemma 2.6(Dong et al. [2]) Let n1, n2 and s be positive integers with 3 6 n1 6 n2, then

(1) K
−K1,s

1,2 (n1, n2) is χ-unique for 1 6 s 6 n2 − 2,

(2) K
−K1,s

2,1 (n1, n2) is χ-unique for 1 6 s 6 n1 − 2, and

(3) K−sK2(n1, n2) is χ-unique for 1 6 s 6 n1 − 1.

For a graph G ∈ K−s(n1, n2, · · · , nt), we say an induced C4 subgraph of G is of Type 1

(respectively Type 2 and Type 3) if the vertices of the induced C4 are in exactly two (respectively

three and four) partite sets of V (G). An example of induced C4 of Types 1, 2 and 3 are shown

in Figure 1.

Type 3Type 1

V2

Type 2

....................

V1 V2

V3

V2

......................

...................

V1

V4V3

FIGURE 1. Three types of induced C4

V1
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Suppose G is a graph in K−s(n1, n2, · · · , nt). Let Sij (1 6 i 6 t, 1 6 j 6 t) be a subset

of S such that each edge in Sij has an end-vertex in Vi and another end-vertex in Vj with

|Sij | = sij > 0.

Lemma 2.7 (Lau and Peng [6]) For integer t > 3, Let F = K(n1, n2, · · · , nt) be a complete

t-partite graph and let G = F − S where S is a set of s edges in F . If S induces a matching in

F , then

Q(G) = Q(F ) −
∑

16i<j6t

(ni − 1)(nj − 1)sij +

(
s

2

)
−

∑

16i<j<l6t

sijsil −

∑

1 6 i < j 6 t

1 6 k < l 6 t

i < k

sijskl +
∑

16i<j6t

[
sij

∑

k/∈{i,j}

(
nk
2

)]
+

∑

1 6 i < j 6 t

1 6 i < k < l 6 t

j /∈ {k, l}

sijskl,

and

K(G) = K(F ) −
∑

16i<j6t

[
sij

∑

1 6 k < l 6 t

{i, j} ∩ {k, l} = ∅

nknl

]
+

∑

1 6 i < j 6 t

1 6 i < k < l 6 t

j /∈ {k, l}

sijskl.

By using Lemma 2.7, we obtain the following.

Lemma 2.8 Let F = K(n1, n2, n3, n4, n5) be a complete 5-partite graph and let G = F − S

where S is a set of s edges in F . If S induces a matching in F , then

Q(G) = Q(F ) −
∑

16i<j65

(ni − 1)(nj − 1)sij +

(
s

2

)
− s12(s13 + s14 + s15 + s23

+s24 + s25) − s13(s14 + s15 + s23 + s34 + s35) − s14(s15 + s24 + s34 + s45)

−s15(s25 + s35 + s45) − s23(s24 + s25 + s34 + s35) − s24(s25 + s34 + s45)

−s25(s35 + s45) − s34(s35 + s45) − s35s45 +
∑

16i<j65

[
sij

∑

k/∈{i,j}

(
nk
2

)]
,

K(G) = K(F ) −
∑

16i<j65

[
sij

∑

1 6 k < l 6 5

{i, j} ∩ {k, l} = ∅

nknl

]
+ s12(s34 + s35 + s45)

+s13(s24 + s25 + s45) + s14(s23 + s25 + s35) + s15(s23 + s24 + s34) + s23s45

+s24s35 + s25s34.

Moreover, these equalities hold if and only if each edge in S joins vertices in the same two

partite sets of smallest size in F .

§3. Characterization

In this section, we shall characterize certain complete 5-partite graph G = K(n1, n2, n3, n4, n5)

according to the number of 6-independent partitions of G where n5 − n1 6 4.
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Theorem 3.1 Let G = K(n1, n2, n3, n4, n5) be a complete 5-partite graph such that n1 + n2 +

n3 + n4 + n5 = 5n+ 1 and n5 − n1 6 4. Define θ(G) = [α(G, 6) − 2n+1 − 2n + 5]/2n−2. Then

(i) θ(G) = 0 if and only if G = K(n, n, n, n, n+ 1);

(ii) θ(G) = 1 if and only if G = K(n− 1, n, n, n+ 1, n+ 1);

