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Abstract 

 
Recently, there has been an increasing interest in the study of singular and 
perturbed systems. In this paper we propose a point interpolation meshless method 
for solving two-dimensional singularly perturbed integro-differential equations. 
The results of numerical experiments show that the numerical scheme is very 
effective and convenient for solving a large number of singularly perturbed 
problems with high accuracy. 
 
Keywords: singularly perturbed problems; Volterra integral equations; Volterra 
integro-differential equations 
 

1- INTRODUCTION 
 
As we know ,much work has been done on developing and analyzing numerical 
methods for solving one-dimensional integro-differential equation of the second  
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kind, but in two-dimensional  cases a small amount of work has been done.   In 
the present work, we consider the  two-dimensional singularly perturbed Volterra 
integro-differential equations (SVIDE) 
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where α is a constant and ε is a known perturbation parameter which 0 < ε ≤ 1. 

    Here, ε is small parameter that given rise to singularly perturbed nature of the 
problem, the kernel K and the data function g(x) are given smooth functions . 
under appropriate condition on g and K, for every ε > 0, Eq. 1 has unique 
continuous solution on [0,x] x [0,y].[1,2,3,10]. 

 The singularly perturbed nature of (1) arises when the  properties of the solution 
with ε > 0 we incompatible with those when  perturbed of the ε = 0. for ε > 0, (1) 
is an integral equation of the second kind which typically is well posed whenever 
K is sufficiently well behaved. When ε = 0, (1) reduced to an integral equation of 
the first kind whose solution may well be incompatible with the case for ε >0. The 
interest here is in those problem which do imply such an incompatibility in the 
behavior of  u near x =0, this suggests the existence of the boundary layer near 
the origin where the solution undergoes a rapid transition [1,2,3,10]. 
 
      A point interpolation method(PIM)  was proposed to address above two 
issues[11,12] .the (PIM)  seems attractive in several ways, first, its approximation 
function passes through each node in an influence domain, second, its shape 
function are simple compared with any other method, third, is shape function  
and derivatives are easily developed only if basis function are selected, 

         This paper proposes a point interpolation meshless method based on radial 
basis function for the solution of  two-dimensional singularly perturbed Volterra 
integro-differential equations. this forms a radial PIM, particularly, multiquadric 
radial  basis function [9] are applied in the radial PIM. Recently, collocation 
method were developed, e.g in refernces [4,7]. 

This paper is arranged as follows: in Section 2, the properties of radial (PIM) 
functions was described .  In Section 3, the Legendre-Gauss-Lobatto nodes and 
weights was introduced .In Section 4, the problem with the proposed method was 
implemented and in Section 5, our numerical finding and demonstrate the 
accuracy of the proposed methods were   reported. The conclusions are 
discussed in the final Section. 
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2-  RADIAL BASIS FUNCTION 
 

Definition of radial basis function 

    Let R+ = {x ∈ R, x ≥ 0} be the non-negative half-line and let B: R+ → R be a 
continuous function with B(0) ≥ 0. A radial basis functions on Rd  is a function of 
the form B(║ X − Xi║ ) , where X, Xi ∈ Rd  and ║ .║  denotes the Euclidean 

distance between X and Xi. If one chooses N points { }N
jx 1  =     in Rd   then by 

custom 
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is called a radial basis functions as well [ 8]. 

2.1  POINT INTERPOLATION BASED ON RADIAL BASIS 
FUNCTION 

 
    Consider an approximation function u(x)  in an influence domain that has a 
set of arbitrarily distributed nodes Pi (x) (i =1,2,…, n).  n is the number of nodes 
in the influence domain of x .Nodal function value is assumed to be ui  at the 
node( xi) . Radial PIM constructs the approximation function u(x) to pass through 
all these node points using radial basis function Bi(x) and polynomial basis 
function pj (x). [13] 
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where ai  is the coefficient for Bi (x) and bj the coefficient for pj (x)  (usually, 
m< n). The vectors are defined a 
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Basis function are usually the function of co-cordinates xT=[x,y] for 
two-dimensional problems. A radial basis functions has the following general 
form; 

