
 Raf. J. of Comp. & Math’s. , Vol. 10, No. 1, 2013
 Fifth Scientific Conference Information Technology 2012 Dec. 19-20

91

Hiding Sensitive Frequent Itemsets over Privacy Preserving Distributed Data
Mining

Alaa Kh. Juma'a Sufyan T. F. Al-Janabi Nazar A. Ali
Computer Science Institute
University of Polytechnic

/Sulaimaniya

College of Computer
University of Anbar

College of Administration
University of Sulaimaniya

Received on: 08/10/2012 Accepted on: 30/01/2013

 الملخص

وإن التنقيب عن . المخفية من البياناتالأنماطإن عملية تنقيب البيانات هي عبارة عن استخلاص
 التوجه الحديث للباحثين فيها هو الحفاظ أصبحالعلاقات الرابطة يعد واحدا من أهم فعاليات تنقيب البيانات والتي

 توجهات البحوث أهم خصوصية البيانات هو من فالتنقيب المحافظ على. عنهاعلى سرية تلك البيانات المنقب
ويمكن تطبيق فعاليات التنقيب هذه على . العلمية الجديدة في خصوصية البيانات وقواعد البيانات الإحصائية

 فعالية لقواعد البيانات الموزعة تفترض التنقيب في الأساليب أكثر أنورغم . قواعد البيانات المركزية والموزعة
 لم يعد بالإمكان تطبيقها في كثير من الأساليب تلك أن يمكن تشاركها بين المواقع المختلفة، غير البيانات التي

 بسبب المخاوف المتعلقة بخصوصية منع المواقع من تبادل البيانات بشكل مباشر، أو تبادل بعض أنواع الأحيان
شعبية متزايدة لأنه) PPDM(نات لذلك أصبح للتنقيب المحافظ على خصوصية البيا. المعلومات حول البيانات

 .يسمح بتبادل البيانات الحساسة الخصوصية لأغراض التحليل
في هذا البحث، تم التصدي لمشكلة الحفاظ على خصوصية التنقيب للعلاقات الرابطة في قاعدة بيانات

ات الرابطة من العامة المتكررة أو العلاقitemsets)(موزعة أفقيا من خلال اقتراح نظام لحساب العناصر
كما نقدم هنا أيضا خوارزمية جديدة لإخفاء هذه العناصر . مواقع مختلفة دون الكشف عن المعاملات الفردية

ويمكن أن يتم ذلك عن . كل موقع على حدةفيالمتكررة الحساسة أو قواعد الرابطة الحساسة من خلال إخفائها
 الحساسة أو العلاقات من العناصرجل خفض الدعم لكلطريق تعديل قاعدة البيانات الأصلية لكل موقع من أ

 العناصرإخفاء قدرتها على إلى النتائج التي تم الحصول عليها من تطبيق الخوارزمية المفترضة تشير .الرابطة

كما أن النظام المفترض استطاع الحصول على . المتكررة الحساسة بوقت تنفيذ جيد وبأقل تأثيرات جانبية
الموزعة على عدة مواقع مع الحفاظ على) Global Frequent Itemset(كررة العامة للبيانات العناصر المت

 . خصوصية كل موقع

ABSTRACT
Data mining is the process of extracting hidden patterns from data. One of the

most important activities in data mining is the association rule mining and the new head
for data mining research area is privacy of mining. Privacy preserving data mining is a
new research trend in privacy data for data mining and statistical database. Data mining
can be applied on centered or distributed databases. Most efficient approaches for
mining distributed databases suppose that all of the data at each site can be shared.
Privacy concerns may prevent the sites from directly sharing the data, and some types of
information about the data. Privacy Preserving Data Mining (PPDM) has become

 Alaa Kh. Juma'a - Sufyan T. F. Al-Janabi & Nazar A. Ali

 92

increasingly popular because it allows sharing of privacy sensitive data for analysis
purposes.

