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Abstract 

 

Recently, there has been an increasing interest in the study of singular and 

perturbed systems. In this paper we propose a point interpolation mesh less 

method for solving singularly perturbed integro-differential integral equations. 

The method is based upon radial basis functions, using zeros of the shifted 

Legendre polynomial as the collocation points. The results of numerical 

experiments are compared with the exact solution in illustrative examples to 

confirm the accuracy and efficiency of the presented scheme. 
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1- Introduction 

     In the present work, we consider the singularly perturbed Volterra 

integro-differential equations (SVIDE) 

 

 

                (1) 

        
        

     Where α is a constant and ε is a known perturbation parameter which 0 < ε 

≪ 1. Smoothness assumptions on u and Imply existence of a unique solution of 

Eq. (1) for ε > 0.  

 

 

By substituting ε = 0 in Eq. (1), we obtain the reduced equation 
 
 
 

              (2) 

     which is a Volterra integral equation (VIE) of the second kind. The singularly 

perturbed nature of Eq. (1) occurs when the properties of the solution with ε > 0 

are incompatible with those when ε = 0. The interest here is in those problems 

which do imply such an incompatibility in the behavior of y(x) near x = 0. This 

suggests the existence of a boundary layer near the origin where the solution 

undergoes a rapid transition.  Singularly perturbed Volterra integro-differential 

equations arise in many physical and biological problems. Among these are 

diffusion-dissipation processes, epidemic dynamics, synchronous control systems, 

renewal processes and filament stretching. For a comprehensive review, see 

[5,6,26]. Finding the solutions of these problems has been widely studied by 

researchers in the last decade.  Implicit Runge- Kutta methods were presented 

for singularly perturbed integro-differential-algebraic equations in [22] and for 

singular- ly perturbed integro-differential systems in [21].  In [30], Orsi applied 

a Petrov-Galerkin method to singularly perturbed integro-differential-algebraic 

equations. El-Gendi [12] applied spectral methods to obtain solution of singularly 

perturbed differential, integral and integro-differential equations. Hu [17] and 

Horvat et al. [16] solved the SVIDEs by using the spline collocation methods. 

Recently, in [35] a numerical procedure based on finite difference was presented 

for solving a class of SVIDEs. More recently, Ramos [34] applied 

Piecewise-quasilinearization techniques to obtain solution of SVIDEs. For more 

references about SVIDEs see [4,2,3]. 
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In recent decades, the so-called meshless methods have been extensively used to 

find approximate solutions of various types of linear and nonlinear equations such 

as differential equations (DEs) and integral equations (IEs). Unlike the other 

methods which were used to mesh the domain of the problem, meshless method 

don’t require a structured grid and only make use of a scattered set of collocation 

points regardless of the connectivity information between the collocation points. 

For the last years, the radial basis functions (RBFs) method was known as a 

powerful tool for the scattered data interpola- tion problem. The main advantage 

of numerical methods which use radial basis functions is the meshless 

characteristic of these methods. The use of radial basis functions as a meshless 

method for the numerical solution of ordinary differential equations (ODEs) and 

partial differential equations (PDEs) is based on the collocation method. One of 

the domain-type meshless methods is given in [20] in 1990, which directly 

collocates radial basis functions, particularly the multiquadric (MQ), to find an 

approximate solution of linear and nonlinear DEs. Kansa’s method has recently 

received a great deal of attention from researchers [10,28,37,39,41]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Some well-known radial basis functions (r = ∥ x – xi ‖= ri), c > 0. 

 

 

 

Recently, Kansa’s method was extended to solve various ordinary and partial 

differential equations including the non- linear Klein-Gordon equation [1], 

regularized long wave (RLW) equation [18], high order ordinary differential 

equations [29], the case of heat transfer equations [31], Hirota-Satsuma coupled 

KdV equations [25], second-order parabolic equa- tion with nonlocal boundary 

conditions [11], Volterra’s Population model [32], steady flow of a third-grade 

fluid in a porous half space [24], Fokker-Planck equation [23], Second-order 

hyperbolic telegraph equation [9] and so on. 