(iii) θ(G) = 2 if and only if G = K(n− 1, n− 1, n+ 1, n+ 1, n+ 1);

(iv) θ(G) = 2 1
2 if and only if G = K(n− 2, n, n+ 1, n+ 1, n+ 1);

(v) θ(G) = 3 if and only if G = K(n− 1, n, n, n, n+ 2);

(vi) θ(G) = 4 if and only if G = K(n− 1, n− 1, n, n+ 1, n+ 2);

(vii) θ(G) = 4 1
4 if and only if G = K(n− 3, n+ 1, n+ 1, n+ 1, n+ 1);

(viii) θ(G) = 4 1
2 if and only if G = K(n− 2, n, n, n+ 1, n+ 2);

(ix) θ(G) = 5 1
2 if and only if G = K(n− 2, n− 1, n+ 1, n+ 1, n+ 2);

(x) θ(G) = 7 if and only if G = K(n− 1, n− 1, n− 1, n+ 2, n+ 2);

(xi) θ(G) = 7 1
2 if and only if G = K(n− 2, n− 1, n, n+ 2, n+ 2);

(xii) θ(G) = 9 if and only if G = K(n− 2, n− 2, n+ 1, n+ 2, n+ 2);

(xiii) θ(G) = 10 if and only if G = K(n− 1, n− 1, n, n, n+ 3);

(xiv) θ(G) = 11 if and only if G = K(n− 1, n− 1, n− 1, n+ 1, n+ 3).

Proof In order to complete the proof of the theorem, we first give a table for the θ-value

of various complete 5-partite graphs with 5n+ 1 vertices as shown in Table 1.

(i) G1 is the improvement of G2 and G3 with θ(G2) = 1 and θ(G3) = 3;

(ii) G2 is the improvement of G3, G4, G5, G6 and G7 with θ(G3) = 3, θ(G4) = 2, θ(G5) = 4,

θ(G6) = 2 1
2 and θ(G7) = 4 1

2 ;

(iii) G3 is the improvement of G5, G7, G8 and G9 with θ(G5) = 4, θ(G7) = 4 1
2 and θ(G8) = 10

and θ(G9) = 10 1
2 ;

(iv) G4 is the improvement of G5, G6 and G10 with θ(G5) = 4, θ(G6) = 2 1
2 and θ(G10) = 5 1

2 ;

(v) G5 is the improvement of G7, G8, G10, G11, G12, G13 and G14 with θ(G7) = 4 1
2 , θ(G8) =

10, θ(G10) = 5 1
2 , θ(G11) = 7, θ(G12) = 11, θ(G13) = 7 1

2 and θ(G14) = 11 1
2 ;

(vi) G6 is the improvement of G7, G10, G15 and G16 with θ(G7) = 4 1
2 , θ(G10) = 5 1

2 , θ(G15) =

4 1
4 and θ(G16) = 6 1

4 ;
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Gi (1 6 i 6 21) θ(Gi) Gi (22 6 i 6 41) θ(Gi)

G1 = K(n, n, n, n, n + 1) 0 G22 = K(n− 2, n− 2, n+ 1, n+ 2, n + 2) 9

G2 = K(n− 1, n, n, n+ 1, n+ 1) 1 G23 = K(n− 2, n− 2, n+ 1, n+ 1, n + 3) 13

G3 = K(n− 1, n, n, n, n+ 2) 3 G24 = K(n− 3, n− 1, n+ 1, n+ 2, n + 2) 9 1
4

G4 = K(n− 1, n− 1, n+ 1, n+ 1, n + 1) 2 G25 = K(n− 3, n− 1, n+ 1, n+ 1, n + 3) 13 1
4

G5 = K(n− 1, n− 1, n, n+ 1, n+ 2) 4 G26 = K(n− 2, n− 1, n− 1, n+ 2, n+ 3) 14 1
2

G6 = K(n− 2, n, n + 1, n+ 1, n+ 1) 2 1
2 G27 = K(n− 2, n− 1, n− 1, n+ 1, n+ 4) 26 1