In this paper, the problem of privacy preserving association rule mining in
horizontally distributed database is addressed by proposing a system to compute a
global frequent itemsets or association rules from different sites without disclosing
individual transactions. Indeed, a new algorithm is proposed to hide sensitive frequent
itemsets or sensitive association rules from the global frequent itemsets by hiding them
from each site individually. This can be done by modifying the original database for
each site in order to decrease the support for each sensitive itemset or association rule.
Experimental results show that the proposed algorithm hides rules in a distributed
system with the good execution time, and with limited side effects. Also, the proposed
system has the capability to calculate the global frequent itemsets from different sites
and preserves the privacy for each site.
Keywords-cryptography; data mining; distributed database; frequent itemsets; sensitive
association rules.
I. Introduction

Privacy preserving data mining is a new research area that investigates the side-
effects of data mining methods that originate from the penetration into the privacy of
individuals and organizations. Most of information systems contain private information,
such as social security numbers, income, disease type, etc. Therefore, this information
should be correctly protected and hidden from unauthorized access. Although, the
security of data has been permanent goal in database management systems, mining of
knowledge and preventing of sensitive knowledge disclosure become the most
important and highest priority goal in data mining process. Basically, the sharing of data
between businesses in purpose of reaching valuable information is useful, but it can
bring a lot of disadvantages [1].

Recent advances in data mining algorithms increased the risk of information
leakage and its confidence issue. Because of this progress, the parallel research area has
been started to overcome the information leakage risks and immunization of mining
environment. Privacy preserving against mining algorithms is a new research area that
investigates the side-effects of data mining methods that can be derived from the
privacy diffusion of persons and organizations [9].

Two problems are addressed in (PPDM); one is the protection of private data;
another is the protection of sensitive rules (knowledge) contained in the data. The
former settles how to get normal mining results when private data cannot be accessed
accurately; the latter settles how to protect sensitive rules contained in the data from
being discovered, while non-sensitive rules can still be mined normally. The latter
problem is called knowledge hiding in database in (KHD) which is opposite to
knowledge discovery in database (KDD) [7].

Recent studies in preserving association rule privacy have proposed many
techniques like k-Anonymity methods, randomization methods, and cryptographic-
based PPDM that includes Secure Multiparty Computation (SMC), homomorphic
encryption, and other cryptographic techniques [2, 10 and 11].

Also, a number of techniques like perturbation and anonymization have been
developed to hide association rules from being discovered from published data. In
practically for a single data set, given specific rules or patterns to be hidden, many data
altering techniques for hiding association rules have been proposed. They can be
categorized into three basic approaches. The first approach hides one rule at a time. It

 Hiding Sensitive Frequent Itemsets over …

 93

first selects transactions that contain the items in a given rule. It then tries to modify
items, transaction by transaction, until the confidence or support of the rule falls below
minimum confidence or minimum support. The modification is done by either removing
items from the transaction or inserting new items to the transactions. The second
approach deals with groups of restricted patterns or sensitive association rules at a time.
It first selects the transactions that contain the intersecting patterns of a group of
restricted patterns. Depending on the disclosure threshold given by users, it sanitizes a
percentage of the selected transactions in order to hide the restricted patterns. The third
approach deals with hiding certain constrained classes of association rules [5].

C.-C. Weng et al. presented algorithm to hide frequent sensitive rule by
evaluating the weight of each transaction that supports these rules and hiding these rules
according to this weigh [14]. V. S. Verykios et al. presented algorithms to hide sensitive
association rules, but they generated high side effects and required multiple database
scans [12]. S.-L. Wang proposed an algorithm to hide sensitive items. The algorithm
needs less number of database scans, but the side effects generated were higher [13].

This paper deals with the Distributed Data Mining (DDM), or more specifically,
with (PPDDM). This work proposes a two-phase PPDDM system. The first phase is
dedicated for privacy-preserving distributed mining by encrypting local association rule
mining in each site with commutative algorithm and sending the results to all sites. In
the second phase, a new algorithm is proposed to hide sensitive frequent itemsets from
global support items by hiding these frequent items in each site according to the
proposed algorithm. Each site will modify its original database in order to prevent any
external miner from detecting any sensitive frequent itemsets. The remaining of this
paper is organized as follows: Section 2 briefly discusses classes of association rule
algorithms. Section 3 presents the problem description. Next, Section 4 introduces the
proposed approaches and algorithm. Then, Section 5; discusses the results and
performance evaluation. Finally, the paper is concluded in Section 6.

II. Classes of Association Rule Algorithms
The various approaches proposed by researchers hide sensitive information

efficiently and accurately but also face the problem of side effects. The side effects
occur due to correlations existing between items in the database. Side effects may
decrease the informational accuracy to the users. Due to the property of correlation,
association rules may possess spurious or wrong information, hide non sensitive rules
unnecessarily, and accidentally disclose some sensitive rules. So the challenging task is
how to protect sensitive rules from users without effecting informational accuracy to the
users that is avoiding side effects as far as possible.

