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Abstract
Recently, there has been an increasing interest in the study of singular and per-
turbed systems. In this paper design fast feed forward neural network to present
a method to solve singularly perturbed integro-differential and integral equations.
Using a multi-layer having one hidden layer with 5 hidden units(neurons) and one
linear output unit the sigmoid activation of each unit is radial basis function and
Levenberg - Marquardt (trainlm) training algorithm. Finally The results of numer-
ical experiments are compared with the exact solution in illustrative examples to
confirm the accuracy and efficiency of the presented scheme.

1. Introduction

In the present work, we consider the singularly perturbed volterra integro-differential
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ε
d

dx
y(x) = u(x, ε, y(x)) +

∫ x

0
K(x, t, ε, y(t))dt, x ∈ I = [0, x] (1)

y(0) = α

where α is a constant and ε is a known perturbation parameter which 0 < ε � 1.

The kernel K and the data function u are given smooth function. Under appropriate

condition on u and K, for every ε > 0, eq.1 has a unique continuous solution on [0, x],

[7].

Finding the solutions of these problems has been widely studied by researchers in the last

decade. Implicit Runge-Kutta methods were presented for singularly perturbed integro-

differentialc equations in [5] and for singularly perturbed integro-differential systems in

[6]. In [2], Orsi applied a Petrov-Galerkin method to singularly perturbed integro-

differential-algebraic equations. El-Gendi [11] applied spectral methods to obtain solu-

tion of singularly perturbed differential, integral and integro-differential equations. Hu

[8] and Horvat et al. [12] solved the SVIDEs by using the spline collocation methods.

Recently, in [1] a numerical procedure based on finite difference was presented for solv-

ing a class of SVIDEs. More recently, Ramos [4] applied Piecewise-quasilinearization

techniques to obtain solution of SVIDEs.

Many methods have been developed so far solving integral and integro-differential equa-

tion. Some of them produce a solution in the form of an array that contains the value

of the solution at a selected group of point, other use basis function to represent the

solution in analytic form and transform the original problem usually to a system of

algebraic equation.

Nowadays there is a new way of computing denominated Artificial intelligence which

through different methods is capable of managing the imprecisions and uncertainties

that appear when trying to solve problems related to the real world, offering strong

solution and of easy implementation. One of those techniques is known as Artificial

Neural Networks (ANN).

Inspired, in their origin, in the functioning of the human brain, and entitled with some

intelligence. These are the combination of a great amount of elements of process.artificial

neurons interconnected that operating in a parallel way get to solve problems related to

aspects of classification. the construction of any given ANN we can identify,depending
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on the location in the network, three kinds of computational neurons: input, output

and hidden.

In this paper is organized as follows: the next section definition the ANN, in section 3

describe the structure of neural network, in section 4 the Levenberg Algorithm deriva-

tion, description of method in section 5,in section 6 Illustration of the method, In section

7 report our numerical result finding accuracy of method. Finally conclusions the last

part of the paper.

2, Artificial Neural Network

There are different ways of defining what the ANN are, from short and generic definitions

the ones that try to explain inadetailed way what means a neural network or neural

computing. For this situation, the definition that was proposed by Haykin [10], appears

below:

Artificial Neural Networks are massively interconnected network in parallel

of simple elements (usually adaptable), with hierarchic organization, which

try to interact with the objects of the real world in the same way that the

biological nervous system does.

As a simple element we understand the artificial equivalent of a neuron that is known

as computational neuron or node. These are organized hierarchically by layers and

are interconnected between them just as in the biological nervous systems. Upon the

presence of an external stimulus the artificial neural network generates an answer, which

is confronted with the reality to determine the degree of adjustment that is required

in the internal network parameters. This adjustment is known as learning network or

training, after which the network is ready to answer to the external stimulus in an

optimum way.