2

G7 = K(n− 2, n, n, n+ 1, n+ 2) 4 1
2 G28 = K(n− 2, n− 2, n, n+ 2, n+ 3) 15

G8 = K(n− 1, n− 1, n, n, n+ 3) 10 G29 = K(n− 3, n− 1, n, n+ 2, n+ 3) 15 1
4

G9 = K(n− 2, n, n, n, n+ 3) 10 1
2 G30 = K(n− 4, n+ 1, n+ 1, n+ 1, n + 2) 8 1

8

G10 = K(n− 2, n− 1, n+ 1, n+ 1, n+ 2) 5 1
2 G31 = K(n− 4, n, n + 1, n+ 2, n+ 2) 10 1

8

G11 = K(n− 1, n− 1, n− 1, n+ 2, n+ 2) 7 G32 = K(n− 4, n, n + 1, n+ 1, n+ 3) 14 1
8

G12 = K(n− 1, n− 1, n− 1, n+ 1, n+ 3) 11 G33 = K(n− 4, n, n, n + 2, n+ 3) 16 1
8

G13 = K(n− 2, n− 1, n, n+ 2, n + 2) 7 1
2 G34 = K(n− 3, n− 2, n+ 2, n+ 2, n + 2) 12 3

4

G14 = K(n− 2, n− 1, n, n+ 1, n + 3) 11 1
2 G35 = K(n− 3, n− 2, n+ 1, n+ 2, n + 3) 16 3

4

G15 = K(n− 3, n+ 1, n+ 1, n + 1, n+ 1) 4 1
4 G36 = K(n− 4, n− 1, n+ 2, n+ 2, n + 2) 13 1

8

G16 = K(n− 3, n, n+ 1, n+ 1, n + 2) 6 1
4 G37 = K(n− 4, n− 1, n+ 1, n+ 2, n + 3) 17 1

8

G17 = K(n− 3, n, n, n+ 2, n+ 2) 8 1
4 G38 = K(n− 5, n+ 1, n+ 1, n+ 2, n + 2) 12 1

16

G18 = K(n− 3, n, n, n+ 1, n+ 3) 12 1
4 G39 = K(n− 5, n+ 1, n+ 1, n+ 1, n + 3) 16 1

16

G19 = K(n− 1, n− 1, n− 1, n, n+ 4) 25 G40 = K(n− 5, n, n + 2, n+ 2, n+ 2) 14 1
16

G20 = K(n− 2, n− 1, n, n, n+ 4) 25 1
2 G41 = K(n− 5, n, n + 1, n+ 2, n+ 3) 18 1

16

G21 = K(n− 3, n, n, n, n+ 4) 26 1
4

Table 1 Complete 5-partite graphs with 5n+ 1 vertices.

By the definition of improvement, we have the followings:

(vii) G7 is the improvement of G9, G10, G13, G14, G16, G17 and G18 with θ(G9) = 10 1
2 ,

θ(G10) = 5 1
2 , θ(G13) = 7 1

2 , θ(G14) = 11 1
2 , θ(G16) = 6 1

4 , θ(G17) = 8 1
4and θ(G18) = 12 1

4 ;

(viii) G8 is the improvement of G9, G12, G14, G19 and G20 with θ(G9) = 10 1
2 , θ(G12) = 11,

θ(G14) = 11 1
2 , θ(G19) = 25 and θ(G20) = 25 1

2 ;

(ix) G9 is the improvement of G14, G18, G20 and G21 with θ(G14) = 11 1
2 , θ(G18) = 12 1

4 ,

θ(G20) = 25 1
2 and θ(G21) = 26 1

4 ;

(x) G10 is the improvement of G13, G14, G16, G22, G23, G24 and G25 with θ(G13) = 7 1
2 ,

θ(G14) = 11 1
2 , θ(G16) = 6 1

4 , θ(G22) = 9, θ(G23) = 13, θ(G24) = 9 1
4 and θ(G25) = 13 1

4 ;

(xi) G11 is the improvement of G12, G13 and G26 with θ(G12) = 11, θ(G13) = 7 1
2 and θ(G26) =

14 1
2 ;

(xii) G12 is the improvement of G14, G19, G26 and G27 with θ(G14) = 11 1
2 , θ(G19) = 25,

θ(G26) = 14 1
2 and θ(G27) = 26 1

2 ;

(xiii) G13 is the improvement of G14, G17, G22, G24, G26, G28 and G29 with θ(G14) = 11 1
2 ,

θ(G17) = 8 1
4 , θ(G22) = 9, θ(G24) = 9 1

4 , θ(G26) = 14 1
2 , θ(G28) = 15 and θ(G29) = 15 1

4 , ;