The algorithms which have been already developed for hiding association rules
can be classified into three distinct classes, namely heuristic approaches, border-based
approaches and exact approaches. The first class of approaches involves efficient and
fast algorithms that selectively sanitize a set of transactions from the database to hide
the sensitive knowledge [8]. Due to their efficiency and scalability, the heuristic
approaches have been the focus of attention for the vast majority of researchers in the
knowledge hiding field. However, there are several circumstances in which they suffer
from undesirable side-effects that lead them to suboptimal solutions.

The second set of approaches considers the task of sensitive rule hiding through
modification of the original borders in the lattice of the frequent and the infrequent
patterns in the dataset. In these schemes, the sensitive knowledge is hidden by enforcing
the revised borders (which accommodate the hiding of the sensitive itemsets) in the

 Alaa Kh. Juma'a - Sufyan T. F. Al-Janabi & Nazar A. Ali

 94

sanitized database. The algorithms in this class differ both in the borders that they track,
use of the hiding strategy, and in the methodology that they follow to enforce the
revised borders in the sanitized dataset. Finally, the third class of approaches contains
non-heuristic algorithms which conceive the hiding process as a constraint satisfaction
problem that they solve by using integer or linear programming. The main difference of
these approaches, compared to the previous ones, is the fact that the sanitization process
guarantees optimality in the hiding solution, provided that an optimal solution exists. On
the other hand, these approaches are usually several orders of magnitude slower than the
heuristic ones, especially due to the runtime of the integer/linear programming solver
[1].

III. Problem Description
Association rule mining was first introduced by Agrawal, R. et al.

Let ={ } be a set of literals, called items. Given a set of transactions D,
where each transaction T in D is a set of items such that T I , an association rule is an
expression X Y where As an example, for a given
database in Table 1, for a minimum support of 33% and a minimum confidence of 70%,
nine association rules can be found as follows: B=>A (66%, 100%), C=>A (66%,
100%), B=>C (50%, 75%), C=>B (50%, 75%), AB=>C (50%, 75%), AC=>B (50%,
75%), BC=>A(50%, 100%), C=>AB(50%, 75%), B=>AC(50%, 75%), where the
percentages inside the parentheses are supports and confidences respectively [3].

Distributed system assumed that that there are n sites S , S , …, S and the
transaction database DB is horizontally divided into n non-overlapping partitions db0,
db , …, db , where DB = , 0 ≤ i ≠ j ≤ .
Each partition db is assigned to site S , and DB is horizontally distributed. Clearly,
|DB| = |db | + |db | + … + |db |. X.sup is the local support counts of itemset X at
site Si, for 0 ≤ i ≤ . The global support count of X in DB is given as

. X is globally frequent if X.sup ≥ minSup × |DB|. Similarly, X is
locally frequent if X.sup ≥ minSup × |db |. [4]

Table I. Data Set Example [3]
TID Items
T1 ABC
T2 ABC
T3 ABC
T4 AB
T5 A
T6 AC

Two problems are addressed here: one for protection the privacy for each site
when we evaluate the global support itemsets; the other is to hide a sensitive frequent
itemsets from global support items. In the first problem, the commutative encryption
should be applied to preserve the global candidate itemsets in each site. Each site
encrypts its own local frequent itemsets and some fake itemsets, and then sends the
encrypted itemsets to the next site until all sites have encrypted all itemsets. Next, it
merges all encrypted itemsets, and all encrypted itemsets are then decrypted site by site.

 Hiding Sensitive Frequent Itemsets over …

 95

The second problem is to hide the sensitive frequent itemsets or rules and
minimize the loss items. When the global frequent for the sensitive rules satisfies these
two conditions:-

i. Support(X=>Y)= P(X and Y) >= Min_sup ;
ii. Confidence(X=>Y)= P(X/Y)= [Support(Support(X)] >= Min_conf.

where X and Y represent the candidate attributes. That means that this rule is frequent
and it should be hidden. However, this rule can be hidden by:

 Reducing the support of confidential rules (by decreasing the support of the
corresponding large XY).