ANN is characterized by [9]

1. Architecture: its pattern of connections between the neurons.

2. Training Algorithm: its method of determining the weight on the connections.

3. Activations function.
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3. Structure of a Neural Network. (Topology)[10]

in an artificial neural network expressions structure, architecture or topology, express

the way in which computational neurons are organized in the network. Particularly,

these terms are focused in the description of how the nodes are connected and in how

the information is transmitted through the network. As it has been mentioned, the

distribution of computational in the following:

Number of levels or layers : neurons in the neural network is done forming levels

or layers of a determined number of nodes each one. As there are input, output and

hidden neurons, we can talk about an input layer, an output layer and single layer

or multilayer hidden layers. By the peculiarity of the behavior of the input nodes

some authors consider just two kinds of layers in the ANN, the hidden and the output.

Connection patterns : Depending on the links between the elements of the different

layers. the ANN can be classified as: totally connected, when all the outputs from a

level get to all and each one of the nodes in the following level, if some of the links in

the network are lost, then we say that the network is partially connected.

Information flow : Another classification of the ANN is obtained by considering

the direction of the flow of the information through the layers, when any output of

the neurons is input of neurons of the same level or preceding levels, the network is

described as feed-forward.

In counter position if there is at least one connected exit as entrance of neurons of

previous levels or of the same level, including themselves, the network is denominated

of feedback.

4. Levenberg-Marquardt Algorithm (LM) [3]

For LM algorithm, the performance index to be optimized is defined

F (w) =
p∑

p=1

[
K∑

K=1

(dKP − oKP )2
]

(2)

where w = [w1 w2 · · ·wN ]T consists of all weights of the network, dkp is the desired value

of the k-th output and the p-th pattern, okp is the actual value of the k-th output and

the p-th pattern, N is the number of the weights, P is the number of pattern, and K is

the number of the network output.
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Equation (2) can be written its

F (w) = EE (3)

where

E = [e11 · · · eK1e12 · · · eK2 · · · e1p · eKP ]T

ekp = dkp − okp k = 1, · · · ,K, p = 1, · · · , P

where E is the cumulative error vector ( for all pattern).

From equation (3) the Jacobian matrix is define as

J =



∂e11
∂w1

∂e11
∂w2

· · · ∂e11
∂wN

∂e21
∂w1

∂e21
∂w2

· · · ∂e21
∂wN

· · · · · · · · · · · ·
∂ek1
∂w1

∂ek2
∂w2

· · · ∂ek1
∂wN

· · · · · · · · · · · ·
∂e1p

∂w1

∂e1p

∂w2
· · · ∂e1p

∂wN

∂e2p

∂w1

∂e2p

∂w2
· · · ∂e2p

∂wN

· · · · · · · · · · · ·
∂ekp

∂w1

∂ekp

∂w2
· · · ∂ekp

∂wN



(4)

And the weights are calculated using the following equation

wt+‘1 = wt − (JT
t Jt + µtI)−1JT

t Et (5)

where I is identity unit matrix, µ is the learning parameter and J is Jacobian of m

output error with respect to n weights of the neural network. The parameter is auto-

matically adjusted at each iteration in order to secure convergence, the LM algorithm

requires computation of the Jacobian matrix at each iteration step and the inversion of

square matrix, the dimension of which is N∗N .

5. Description of the Method

In this section the approximation is illustrate to be used to find the approximation

solution of the singularly perturbed integro-differential equation.

ε
d

dx
y(x) = u(x, ε, y(x)) +

∫ x

0
K(x, t, ε)y(t)dt
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where a subject to certain IC’s x = (x1, x2, · · · , xn) ∈ Rn, and y(x) is the solution

to be computed. If yt(x, p) denoted a trial solution with adjustable parameters p, the

problem is transformed to a discretize from:

Min
∑
xi∈D

u(xi, y(xi), ε) +
∫ xi

0
K(xi, t, ε)y(t)dt. (6)

In the our proposed approach, the trial solution yt employs a FFNN and the parameters

p correspond to the weight and biases of the neural architecture, we choose a form for

the trial function yt(x) :

yt(x + i, p) = A(x) + G(x,N(x, p)) (7)

where N(x, p) is a single-output FFNN with parameters p and n input unit fed with

the input vector x. This term A(x) no adjustable parameter and satisfies the BC’s, the

second term G is constructed so as not to contribute to the BC’s, since yt(x) satisfy

them. This term can be formed by using a Ann whose weight and biases are to be

adjusted in order to deal with the minimization problem.