(xiv) G15 is the improvement of G16 and G30 with θ(G16) = 6 1
4 and θ(G30) = 8 1

8 ;
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(xv) G16 is the improvement of G17, G18, G24, G25, G30, G31 and G32 with θ(G17) = 8 1
4 ,

θ(G18) = 12 1
4 , θ(G24) = 9 1

4 , θ(G25) = 13 1
4 , θ(G30) = 8 1

8 , θ(G31) = 10 1
8 and θ(G32) = 14 1

8 ;

(xvi) G17 is the improvement of G18, G24, G29, G31 and G33 with θ(G18) = 12 1
4 , θ(G24) = 9 1

4 ,

θ(G29) = 15 1
4 , θ(G31) = 10 1

8 and θ(G33) = 16 1
8 ;

(xvii) G22 is the improvement of G23, G24, G28, G34 and G35 with θ(G23) = 13, θ(G24) = 9 1
4 ,

θ(G28) = 15, θ(G34) = 12 3
4 and θ(G35) = 16 3

4 ;

(xviii) G24 is the improvement of G25, G29, G31, G34, G35, G36 and G37 with θ(G25) = 13 1
4 ,

θ(G29) = 15 1
4 , θ(G31) = 10 1

8 , θ(G34) = 12 3
4 , θ(G35) = 16 3

4 , θ(G36) = 13 1
8 and θ(G37) =

17 1
8 ;

(xix) G30 is the improvement of G31, G32, G38 and G39 with θ(G31) = 10 1
8 , θ(G32) = 14 1

8 ,

θ(G38) = 12 1
16 and θ(G39) = 16 1

16 ;

(xx) G31 is the improvement of G32, G33, G36, G37, G38, G40 and G41 with θ(G32) = 14 1
8 ,

θ(G33) = 16 1
8 , θ(G36) = 13 1

8 , θ(G37) = 17 1
8 , θ(G38) = 12 1

16 , θ(G40) = 14 1
16 and θ(G41) =

18 1
16 .

Hence, by Lemma 2.4 and the above arguments, we know (i) to (xiv) holds. Thus the proof is

completed. �

Similarly to the proof of Theorem 3.1, we can obtain Theorems 3.2 and 3.3.

Theorem 3.2 Let G = K(n1, n2, n3, n4, n5) be a complete 5-partite graph such that n1 + n2 +

n3 +n4 +n5 = 5n+ 2 and n5 −n1 6 4. Define θ(G) = [α(G, 6)− 3 · 2n− 2n−1 + 5]/2n−2. Then

(i) θ(G) = 0 if and only if G = K(n, n, n, n+ 1, n+ 1);

(ii) θ(G) = 1 if and only if G = K(n− 1, n, n+ 1, n+ 1, n+ 1);

(iii) θ(G) = 2 if and only if G = K(n, n, n, n, n+ 2);

(iv) θ(G) = 2 1
2 if and only if G = K(n− 2, n+ 1, n+ 1, n+ 1, n+ 1);

(v) θ(G) = 3 if and only if G = K(n− 1, n, n, n+ 1, n+ 2);

(vi) θ(G) = 4 if and only if G = K(n− 1, n− 1, n+ 1, n+ 1, n+ 2);

(vii) θ(G) = 4 1
2 if and only if G = K(n− 2, n, n+ 1, n+ 1, n+ 2);

(viii) θ(G) = 6 if and only if G = K(n− 1, n− 1, n, n+ 2, n+ 2);

(ix) θ(G) = 6 1
2 if and only if G = K(n− 2, n, n, n+ 2, n+ 2);

(x) θ(G) = 7 1
2 if and only if G = K(n− 2, n− 1, n+ 1, n+ 2, n+ 2);

(xi) θ(G) = 9 if and only if G = K(n− 1, n, n, n, n+ 3);

(xii) θ(G) = 10 if and only if G = K(n− 1, n− 1, n, n+ 1, n+ 3);
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(xiii) θ(G) = 11 if and only if G = K(n− 2, n− 2, n+ 2, n+ 2, n+ 2);

(xiv) θ(G) = 13 if and only if G = K(n− 1, n− 1, n− 1, n+ 2, n+ 3).