 Reducing the confidence of rules (by Increasing the support of X in transactions
not supporting Y or decreasing the support of Y in transactions supporting both X
and Y)

This can be done by deleting or adding a new data to the original database. This
way prevents tools from discovering these rules, but the challenge is the data quality.
When a support of items is changed, some other insensitive rules will also be affected
either by hiding it or supporting another frequent rule. Therefore, we need to define
good ways to reduce the negative side effects on data quality.

IV. Proposed Approache and Algorithms
The main aim of our proposed system is to securely and efficiently preserve the

privacy of distributed data mining of association rules on horizontally partitioned
database. This section is intended to serve as a work-in-progress report on our proposed
work. This work generally can be divided into two phases: The first phase is responsible
for protection of the privacy for each site when we evaluate the global support itemsets.
This can be done by using SMC protocol. In this proposal, we use a commutative
encryption tool. Each site encrypts its own frequent itemsets or rules, and then passes it
to other sites until all sites have encrypted all frequent itemsets. These are next passed to
a common site to eliminate duplicates and to begin decryption. This set is then passed to
each site that decrypts each frequent itemsets. The final result represents the global
support frequent itemsets.

In the second phase, we need to hide sensitive frequent itemsets from global
support items. This can be done when we reduce the support of confidential rules by
decreasing the number of items that support these rules. This can be done by removing
these items from original database in each site until the frequent itemsets become less
than min_support threshold. Figure 1 represents the proposed system.

The major steps for phase one can be explained as follows (Assuming that we
have three sites S1, S2 and S3):

1. Determination of the local frequent itemset:
 Each site determines local frequent itemset for the sensitive rule (R) by using the

following prior algorithm pseudo code:

Ck: Candidate itemset of size k
Lk: frequent itemset of size k
L1= {frequent items};
for(k= 1; Lk!=Ø; k++) do begin
Ck+1= candidates generated from Lk;
for each transaction tin database do
increment the count of all candidates in Ck+1that are contained in t

 Alaa Kh. Juma'a - Sufyan T. F. Al-Janabi & Nazar A. Ali

 96

Lk+1= candidates in Ck+1with min_support
end
return k Lk;

 Join Step: Ck is generated by joining Lk-1with itself.
 Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a

frequent k-itemset.

Figure 1. General architecture of the proposed system

2. Determining the global support itemsets for each site without disclosing the privacy
of sites:
 Assume that the FI1, FI2, and FI3 represent the local support items or rules and

E1, E2, and E3 represent the commutative encryption algorithm with its keys,
for sites S1, S2, and S3 respectively (we use Pohlig–Hellman algorithm to
perform the commutative encryption) .

Where FI1 =
 FI2 = …(1)
 FI3 =

 Each site encrypts its rule and sends it to the next site:
o S1 determines E1 (FI1) and sends it to S2.
o S2 determines E2 (FI2) and sends it to S3.
o S3 determines E3 (FI3) and sends it to S1.

 Each site encrypts the received data with its key and sends the result to the next
site:
o S1 determines E1 (E3 (FI3)) and sends it to S2.
o S2 determines E2 (E1 (FI1)) and sends it to S3.
o S3 determines E3 (E2 (FI2)) and sends it to S1.

 Again, each site encrypts the received data with its key and sends the result to
the next site:
o S1 determines E1 (E3 (E2 (FI2))) and sends it to S2.
o S2 determines E2 (E1 (E3 (FI3))) and sends it to S3.
o S3 determines E3 (E2 (E1 (FI1))) and sends it to S1.

 Because we use a commutative algorithm the above encryption of data can be
written as:

 Hiding Sensitive Frequent Itemsets over …

 97

o E1 (E2 (E3 (FI1)))
o E1 (E2 (E3 (FI2)))
o E1 (E2 (E3 (FI3)))

 This encrypted data is then sent to S1, and S1 decrypts it (removes E1) and
sends the result to S2:
o E2 (E3 (FI1))
o E2 (E3 (FI2))
o E2 (E3 (FI3))

 By the same way, S2 decrypts received data (removes E2) and sends the result to
S3:
o E3 (FI1)
o E3 (FI2)
o E3 (FI3)

 S3 decrypts the remained data (removes E3) and gets FI1, FI2 and FI3 without
knowing from which site each of these rules have come.

 Now S3 has FI1+FI2+FI3. He can determine the global support and confidence
for the rules and broadcast them to the other sites.