6. Illustration of the Method

In this section described solution of SVIDE using FFNN. To illustrate the method, we

consider the singular volterra integro-differential equation

ε
d

dx
y(x) = u(x, ε, y(x)) +

∫ x

0
K(x, t, ε)y(t)dt

where x ∈ [0, 1] and the IC : y(a) = A, a trial solution can be written as:

yt(x) = A + x ·N(x, p) (8)

where N(x, p) is the output of a FFNN with one input unite for x and weights p.

Note that yt(x) construction the error quantity to be minimized is given by:

E(p) =

{
εdyt −

n∑
i=1

u(xi, ε, y(xi)) +
∫ xi

0
K(xi, t, ε)yt(t)dt

}2

(9)

where the xi ∈ [0, 1]. Since

dyt(x) = N(x, p) + |x · dN(x, p). (10)
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7. Numerical Result

In this section report some numerical results and the solution of number of model

problem. In all cases used a multi-layer FFNN having one hidden layer with 5 hidden

units (neurons) and one linear out output unit. The sigmoid activation of each hidden

is radbas (radial basis function) and (LM) Levenbrg-Marquardt Algorithm.

For each test problem the exact analytic solution ya(x) were known in advance. There-

fore we test the accuracy of obtained solutions using mean square error (mse).

Example 1 : Consider the following singularly perturbed volterra integral equation.

εy(x) =
∫ x

0
(1 + t + y(t))dt. (11)

This has the following exact solution:

y(x) = x + 1− e−x/ε− ε(1− e−x/ε)

We applied present method and solved eq.( 11) for different value of ε. Table 1 given

mean square error, of the design network.

Table 1: mean square error of the network for example 1

Mse
ε → 42−0 2−1 2−2 2−3 2−4 2−5

Mse 6.6750e−17 1.3891e−09 2.5396e−08 3.4606e−07 9.5743e−08 2.0749e−0.7
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Table 1 shows the approximation solution for eq. (11) obtained using ANN method

for different values of using ε from the numerical result in Table 2, it is clear that the

approximate solution are in high agreement with the exact solution and the solution

continuously depend on the parameter ε.

Example 2 : In this problem we consider the following singularly perturbed Volterra

integro-differential equation.

ε d
dxy(x) + y(x) +

∫ x
0 ty(t)dt = (2 + 9x + εx + 11x + x2)e−1

−10(εx + ε2)e−x/ε + 5x2 + 10ε2 − 2.

(12)

With the initial condition y(0) = 10. The exact solution is

y(x) = 10− (10 + x)e−x + 10e−x/ε. (13)

We applied present method and solved eq. (12) for different value of ε. Table 2 given

mean square error of the design network,

Table 2 : Mean square error of the network for example 2

Mse
ε → 42−0 2−1 2−2 2−3 2−4 2−5

Mse 3.3735e−12 2.9366e−8 1.0468e−7 4.4080e−7 3.7693e−7 9.9082e−7

The evolution result for exact solution (13) and the approximation solution obtained

using the ANN method for different values ε, are shown in figure 2. It can be seen
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that the solution obtained by present method is nearly identical with the exact solution

when ε = 1 and the error increases as approaches zero.

8. Conclusion

In this paper, we design fast feed forward neural network to solve some of integro-

differential and integral equation which have the singularly perturbed. A fast and

efficient algorithm (LM) for FFNN with one hidden layer has been presented and tested

on several examples. Through the comparison with exact solutions show that the ANN

method has good accuracy and efficiency and results obtained using the ANN method

is with low error. Moreover, our method is quite general and can be used in a wide class

of integral and integro-differential equation.
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