Name of function Definition 

Multiquadrics (MQ) 

  
Inverse Multiquadrics (IMQ) 

1/ ) 

Gaussian (GA) 
  

Hyperbolic secant (sech) 
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All of the radial basis functions have global support, and in fact many of them, 

such as multiquadrics (MQ), do not even have isolated zeros [10, 18, 7]. The 

RBFs can be compactly and globally supported, infinitely differentiable, and 

contain a free parameter c, called the shape parameter [18,7,36].  The interested 

reader is referred to the recent books and paper by Buhmann [7, 8] and Wendland 

[40] for more basic details about RBFs, compactly and globally supported and 

convergence rate of the radial basis functions. There are two basic approaches for 

obtaining basis functions from RBFs, namely direct approach (DRBF) based on a 

differential process [19] and indirect approach (IRBF) based on an integration 

process [27,28,29,].  

In this paper, we use the multiquadrics direct radial basis function for finding the 

solution of SVIDEs. The MQ was ranked as the best based on its accuracy, visual 

aspect, sensitivity to parameters, execution time, storage requirements, and ease of 

implementation.For convenience the solution we use RBFs with {x}
N

j=1   nodes   

which are the zeros of the shifted  Legendre polynomial  LN (x) , 0 ≤ x ≤ 1. The 

shifted Legendre polynomials Li(x) are defined on the interval [0, 1] and satisfy   

the following formulae [15]:   

 

           

                  
This paper is arranged as follows: in Section 2, we describe the properties of 

radial (PIM) functions.  In Section 3, we introduce the Legendre-Gauss-Lobatto 

nodes and weights.  In Section 4 we implement the problem with the proposed 

method and in Section 5, we report our numerical finding and demonstrate the 

accuracy of the proposed methods. The conclusions are discussed in the final 

Section. 

 

 

2-Radial basis functions 

 

2.1 Definition of radial basis function 
 

Let R
+
 = {x ∈ R, x ≥ 0} be the non-negative half-line and let B : R+ → R be a 

continuous function with B(0) ≥ 0. A radial basis functions on R
d
  is a function 

of the form B(∥X − Xi∥) , where X, Xi ∈ R
d
  and ∥.∥ denotes the Euclidean 

distance between X and X is. If one chooses N points {x}
N

j=1  in R
d   

then by 

custom 

 

            
is called a radial basis functions as well [14]. 
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2.2 Point Interpolation based on radial basis function 
 

     Consider an approximation function y(x)  in an influence domain that has 

a set of arbitrarily distributed nodes Pi (x) (i =1; 2;:::; n).  n is the number of 

nodes in the influence domain of x.  Nodal function value is assumed to be ui  

at the node xi . Radial PIM constructs the approximation function y(x) to pass 

through all these node points using radial basis function Bi(x) and polynomial 

basis function pj (x)  [33] 

 

                           (3) 

where ai  is the coefficient for Bi (x)  and bj   the coefficient for pi (x)  

(usually, m< n). The vectors are defined a 

 

 

  

                                                       (4) 

            

    A polynomial basis function has the following monomial terms as: 

 

                                                                                                                                                                         (5) 

   The coefficients ai and bj in Equation (1) are determined by enforcing the 

interpolation  pass through all n scattered nodal points within the influence 

domain. The interpolation at the kth point has 
 

                          (6) 

     The polynomial  term is an extra-requirement  that  guarantees  unique  

approximation  [15]. Following constraints are usually imposed: 
               

It is expressed in matrix form as follows: 

 

                                     (7) 

 

   where the vector for function values is defined as 
 

                                                         (8) 

The coefficient matrix B0 on unknowns a is 
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                            B0   =                                                              (9) 

                                         

 

The coefficient matrix P 0  on unknowns b is 

 