In Phase two, a proposed algorithm is used to hide sensitive frequent itemsets or
rules by decreasing the support of their generating itemsets until their support is below
the minimum support threshold. The steps for hiding sensitive frequent itemsets or rules
for each site in the system can be explained as follows:

1. Each site has Local frequent itemset, global frequent itemsets, local database
(|T) and minimum support threshold.

2. Input is the sensitive rule or frequent itemsets.
3. Extract all transactions that support this sensitive frequent items (T .
4. Evaluate the Site Remove Frequent Itemset (SRFI) that is representing how many

frequent itemsets are needed to remove from each site as seen in eq. (2).

)/100*|T …(2)
where
LSF = Local support frequent,
GSF =Global support frequent, and
min_supp =Minimum Support Threshold.
|T

5. Evaluation of the number of each item in sensitive itemsets needs to be removed
from |T | by eq. (3):

 …(3)
where
|Iri| = number of item i needed to be removed,
|IDi| = count for item i in database,
|IDt| = summation for all items count in database;
|IDt|= …(4)

This evaluation performed according to the ratio of each item in sensitive itemsets
for all database transaction in order to reduce the side effects that may result from
modifying the database.

6. Sort (T) in ascending order to minimize the impact that applied changes will
have in database.

 Alaa Kh. Juma'a - Sufyan T. F. Al-Janabi & Nazar A. Ali

 98

7. Sort items in itemsets in descending order according to the |Ir|. This also will
minimize the side effects that can happen when modifying the database.

8. Remove items from (T) according to the above sorting, by setting the value for
this item to “0” instead of “1”.

These steps will be done at all sites in the system in order to recalculate the
global support itemsets. After recalculation, the sensitive frequent itemsets or rules have
been hidden from the new global support itemsets. The pseudo code for the proposed
algorithm is shown in Figure 2.

Let us take an example to clarify the operation of the proposed algorithm.
Consider three local sites S1, S2 and S3, which have DB1, DB2 and DB3 respectively.
We need to hide Sensitive Frequent Itemsets or rules “1, 15 and 16“. The local frequent
itemset (LSF) in each site and global frequent itemset (GSF) for these rules are
explained in Table II. Let the minimum support threshold be 5%. The size of database is
30000 transactions (10000 transactions in each site). To hide this Sensitive Frequent
Itemsets we need to modify the database in each site. The following steps perform the
hiding operation in each site.

A. Steps in Site 1
Site 1 has the following parameters:

|T |=692, |ID1|=4218, |ID2|=4176, |ID3|=3975, |IDt|=12360 and |T . Now,
we modify DB1 according to the following calculations, and evaluate the New LSF for
site1:

SRFI = ((6.92/7.38)* (7.38-5)) /100 * 10000=223.64
= (4218/12360)*223.64 = 77 (number of transactions that contains item 1 needed

to be modified in DB1)
= (4176/12360)*223.64 = 76 (number of transactions that contains item 15 needed

to be modified in DB1)
= (3975/12360)*223.64 = 72 (number of transactions that contains item 16 needed

to be modified in DB1)
Thus, the new LSF S1=692-(77+76+72) = 467. The percentage of the new LSF is
S1=467/100 = 4.67%.

Begin

1. Extract |T | from database.

2. Evaluate SRFI= (LSF/GSF)*(GSF-min_supp).

3. Calculate and |IDt,| where |IDt| = .

4. Evaluate |Iri|=|IDi|/|IDt|* SRFI.

5. Sort (Tf) in ascending order.

6. Sort items in item set in descending order.

7. Let N= number of items in sensitive itemset

8. For i=1 to N {

 9. For j=1 to |Iri|

 // choose the transaction in Tf

 // with the lowest size

 10. Choose item i

 11. set to zero (i, t values of items).

12. } end loop 1

13. } end loop 2

14. END

 Hiding Sensitive Frequent Itemsets over …

 99

Table II. LSF and GSF before Hiding Sensitive Frequent Itemset
Sensitive Freq.