                                 Bi (x) = Bi(ri) = Bi(x,y) 
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Where ri is the distance between interpolating point (x,y) and the node (xi,yi). This 
distance in the Euclidean two-dimensional space is expressed as  

 

 
 A polynomial basis function has the following monomial terms as: 

                        PT = [ 1, x, y, x2, xy, y2, …]                           (5) 
 
   The coefficients ai  and bj in Equation (1) are determined by enforcing the 
interpolation  pass through all n scattered nodal points within the influence 
domain. The interpolation at the kth point has 
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The polynomial  term is an extra-requirement  that  guarantees  unique 
approximation,[15]. Following constraints are usually imposed: 
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 It is expressed in matrix form as follows: 
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   where the vector for function values is defined as 
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The coefficient matrix B0 on unknowns ai, i=1,2,…,n is 
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The coefficient matrix P 0  on unknowns b is 
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Because  the  distance  is  directionless, there  is Bk (xi,yi  )= Bi (xk,yk),  
which  means  that  the matrix B0  is symmetric. Unique solution is obtained 
if the inverse of matrix B0 exists,       
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  The interpolation is finally expressed as 
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where the matrix of shape functions  )(xΦ   is defined by  
               [ ]),(),...,,(),,(),( 21 yxyxyxyx nΦΦΦ=Φ                   (12) 
in which 
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 After radial basis functions are determined, shape functions depend only upon 
the position of scattered nodes. Once the inverse of matrix G is obtained, the  
derivatives of shape fun- ctions are easily obtained as 
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       The results of this section can be summarized in the following algorithm. 
 
Algorithm 
The algorithm works in the following manner: 
  Choose N center  poist   ( ){ }N

jjj yx
1

,
=

  from the domain set [a, b]x[a,b]. 

1. Approxime  u(x,y) as uN (x) = ΦT (x,y)Λ. 
2. Substitute u/  (x,y) into the main problem and creat residual function  

Res(x,y). 
3. Substitute collocation points  ( ){ }N

jjj yx
1

,
=

  into the Res(x,y) and create the N 

equations. 
4. Solve the N equations with N unknown coefficients of members of Λ and find 

the numerical solution. 

 
 

3 -LEGENDER-GAUSS-LOBATTO NODES AND WEIGHTS 
  
     Let HN [−1, 1] denote the space of algebraic polynomials of degree ≤ N 
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     Here, < ., . > represent the usual L2[−1, 1] inner product and {pi},i>0 are 
the well-known Legendre polynomials of order  i which are orthogonal with 
respect to the weight function w(x) = 1 on the interval [−1, 1], and satisfy the 
following  formulae: 
 
                          P0(x) = 1 ,   P1(x) = x , 
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where P˙ (x) is 
derivative of P (x). No explicit formula for the nodes is known. However, they are 
computed numerically using existing subroutines[5,6]  Now, we assume f∈H2N 
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Where  are jw  the Legendre-Gauss-Lobatto weights given in [11] 
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4-   SOLUTION OF SVIDEs VIA PIM 
 
In the present method, the closed form PIM approximating function Eq. (11) is first 
obtained from a set of training points, and its derivative of any order, e.g. pth order, 
can then be calculated in a straightforward manner by differentiating such a closed 
form DRBF as follows: 
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        In order to use the Legendre-Gauss-Lobatto integration formula for Eq. 
(15), we tran- sfer the t-intervals[0, xi] into the η-intervals [−1, 1],by means of the 
transformations .
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19) may be restated as the residual function Res(xj,,yj) 
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  The set of equations for obtaining the coefficients N

jj 1}{ =Λ  come from 
equalizing Eq. (20) to zero at  N − 1 interpolate nodes  N

jj 1}{ =Λ   plus Eq. (21). 
behavior of the MQ-RBF method, we applied the following laws 
1- The L2  error norm of the solution which is defined by 
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 5- NUMERICAL  RESULTS 

      In order to illustrate the performance of radial point interpolation  meshless 
method (PIM) in solving SVIDES and justify the accuracy and efficiency of our 
method, we consider the following examples. In all examples we use 
multiquadrics (MQ) RBF. 