 

 
                                          

                                          

                   P0   =                                       (10) 
                                          

 

Because  the  distance  is  directionless, there  is  Bk (xi  )= Bi (xk),  which  

means  that  the matrix B0  is symmetric. Unique solution is obtained if the 

inverse of matrix B0 exists,       

                                                                                                                                                                                                                                        

  The interpolation is finally expressed as 

                        (11) 

where the matrix of shape functions ɸ (x) is defined by  

 

                                         (12) 

in which 
                                    (13) 

 

where   is the (i; k) element of matrix G−1.  After radial basis functions 

are determined, shape functions depend only upon the position of scattered 
nodes. Once the inverse of matrix G is obtained, the derivatives of shape 
functions are easily obtained as 
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                                 (14) 

The results of this section can be summarized in the following algorithm. 
 

Algorithm 

The algorithm works in the following manner: 

  Choose N center  poist   {x}
N

j=1  from the domain set [a, b]. 

 1. Approxime y(x) as yN (x) = ΦT (x)Λ. 
 2. Substitute yN (x) into the main problem and creat residual function Res(x). 
 3. Substitute collocation points{x}

N
j=1 into the Res(x) and create the N 

equations. 

4-Solve the N equations with N unknown coefficients of members of Λ and find 

the numerical solution 
 

 

3   Legendre-Gauss-Lobatto nodes and weights 

  
     Let HN [−1, 1] denote the space of algebraic polynomials of degree ≤ N 
                             
                                     

     Here, < ., . > represent the usual L2[−1, 1] inner product and {x}
N

j=1 are the 

well-known Legendre polynomials of order  i which are orthogonal with respect 

to the weight function w(x) = 1 on the interval [−1, 1], and satisfy the following  

formulae: 
 

                            P0(x) = 1 ,   P1(x) = x , 

 

 

Next, we let {x}N
j=1 as 

 
 

where Ṗ (x) is derivative of P (x). No explicit formula for the nodes {x}
N

j=1    

is known. However, they are computed numerically using existing subroutines 
[13,14]. Now, we assume  f ∈ H2N −1[−1, 1],we have 

 

                                    (15) 

Where wj are the Legendre-Gauss-Lobatto weights given in [39] 
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4   Solution of SVIDEs via PIM 
 

In the present method, the closed form PIM approximating function Eq. (3) is first 

obtained from a set of training points, and its derivative of any order, e.g. pth order, 

can then be calculated in a straightforward manner by differentiating such a closed 

form DRBF as follows: 
 

                                (16) 

                          (17) 

Where                    

Then, from substituting Eq. (8) and Eq. (9) into Eq. (1), we have 

 

                    (18) 

     

We now collocate Eq. (10) at points    as 

      (19) 

    

 In order to use the Legendre-Gauss-Lobatto integration formula for Eq. (11), 

we transfer the t-intervals [0, xi] into the η-intervals [−1, 1], by means of the 

transformations . Then Eq. (11) may be restated as the residual 

function Res(x) 

 
     

             (20)   

                                                           (21) 

The set of equations for obtaining the coefficients {𝛌}
N

i=1 come from
 
equalizing 

Eq. (20) to zero at  N − 1 interpolate nodes {𝛌}
N

i=1 plus Eq. (21).behavior of 

the MQ-RBF method, we applied the following laws 
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1- The L2  error norm of the solution which is defined by 

(22) 

 2-where{x}
N

j=1 are interpolate nodes which are the zeros of shifted Legendre 

polynomial LN (x) ,0 ≤ x ≤ 1  
The L∞  error norm of the solution which is defined by 
 

     (23) 

 

5- Numerical results 
 

    In order to illustrate the performance of radial point 

interpolation meshless method (PIM) in solving SVIDES and justify the 

accuracy and efficiency of our method, we consider the following examples. 

In all examples we use multiquadrics (MQ) RBF. 
 