Itemsets or Rule
LSF S1

(%)
LSF S2

(%)
LSF S3

(%)
GSF (%)

1 15 16 6.92 7.57 7.53 7.38

B. Steps in Site 2
Site 2 has the following parameters:

|T |=757, |ID1|=4310, |ID2|=4230, |ID3|=3996, |IDt|=12536 and |T . Now,
we modify DB2 according to the following calculations, and evaluate the New LSF for
site2:

SRFI = (757/7.38)* (7.38-5) /100 * 10000=244.648
= (4310/12536)* 244.648= 85 (number of transactions that contains item 1 needed

to be modified in DB2)
= (4230/12536)* 244.648= 83 (number of transactions that contains item 15

needed to be modified in DB2)
= (3996/12536)* 244.648= 78 (number of transactions that contains item 16

needed to be modified in DB2)
Thus, the new LSF S1=757-(85+83+78) = 511. The percentage of the new LSF is
S1=511/100 = 5.11%.
C. Steps in Site 3

Site 3 has the following parameters:
|T |=753, |ID1|=4305, |ID2|=4294, |ID3|=4010, |IDt|=12609 and |T . Now,
we modify DB3 according to the following calculations, and evaluate the New LSF for
site3:
SRFI = ((7.53/7.3875)* (7.3875-5)) /100 *10000=243.35

= (4305/12609) * 243.35= 84 (number of transactions that contains item 1 needed
to be modified in DB3)

= (4294/12609) * 243.35= 83 (number of transactions that contains item 15 needed
to be modified in DB3)

= (4010/12609)* 243.35= 78 (number of transactions that contains item 16 needed
to be modified in DB3)
Thus, the new LSF S1=757-(84+83+78) = 510. The percentage of the new LSF is
S1=510/100 = 5.10 %.

Therefore, the new GSF is calculated as:
New GSF = (new LSF S1+new LSF S2+new LSF S3)/3 …(5)
 = (4.67+5.11+5.10)/3 = 4.96%

The new GSF (4.96%) is less than the minimum-support threshold (5%). That means
that these frequent itemsets or rules have been successfully hidden. Table III represents
the local frequent itemset in each site and global frequent itemset for Sensitive Frequent
Itemsets or rule “1 15 16“ after the application of the proposed algorithm and hiding this
frequent itemset.

Figure 2. The pseudo code of the proposed hiding algorithm.

 Alaa Kh. Juma'a - Sufyan T. F. Al-Janabi & Nazar A. Ali

 100

Table III. LSF and GSF after Hiding Sensitive Frequent Itemset
Sensitive Freq.

Itemsets or Rule
LSF

S1(%)
LSF

S2(%)
LSF

S3(%)
GSF (%)

1 15 16 4.67 5.11 5.10 4.96

V. Results Analysis and Performance Evaluation
The experiments for the proposal algorithm performed on a notebook with 2G

MHz processor and 2 GB memory, under Windows XP operating system (in a
distributed system setting there are three notebooks with the same properties). The
sequence database generated for the experiments can be generated by using a Sequence
Database Generator “SeqDBGen” [15] that works like IBM data generator [16].
Databases with sizes 30000, 60000, and 90000 transactions are generated for the series
of experiments. The average length of transactions of each database (ATL) is 10 and 30
items in the generated database. The range of minimum support threshold given is 5-
8%. The experimental results are obtained by averaging from 4 independent trials for
each size of transaction with different sensitive frequent itemsets. Figure 3 represents
the percentage of the difference between the evaluated global frequent itemset in central
and distributed system with privacy. The result obtained a ratio of the global frequent
itemset in the distributed system of about 99.99 % when it is compared with the global
frequent itemset in the centralized system.

Figure 3. Percentage of Lost Rules in the Distributed System over Centralized System

The performance of the hiding algorithms has been measured according to two
criteria: time requirements and side effects produced. Concerning the time requirements,
we have considered the time needed by each algorithm to hide a specified set of rules.
Concerning the side effects, we have considered the number of “lost” rules introduced
by the hiding process. Hiding rules produce some changes in the original database. Such
changes affect the set of rules mined. In particular, not all the rules that can be mined
from the source DB can still is retrieved in the released DB. We call the former rules
“lost rules”.

To assess the performance of the proposed algorithms, this algorithm is used to
hide sets of 5 and 10 frequent itemsets or rules mined from the datasets. In each time,
the time required for hiding process will be measured. There is a file that contains the
global frequent itemsets with the minimum support threshold. After the completion of
the hiding process, we mine the released database and then compare the frequent
itemsets or rules generated by the two databases. In order to do that, we check if the
non-sensitive rules mined from the source database could still be mined in the released
database. To do so, we compare each frequent itemsets or rules mined from the original
database with each frequent itemsets rule mined form the released DB. If the rule is not
found, it is considered as “lost”. Note that this process of rule checking tends to
consider the rules selected for hiding as “lost”, since they cannot be retrieved from the

 Hiding Sensitive Frequent Itemsets over …

 101

released database. However, since they have been hidden on purpose, we excluded them
from the set of “lost rules”.