Theorem 3.3 Let G = K(n1, n2, n3, n4, n5) be a complete 5-partite graph such that n1+

n2 + n3 + n4 + n5 = 5n+ 3 and n5 − n1 6 4. Define θ(G) = [α(G, 6) − 2n+2 + 5]/2n−1. Then

(i) θ(G) = 0 if and only if G = K(n, n, n+ 1, n+ 1, n+ 1);

(ii) θ(G) = 1
2 if and only if G = K(n− 1, n+ 1, n+ 1, n+ 1, n+ 1);

(iii) θ(G) = 1 if and only if G = K(n, n, n, n+ 1, n+ 2);

(iv) θ(G) = 1 1
2 if and only if G = K(n− 1, n, n+ 1, n+ 1, n+ 2);

(v) θ(G) = 2 1
4 if and only if G = K(n− 2, n+ 1, n+ 1, n+ 1, n+ 2);

(vi) θ(G) = 2 1
2 if and only if G = K(n− 1, n, n, n+ 2, n+ 2);

(vii) θ(G) = 3 if and only if G = K(n− 1, n− 1, n+ 1, n+ 2, n+ 2);

(viii) θ(G) = 3 1
4 if and only if G = K(n− 2, n, n+ 1, n+ 2, n+ 2);

(ix) θ(G) = 4 if and only if G = K(n, n, n, n, n+ 3);

(x) θ(G) = 4 1
2 if and only if G = K(n− 1, n, n, n+ 1, n+ 3);

(xi) θ(G) = 4 3
4 if and only if G = K(n− 2, n− 1, n+ 2, n+ 2, n+ 2);

(xii) θ(G) = 5 if and only if G = K(n− 1, n− 1, n+ 1, n+ 1, n+ 3);

(xiii) θ(G) = 6 if and only if G = K(n− 1, n− 1, n, n+ 2, n+ 3);

(xiv) θ(G) = 9 1
2 if and only if G = K(n− 1, n− 1, n− 1, n+ 3, n+ 3).

§4. Chromatically Closed 5-Partite Graphs

In this section, we obtained several χ-closed families of graphs from the graphs in Theorem 3.1

to 3.3.

Theorem 4.1 The family of graphs K−s(n1, n2, n3, n4, n5) where n1+n2+n3+n4+n5 = 5n+1,

n5 − n1 6 4 and n1 > s+ 5 is χ-closed.

Proof By Theorem 3.1, there are 14 cases to consider. Denote each graph in Theorem 3.1

(i), (ii), · · · , (xiv) by G1, G2, · · · , G14, respectively. Suppose H ∼ Gi − S. It suffices to show

that H ∈ {Gi − S}. By Lemma 2.3, we know there exists a complete 5-partite graph F =

(p1, p2, p3, p4, p5) such that H = F − S′ with |S′| = s′ = e(F ) − e(G) + s > 0.
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Case 1. Let G = G1 with n > s + 2. In this case, H ∼ F − S ∈ K−s(n, n, n, n, n+ 1). By

Lemma 2.5, we have

α(G − S, 6) = α(G, 6) + α′(G− S) with s 6 α′(G− S) 6 2s − 1,

α(F − S′, 6) = α(F, 6) + α′(F − S′) with 0 6 s′ 6 α′(F − S′).

Hence,

α(F − S′, 6) − α(G− S, 6) = α(F, 6) − α(G, 6) + α′(F − S′) − α′(G− S).

By the definition, α(F, 6)−α(G, 6) = 2n−2(θ(F )− θ(G)). By Theorem 3.1, θ(F ) > 0. Suppose

θ(F ) > 0, then

α(F − S′, 6) − α(G − S, 6) > 2n−2 + α′(F − S′) − α′(G− S)

> 2s + α′(F − S′) − 2s + 1 > 1,

contradicting α(F −S′, 6) = α(G−S, 6). Hence, θ(F ) = 0 and so F = G and s = s′. Therefore,

H ∈ K−s(n, n, n, n, n+ 1).

Case 2. Let G = G2 with n > s+ 3. In this case, H ∼ F − S ∈ K−s(n− 1, n, n, n+ 1, n+ 1).

By Lemma 2.5, we have

α(G − S, 6) = α(G, 6) + α′(G− S) with s 6 α′(G− S) 6 2s − 1,

α(F − S′, 6) = α(F, 6) + α′(F − S′) with 0 6 s′ 6 α′(F − S′).