Problem 1 
 
In this problem, we consider the following singularly perturbed Volterra integral 
equation  

       
εε

ε
7345
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which has the following exact solution: 
ε/)(),( 32 yxyxu +=  

     We applied present method and solved Eq. (22) for different value of N and M 
. Table 1 shows the L2-error, L∞-error norms, in some values of ε = 20, 2−1, 2−2, 
..., 2−4  obtained  .  

Table 1: Error normal 0f MQ Radial (PIM) result with c=0.1 in proplem 1. 
N=15 & M=15 N=15 & M=10 N=15 & M=5  

             L2                L∞                   L2          L∞         L2              L∞      
9.93e-014 2.34e-0131.88e-0123.62e-0124.95e-0049.68e-004 2^ -0 

2.37e-012 5.59e-0125.35e-0131.30e-0121.98e-0033.87e-003 2^ -1 

2.52e-012 5.93e-0121.40e-0112.88e-0117.91e-0031.55e-002 2^ -2 

4.94e-013 1.15e-0125.96e-0111.24e-0103.16e-0026.19e-002 2^-3 

5.39e-013 1.09e-0121.74e-0103.62e-0101.26e-0012.48e-001 2^ -4 

 
 

Problem 2 
 
In this problem, we consider the following nonlinear singularly perturbed Volterra integral 
equation  

        
1212

   dt ds ),(  y)-(x-y)u(x, 
4334x

0

y

0

2 yxyxyxstu +−=∫ ∫ εε     (23) 

 which has the following exact solution: 
yxyxu   ),( =  

     We applied present method and solved Eq. (23) for different value of N and M .  
 
Table 2 shows the L2-error, L∞-error norms, in some values of ε = 20, 2−1, 2−2, ..., 2−4  
obtained.  
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Table 2: Error normal 0f MQ Radial (PIM) result with c=0.1 in proplem 2. 

 
N=10 & M=8 N=10 & M=5 N=10 & M=3  

            L2                 L∞                  L2           L∞         L2              L∞      
8.24e-006 1.28e-0051.77e-0052.36e-0057.52e-0031.28e-002 2^ -0 

5.15e-005 7.93e-0053.23e-0054.61e-0051.51e-0022.57e-002 2^ -1 

2.14e-004 3.53e-0045.58e-0057.82e-0052.62e-0024.44e-002 2^ -2 

6.16e-004 1.04e-0039.55e-0051.31e-0043.83e_0026.29e-002 2^-3 

1.31e-003 2.24e-0031.71e-0042.33e-0044.90e-0028.29e-002 2^ -4 

 
Problem 3 

 
In this problem, we consider the following integro-differentioal singularly 
perturbed Volterra integral equation  

2636
1)(y   dt ds ),( s)(ty)u(x, 
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which has the following exact solution: 
 

xxyyxu +=   ),(  
 
     We applied present method and solved Eq. (24) for different value of N and M 
. Table 3 shows the L2-error, L∞-error norms, in some values of ε = 20, 2−1, 2−2, 
..., 2−4  obtained  .  

Table 3: Error normal 0f MQ Radial (PIM) result with c=0.1 in proplem 3. 
N=20 & M=6 N=15 & M=6 N=7 & M=6  

            L2                 L∞                 L2          L∞           L2              L∞      
2.03e-013 4.88e-0132.71e-0105.18e-0109.89e-0101.18e-009 2^ -0 

2.13e-013 5.88e-0139.08e-0121.80e-0111.66e-0091.99e-009 2^ -1 

3.19e-014 9.94e-0141.83e-0123.96e-0122.98e-0103.64e-010 2^ -2 

7.44e-015 2.09e-0146.15e-0131.62e-0126.16e-0117.89e-011 2^-3 

1.67e-015 4.73e-0152.46e-0136.58e-0122.99e-0114.44e-011 2^ -4 

 

6- CONCLUSIONS 

          In this paper, some of two dimensional integral equations which have the 
singularly and perturbed properties were discussed.  Numerical scheme to solve 
this equations using collocation points and approximating the solution using the 
multiquadric (MQ) radial a point interpolation meshless method were proposed. 
For convenience the solutions we used RBFs with collocation nodes. 
Additionally, through the comparison with exact solutions. We show that the 
radial a point interpolation methods (PIM) have good accuracy and efficiency and 
results obtained using the PIMs method are with low error. 
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