The proposed algorithm applied on both centralized and distributed database.
Tables IV-VII below represent the results for time measurements and the lost frequent
itemsets in both cases. As shown in Tables IV and VI and Figures 4, 5, 6 and 7, there is
no clear change for the number of lost itemsets in the distributed system when it is
compared with the centralized database system. That means the proposal algorithm not
more effected when it works on the distributed database system. However, the lost
frequent itemsets do not have a significant effect on the results, because they are of very
low percentage. Also, from the mentioned Figures, we can observe that the number of
the lost itemsets is independent of the size of database, but it is linearly-related with the
size of sensitive frequent itemsets.

Furthermore, from Tables V and VII and Figures 8 and 9, it is possible to notice
that the measured time is of a linear growth with the size of database. The time
requirement for hiding 10 frequent itemsets is higher than time needed to hide 5. This is
an expected result because in the case of hiding 10 frequent itemsets, we need more
modifications in database transactions; this will consume more time. Also, we observe
that the time required in the distributed system is less than time required in central
system. This is because the database is divided into different sites and the hiding
algorithm work independently and in parallel on each of these sites. The number of the
lost frequent itemsets is dependent on the sensitive frequent itemsets or rules. If these
sensitive rules have high support, they will be of more impact on the database and more
items would be required to be removed from transactions. This will increase the number
of lost frequent itemsets or rules.

Table IV. Lost frequent itemsets in centralized DB

30000(1484) 60000 (1437) 90000 (1448)

Lost
F.

Items
Lost F.
Items %

Lost F.
Items

Lost
F.

Items
%

Lost F.
Items

Lost F.
Items %

5 18 1.2 8 0.55 10 0.6
10 35 2.3 23 1.6 17 1.1

Table V. Required Time in Centralized DB

30000 (1484) 60000 (1437) 90000 (1448)

 Time (second) Time (second) Time (second)

5 3.3 7 10
10 7 11.2 17.2

Table VI. Lost frequent itemsets in the distributed DB

30000(1478) 60000 (1434) 90000 (1447)

Lost F.
Items

Lost F.
Items

%
Lost F.
Items

Lost F.
Items

%
Lost F.
Items

Lost F.
Items

%
5 15 1 9 0.6 8 0.5

10 37 2.5 28 1.9 19 1.31

Sensitive
Frequent

Items

Transaction

Transaction

Transaction

 Sensitive
F. Items

Sensitive
F. Items

 Alaa Kh. Juma'a - Sufyan T. F. Al-Janabi & Nazar A. Ali

 102

Table VII. Measured Time in the distributed DB

30000 (1478) 60000 (1434) 90000 (1447)
 Time (second) Time (second) Time (second)

5 1 1.6 3.3
10 2.1 3.9 7

Figure 4. Number of lost frequent itemsets

in the centralized system

Figure 5. Percentage of lost frequent
itemsets in centralized system

Figure 6. Number of lost frequent itemsets

in the distributed system

Figure 7. Percentage of lost frequent
itemsets in the distributed system

Figure 8. Required time in the centralized

system
Figure 9. Required time in the distributed

system

VI. Conclusion and Future Work
Privacy-preserving data mining on the distributed databases has become a hot

research area. Not only in this competitive, but also cooperative business environment,
companies, hospitals and other organizations need to share information with others, but
not sharing the data. Also, some organizations need to hide some sensitive frequent sets
or rules from any other external miner. In this paper, we proposed a system to allow

Transaction

 Sensitive
F. Item

 Hiding Sensitive Frequent Itemsets over …

 103

sites like companies or other organizations to share knowledge while protecting at the
same time the privacy of each site. We have extracted the frequent itemsets or rules
from the distributed database and compared the resultant rules with the rules extracted
from the same database, but in a centralized system setting. We have obtained a very
small percentage error (about 0.002 %) in the distributed setting case. Also, we have
proposed a new algorithm for hiding sensitive itemsets in distributed database. Its
operation depends on the ratio of the frequent for sensitive itemsets in each site and the
ratio of item counts for each item in the sensitive itemsets for the local database.