Hence,

α(F − S′, 6) − α(G− S, 6) = α(F, 6) − α(G, 6) + α′(F − S′) − α′(G− S).

By the definition, α(F, 6) − α(G, 6) = 2n−2(θ(F ) − θ(G)). Suppose θ(F ) 6= θ(G). Then,

we consider two subcases.

Subcase 2.1 θ(F ) < θ(G). By Theorem 3.1, F = G1 and H = G1−S′ ∈ {G1−S′}. However,

G− S /∈ {G1 − S′} since by Case (i) above, {G1 − S′} is χ-closed, a contradiction.

Subcase 2.2 θ(F ) > θ(G). By Theorem 3.1, α(F, 6) − α(G, 6) > 2n−2. So,

α(F − S′, 6) − α(G − S, 6) > 2n−2 + α′(F − S′) − α′(G− S)

> 2s + α′(F − S′) − 2s + 1 > 1,

contradicting α(F − S′, 6) = α(G − S, 6). Hence, θ(F ) − θ(G) = 0 and so F = G and s = s′.

Therefore, H ∈ K−s(n− 1, n, n, n+ 1, n+ 1).

Using Table 1, we can prove (iii) to (xiv) in a similar way. This completes the proof. �

Similarly, we can prove Theorems 4.2 and 4.3.

Theorem 4.2 The family of graphs K−s(n1, n2, n3, n4, n5) where n1+n2+n3+n4+n5 = 5n+2,

n5 − n1 6 4 and n1 > s+ 6 is χ-closed.
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Theorem 4.3 The family of graphs K−s(n1, n2, n3, n4, n5) where n1+n2+n3+n4+n5 = 5n+3,

n5 − n1 6 4 and n1 > s+ 6 is χ-closed.

§5. Chromatically Unique 5-Partite Graphs

The following results give several families of chromatically unique complete 5-partite graphs

having 5n + 1 vertices with a set S of s edges deleted where the deleted edges induce a star

K1,s and a matching sK2, respectively.

Theorem 5.1 The graphs K
−K1,s

i,j (n1, n2, n3, n4, n5) where n1 + n2 + n3 + n4 + n5 = 5n + 1,

n5 − n1 6 4 and n1 > s+ 5 are χ-unique for 1 6 i 6= j 6 5.

Proof By Theorem 3.1, there are 14 cases to consider. Denote each graph in Theorem 3.1

(i), (ii), · · · , (xiv) by G1, G2, · · · , G14, respectively. The proof for each graph obtained from

Gi (i = 1, 2, · · · , 14) is similar, so we only give the detail proof for the graphs obtained from

G2 below.

By Lemma 2.5 and Case 2 of Theorem 4.1, we know that K
−K1,s

i,j (n− 1,n, n, n+ 1, n+ 1)

= {K−K1,s

i,j (n − 1, n, n, n+ 1, n + 1)|(i, j) ∈ {(1,2),(2,1),(1,4),(4,1),(2,3),(2,4),(4,2),(4,5)} is χ-

closed for n > s+ 3. Note that

t(K
−K1,s

i,j (n− 1, n, n, n+ 1, n+ 1)) = t(G2) − s(3n+ 2) for (i, j) ∈ {(1, 2), (2, 1)},
t(K

−K1,s

i,j (n− 1, n, n, n+ 1, n+ 1)) = t(G2) − s(3n+ 1) for (i, j) ∈ {(1, 4), (4, 1), (2, 3)},
t(K

−K1,s

i,j (n− 1, n, n, n+ 1, n+ 1)) = t(G2) − 3sn for (i, j) ∈ {(2, 4), (4, 2)},
t(K

−K1,s

4,5 (n− 1, n, n, n+ 1, n+ 1)) = t(G2) − s(3n− 1).