5.1   Problem 1 
 

In this problem, we consider the following singularly perturbed Volterra integral 

equation [2,3] 

                                   (24)  

 which has the following exact solution: 

                  

     We applied present method and solved Eq. (24) for different value of N . 

Table 2 shows the L2-error, L∞-error norms, in some values of ε obtained for  

N = 16 and M=3,5,7. Then  the figure  1 the exact and ( PIM ) solution for 

N=16 , M=7 and  ε = 20, 2−1, 2−2, ..., 2−5  is represented. 

 

 
Table 2: Error normal 0f MQ Radial (PIM) result with c=0.1 in proplem 1. 

 
 

N=16 & M=7 N=16 & M=5 N=16 & M=3  

              L2                 L∞                L2          L∞           L2            L∞      

1.49e-012 2.74e-012 1.69e-012 3.91e-012 9.48e-013 2.28e-012 2^ -0 

1.12e-009 2.28e-009 8.89e-008 1.78e-007 2.88e-006 5.20e-006 2^ -1 

2.14e-007 3.99e-007 4.66e-006 8.65e-006 4.99e-005 8.71e-005 2^ -2 

1.91e-005 3.29e-005 1.38e-004 2.38e-004 6.57e-004 1.12e-003 2^-3 

7.62e-004 1.33e-003 2.65e-003 4.63e-003 2.57e-002 4.48e-003 2^ -4 

1.45e-002 2.82e-002 1.03e-002 2.00e-002 3.56e-003 7.20e-002 2^ -5 
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Figure 1: comparison between (PIM) approximation of y(x) and exact solution for 

different of ε in problem 1 

 

 

 5.2   Problem 2 
 

     Similar to previous problem, in this problem we consider the following 

singularly perturbed Volterra integro-differential equation [4] 
    

         (25) 

                                      

With the initial condition y(0) = 10. The exact solution is 

 

                 
We applied present method and solved Eq. (25) for different value of N . Table 2 

shows the L2-error, L∞-error norms, in some values of ε obtained for N  = 16 

and M=3,5,7. Then in Figure 4 the exact and (PIM)   solutions for N  =16 and 

M=7. ε = 20, 2−1, 2−2, ..., 2−5  is represented. 
 

 

Table 5: Error normal 0f MQ Radial (PIM) result with c=0.1 in problem 2. 
 

N=16 & M=7 N=16 & M=5 N=16 & M=3  

          L2                 L∞                 L2        L∞         L2             L∞      

5.28e-009 1.04e-008 1.18e-004 2.39e-004 5.27e-003 1.09e-002 2^ -0 

9.37e-007 1.96e-006 2.29e-003 4.96e-003 4.27e-002 9.41e-002 2^ -1 

7.21e-005 1.71e-004 1.49e-002 3.30e-002 9.56e-002 2.13e-001 2^ -2 

2,56e-003 5.86e-003 5.56e-002 1.18e-001 1.47e-001 3.12e-001 2^-3 

2.56e-003 5.61e-002 1.05e-001 2.26e-001 1.64e-001 3.71e-001 2^ -4 

2.22e-001 2.93e-001 3.69e-001 4.95e-001 4.97e001 6.56e-001 2^ -5 

 

€=2-52-4…20 

Exact --*-- 

Implicit --*-- 
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      Figure 4: comparison between( PIM ) approximation of y(x) and exact 

solution for different of ε in problem 2 
 

 

6-Conclusion 
 

In this paper, we discussed the some of integral equations which have the singularly 

and perturbed properties. We proposed a numerical scheme to solve this equations 

using collocation points and approximating the solution using the multiquadric 

(MQ) radial a point interpolation meshless method. For convenience the solutions 

we used RBFs with collocation nodes which are the zeros of the shifted Legendre 

polynomial. Additionally, through the comparison with exact solutions. We show 

that the radial a point interpolation methods (PIM) have good accuracy and 

efficiency and results obtained using the PIMs method are with low error. 
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