According to the obtained results, our proposal has resulted in a very limited
side effect (lost frequent itemsets), while obtaining a significant reduction in the time
requirement for the case of the distributed database system. As a future work, we will
continue to improve the performance of our algorithm to hide sensitive association rules
with the lowest possible level of side effects (lost rules and new rules) in a distributed
system. We also try to more reduction of the algorithm time requirements.

 Alaa Kh. Juma'a - Sufyan T. F. Al-Janabi & Nazar A. Ali

 104

REFERENCES

[1] Aggarwal, C.-C. and P. S. Yu, Privacy-Preserving Data Mining Models and
Algorithms, Springer, USA , 2008. ISBN 978-0-387-70991-8.

[2] Agrawal, D. and C. Aggarwal, "The design and quantification of privacy
preserving data mining algorithms," Proc. of ACM PODS Conference, 2002.

[3] Agrawal, R., T. Imielinski, and A. Swami, “Mining Association Rules between
Sets of Items in Large Databases”, In Proceedings of ACM SIGMOD
International Conference on Management of Data, Washington DC, May 1993.

[4] Chang, C.-C., J.-S. Yeh, and Y.-C. Li, “Privacy-Preserving Mining of
Association Rules on Distributed Databases”, IJCSNS International Journal of
Computer Science and Network Security, VOL.6 No.11, November 2006.

[5] Chintamani, R.D., I.F. Shaikh, and A.D. Waghmare, ”Hiding Sensitive
Association Rules on Stars”, Emerging Trends in Computer Science and
Information Technology -2012 (ETCSIT2012), Proceedings published in
International Journal of Computer Applications (IJCA).

[6] Dasseni, E., V. Verykios, A. Elmagarmid and E. Bertino, “Hiding Association
Rules by Using Confidence and Support” in Proceedings of 4th Information
Hiding Workshop, 369-383, Pittsburgh, PA, 2001.

[7] Guo, Y., "Reconstruction-Based Association Rule Hiding," Proceedings of
SIGMOD 2007, Ph.D. Workshop on Innovative Database Research 2007
(IDAR2007), June 10, 2007, Beijing, China.

[8] Muthu Lakshmi, N. and K. Sandhya Rani, ”An improved algorithm for hiding
sensitive association rules using exact approach”, IRACST - International
Journal of Computer Science and Information Technology & Security
(IJCSITS), ISSN: 2249-9555Vol. 2, No. 1, 2012

[9] Naderi, M., D. K. Badie, and A. K. Zadeh, “A Novel Method for Privacy
Preserving in Association Rule Mining Based on Genetic Algorithms”, Journal
of Software, Vol. 4, No. 6, August 2009.

[10] Shah, K., A. Thakkar, A. Ganatra “A Study on Association Rule Hiding
Approaches” International Journal of Engineering and Advanced Technology
(IJEAT), ISSN: 2249 – 8958, Volume-1, Issue-3, February 2012.

[11] Shen, Y., H. Shao, and Y. Li, “Research on the Personalized Privacy Preserving
Distributed Data Mining,” IEEE Second International Conference on Future
Information Technology and Management Engineering, 2009.

[12] Verykios, V. S., A.K. Elmagarmid, E. Bertino, Y. Saygin, and E. Dasseni,
“Association Rule Hiding,” IEEE Transactions on Knowledge and Data
Engineering, vol.16, no. 4, pp. 434-447, 2004.

[13] Wang, S.L., “Hiding sensitive predictive association rules”, Systems, Man and
Cybernetics, 2005 IEEE International Conference on Information Reuse and
Integration, vol. 1, pp. 164-169, 2005.

 Hiding Sensitive Frequent Itemsets over …

 105

[14] Weng, C.-C., S.-T. Chen, and Y.-C. Chang, “A Novel Algorithm for Hiding
Sensitive Frequent Itemsets”, IEEE Intelligent Systems Design and
Applications, Vol. 3, pp.202-208, 2008.

[15] The Sequence Database Generator, Website at http://www.philippe-fournier-
viger.com/seqdbgen/2012 , Accessed on 1/6/2012.

[16] IBM data generator, Website at
http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/datamining/
mining.shtml , Accessed on 1/4/2012.