By Lemmas 2.2 and 2.6, we conclude that σ(K
−K1,s

i,j (n− 1, n, n, n+ 1, n+ 1)) 6= σ(K
−K1,s

j,i (n−
1, n, n, n + 1, n + 1)) for each (i, j) ∈ {(1, 2), (1, 4), (2, 4)}. We now show that K

−K1,s

2,3 (n −
1, n, n, n + 1, n + 1) and K

−K1,s

i,j (n − 1, n, n, n + 1, n + 1) for (i, j) ∈ {(1, 4), (4, 1)} are not

χ-equivalent. We have

Q(K
−K1,s

2,3 (n− 1, n, n, n+ 1, n+ 1)) = Q(G2) − s(n− 1)2 +

(
s

2

)
+ s

[(
n− 1

2

)
+ 2

(
n+ 1

2

)]
,

Q(K
−K1,s

i,j (n− 1, n, n, n+ 1, n+ 1)) = Q(G2) − sn(n− 2) +

(
s

2

)
+ s

[
2

(
n

2

)
+

(
n+ 1

2

)]

for (i, j) ∈ {(1, 4), (4, 1)} with

Q
(
K

−K1,s

2,3 (n− 1, n, n, n+ 1, n+ 1)
)
−Q

(
K

−K1,s

i,j (n− 1, n, n, n+ 1, n+ 1)
)

= 0

since sij = 0 if (i, j) 6= {(1, 4), (4, 1), (2, 3)}. We also obtain

K(K
−K1,s

2,3 (n− 1, n, n, n+ 1, n+ 1)) = K(G2) − s(3n2 + 2n− 1);

K(K
−K1,s

i,j (n− 1, n, n, n+ 1, n+ 1)) = K(G2) − s(3n2 + 2n)
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for (i, j) ∈ {(1, 4), (4, 1)} with

K
(
K

−K1,s

2,3 (n− 1, n, n, n+ 1, n+ 1)
)
−K

(
K

−K1,s

i,j (n− 1, n, n, n+ 1, n+ 1)
)

= s

since sij = 0 if (i, j) 6= {(1, 4), (4, 1), (2, 3)}. This means that 2K(K
−K1,s

i,j (n − 1, n, n, n +

1, n + 1)) − Q(K
−K1,s

i,j (n − 1, n, n, n + 1, n + 1)) 6= 2K(K
−K1,s

2,3 (n − 1, n, n, n + 1, n + 1)) −
Q(K

−K1,s

2,3 (n− 1, n, n, n+ 1, n+ 1)) for (i, j) ∈ {(1, 4), (4, 1)}, contradicting Lemma 2.1. Hence,

K
−K1,s

i,j (n − 1, n, n, n+ 1, n+ 1) is χ-unique where n > s + 3 for 1 6 i 6= j 6 5. The proof is

thus complete. �

Theorem 5.2 The graphs K−sK2
1,2 (n1, n2, n3, n4, n5) where n1 + n2 + n3 + n4 + n5 = 5n + 1,

n5 − n1 6 4 and n1 > s+ 5 are χ-unique.

Proof By Theorem 3.1, there are 14 cases to consider. Denote each graph in Theorem 3.1

(i), (ii), · · · , (xiv) by G1, G2, · · · , G14, respectively. For a graph K(p1, p2, p3, p4, p5), let S =

{e1, e2, · · · , es} be the set of s edges in E(K(p1, p2, p3, p4, p5)) and let t(ei) denote the number

of triangles containing ei in K(p1, p2, p3, p4, p5). The proofs for each graph obtained from

Gi (i = 1, 2, · · · , 14) are similar, so we only give the proof of the graph obtained from G1 and

G2 as follows.

Suppose H ∼ G = K−sK2
1,2 (n, n, n, n, n+1) for n > s+2. By Theorem 4.1 and Lemma 2.1,

H ∈ K−s(n, n, n, n, n+1) and α′(H) = α′(G) = s. LetH = F−S where F = K(n, n, n, n, n+1).

Clearly, t(ei) 6 3n+ 1 for each ei ∈ S. So,

t(H) > t(F ) − s(3n+ 1),

with equality holds only if t(ei) = 3n+ 1 for all ei ∈ S. Since t(H) = t(G) = t(F ) − s(3n+ 1),

the equality above holds with t(ei) = 3n + 1 for all ei ∈ S. Therefore each edge in S has an

end-vertex in Vi and another end-vertex in Vj (1 6 i < j 6 4). Moreover, S must induce a

matching in F . Otherwise, equality does not hold or α′(H) > s. By Lemma 2.8, we obtain

Q(G) = Q(F ) − s(n− 1)2 +

(
s

2

)
+ s

[
2

(
n

2

)
+

(
n+ 1

2

)]

whereas

Q(H) = Q(F ) − s(n− 1)2 +

(
s

2

)
− s12(s13 + s14 + s23 + s24 + s34)

−s13(s14 + s23 + s24 + s34) − s14(s23 + s24 + s34) − s23(s24 + s34) − s24s34

+s

[
2

(
n

2

)
+

(
n+ 1

2

)]
+ s12s34 + s13s24 + s14s23

= Q(G) − s12(s13 + s14 + s23 + s24) − s13(s14 + s23 + s34) − s14(s24 + s34)

−s23(s24 + s34) − s24s34.

Moreover, K(G) = K(F ) − s(3n2 + 2n) whereas

K(H) = K(F ) − s(3n2 + 2n) + s12s34 + s13s24 + s14s23

= K(G) + s12s34 + s13s24 + s14s23.
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Hence,

2K(H) −Q(H) = 2K(G) −Q(G) + 2(s12s34 + s13s24 + s14s23) +

s12(s13 + s14 + s23 + s24) + s13(s14 + s23 + s34) + s14(s24 + s34) +

s23(s24 + s34) + s24s34,

and that 2K(H) −Q(H) = 2K(G) −Q(G) if and only if s = sij for 1 6 i < j 6 4. Therefore,

we have 〈S〉 ∼= sK2 with H ∼= G.

Suppose H ∼ G = K−sK2
1,2 (n − 1, n, n, n + 1, n + 1) for n > s + 3. By Theorem 4.1 and

Lemma 2.1, H ∈ K−s(n− 1, n, n, n+ 1, n+ 1) and α′(H) = α′(G) = s. Let H = F − S where

F = K(n− 1, n, n, n+ 1, n+ 1). Clearly, t(ei) 6 3n+ 2 for each ei ∈ S. So,

t(H) > t(F ) − s(3n+ 2),

with equality holds only if t(ei) = 3n+ 2 for all ei ∈ S. Since t(H) = t(G) = t(F ) − s(3n+ 2),

the equality above holds with t(ei) = 3n + 2 for all ei ∈ S. Therefore each edge in S has

an end-vertex in V1 and another end-vertex in Vj (2 6 j 6 3). Moreover, S must induce a

matching in F . Otherwise, equality does not hold or α′(H) > s. By Lemma 2.8, we obtain

Q(G) = Q(F ) − s(n− 1)(n− 2) +

(
s

2

)
+ s

[(
n

2

)
+ 2

(
n+ 1

2

)]

whereas

Q(H) = Q(F ) − s(n− 1)(n− 2) +

(
s

2

)
− s12s13 + s

[(
n

2

)
+ 2

(
n+ 1

2

)]

6 Q(G),

and the equality holds if and only if s = s1j (2 6 j 6 3). Moreover, K(G) = K(H) =

K(F )− s(3n2 +4n+1). Hence, 2K(G)−Q(G) 6= 2K(H)−Q(H) and the equality holds if and

only if 〈S〉 ∼= sK2 with H ∼= G. Thus the proof is complete. �

Similarly to the proofs of Theorems 5.1 and 5.2, we can prove Theorems 5.3 to 5.6 following.

Theorem 5.3 The graphs K
−K1,s

i,j (n1, n2, n3, n4, n5) where n1 + n2 + n3 + n4 + n5 = 5n + 2,

n5 − n1 6 4 and n1 > s+ 6 are χ-unique for 1 6 i 6= j 6 5.

Theorem 5.4 The graphs K
−K1,s

i,j (n1, n2, n3, n4, n5) where n1 + n2 + n3 + n4 + n5 = 5n + 3,

n5 − n1 6 4 and n1 > s+ 6 are χ-unique for 1 6 i 6= j 6 5.

Theorem 5.5 The graphs K−sK2
1,2 (n1, n2, n3, n4, n5) where n1 + n2 + n3 + n4 + n5 = 5n + 2,

n5 − n1 6 4 and n1 > s+ 6 are χ-unique.

Theorem 5.6 The graphs K−sK2
1,2 (n1, n2, n3, n4, n5) where n1 + n2 + n3 + n4 + n5 = 5n + 3,

n5 − n1 6 4 and n1 > s+ 6 are χ-unique.

Remark 5.7 This paper generalized the results and solved the open problems in [9,10,11].
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