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 الملخص

وإن التنقيب عن .  المخفية من البياناتالأنماطإن عملية تنقيب البيانات هي عبارة عن استخلاص 
 التوجه الحديث للباحثين فيها هو الحفاظ أصبحالعلاقات الرابطة يعد واحدا من أهم فعاليات تنقيب البيانات والتي 

 توجهات البحوث أهم خصوصية البيانات هو من فالتنقيب المحافظ على. عنهاعلى سرية تلك البيانات المنقب 
ويمكن تطبيق فعاليات التنقيب هذه على . العلمية الجديدة في خصوصية البيانات وقواعد البيانات الإحصائية

 فعالية لقواعد البيانات الموزعة تفترض التنقيب في الأساليب أكثر أنورغم . قواعد البيانات المركزية والموزعة
 لم يعد بالإمكان تطبيقها في كثير من الأساليب تلك أن يمكن تشاركها بين المواقع المختلفة، غير البيانات التي

 بسبب المخاوف المتعلقة بخصوصية منع المواقع من تبادل البيانات بشكل مباشر، أو تبادل بعض أنواع الأحيان
شعبية متزايدة لأنه ) PPDM(نات لذلك أصبح للتنقيب المحافظ على خصوصية البيا. المعلومات حول البيانات

  .يسمح بتبادل البيانات الحساسة الخصوصية لأغراض التحليل
في هذا البحث، تم التصدي لمشكلة الحفاظ على خصوصية التنقيب للعلاقات الرابطة في قاعدة بيانات 

ات الرابطة من  العامة المتكررة أو العلاقitemsets)(موزعة أفقيا من خلال اقتراح نظام لحساب العناصر 
كما نقدم هنا أيضا خوارزمية جديدة لإخفاء هذه العناصر . مواقع مختلفة دون الكشف عن المعاملات الفردية

ويمكن أن يتم ذلك عن .  كل موقع على حدةفيالمتكررة الحساسة أو قواعد الرابطة الحساسة من خلال إخفائها 
 الحساسة أو العلاقات  من العناصرجل خفض الدعم لكلطريق تعديل قاعدة البيانات الأصلية لكل موقع من أ

  العناصرإخفاء قدرتها على إلى النتائج التي تم الحصول عليها من تطبيق الخوارزمية المفترضة تشير .الرابطة

كما أن النظام المفترض استطاع الحصول على . المتكررة الحساسة  بوقت تنفيذ جيد وبأقل تأثيرات جانبية
الموزعة على عدة مواقع مع الحفاظ على ) Global Frequent Itemset(كررة العامة للبيانات العناصر المت

  .  خصوصية كل موقع

ABSTRACT 
Data mining is the process of extracting hidden patterns from data. One of the 

most important activities in data mining is the association rule mining and the new head 
for data mining research area is privacy of mining. Privacy preserving data mining is a 
new research trend in privacy data for data mining and statistical database. Data mining 
can be applied on centered or distributed databases. Most efficient approaches for 
mining distributed databases suppose that all of the data at each site can be shared.  
Privacy concerns may prevent the sites from directly sharing the data, and some types of 
information about the data. Privacy Preserving Data Mining (PPDM) has become 
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increasingly popular because it allows sharing of privacy sensitive data for analysis 
purposes.  

In this paper, the problem of privacy preserving association rule mining in 
horizontally distributed database is addressed by proposing a system to compute a 
global frequent itemsets or association rules from different sites without disclosing 
individual transactions. Indeed, a new algorithm is proposed to hide sensitive frequent 
itemsets or sensitive association rules from the global frequent itemsets by hiding them 
from each site individually. This can be done by modifying the original database for 
each site in order to decrease the support for each sensitive itemset or association rule.  
Experimental results show that the proposed algorithm hides rules in a distributed 
system with the good execution time, and with limited side effects. Also, the proposed 
system has the capability to calculate the global frequent itemsets from different sites 
and preserves the privacy for each site. 
Keywords-cryptography; data mining; distributed database; frequent itemsets; sensitive 
association rules. 
I. Introduction 

Privacy preserving data mining is a new research area that investigates the side-
effects of data mining methods that originate from the penetration into the privacy of 
individuals and organizations. Most of information systems contain private information, 
such as social security numbers, income, disease type, etc. Therefore, this information 
should be correctly protected and hidden from unauthorized access. Although, the 
security of data has been permanent goal in database management systems, mining of 
knowledge and preventing of sensitive knowledge disclosure become the most 
important and highest priority goal in data mining process. Basically, the sharing of data 
between businesses in purpose of reaching valuable information is useful, but it can 
bring a lot of disadvantages [1]. 

Recent advances in data mining algorithms increased the risk of information 
leakage and its confidence issue. Because of this progress, the parallel research area has 
been started to overcome the information leakage risks and immunization of mining 
environment. Privacy preserving against mining algorithms is a new research area that 
investigates the side-effects of data mining methods that can be derived from the 
privacy diffusion of persons and organizations [9]. 

Two problems are addressed in (PPDM); one is the protection of private data; 
another is the protection of sensitive rules (knowledge) contained in the data. The 
former settles how to get normal mining results when private data cannot be accessed 
accurately; the latter settles how to protect sensitive rules contained in the data from 
being discovered, while non-sensitive rules can still be mined normally. The latter 
problem is called knowledge hiding in database in (KHD) which is opposite to 
knowledge discovery in database (KDD) [7].  

Recent studies in preserving association rule privacy have proposed many 
techniques like k-Anonymity methods, randomization methods, and cryptographic-
based PPDM that includes Secure Multiparty Computation (SMC), homomorphic 
encryption, and other cryptographic techniques [2, 10 and 11].  

Also, a number of techniques like perturbation and anonymization have been 
developed to hide association rules from being discovered from published data. In 
practically for a single data set, given specific rules or patterns to be hidden, many data 
altering techniques for hiding association rules have been proposed. They can be 
categorized into three basic approaches. The first approach hides one rule at a time. It 
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first selects transactions that contain the items in a given rule. It then tries to modify 
items, transaction by transaction, until the confidence or support of the rule falls below 
minimum confidence or minimum support. The modification is done by either removing 
items from the transaction or inserting new items to the transactions. The second 
approach deals with groups of restricted patterns or sensitive association rules at a time. 
It first selects the transactions that contain the intersecting patterns of a group of 
restricted patterns. Depending on the disclosure threshold given by users, it sanitizes a 
percentage of the selected transactions in order to hide the restricted patterns. The third 
approach deals with hiding certain constrained classes of association rules [5]. 

C.-C. Weng et al. presented algorithm to hide frequent sensitive rule by 
evaluating the weight of each transaction that supports these rules and hiding these rules 
according to this weigh [14]. V. S. Verykios et al. presented algorithms to hide sensitive 
association rules, but they generated high side effects and required multiple database 
scans [12].  S.-L. Wang proposed an algorithm to hide sensitive items. The algorithm 
needs less number of database scans, but the side effects generated were higher [13].  

This paper deals with the Distributed Data Mining (DDM), or more specifically, 
with (PPDDM). This work proposes a two-phase PPDDM system. The first phase is 
dedicated for privacy-preserving distributed mining by encrypting local association rule 
mining in each site with commutative algorithm and sending the results to all sites. In 
the second phase, a new algorithm is proposed to hide sensitive frequent itemsets from 
global support items by hiding these frequent items in each site according to the 
proposed algorithm. Each site will modify its original database in order to prevent any 
external miner from detecting any sensitive frequent itemsets. The remaining of this 
paper is organized as follows: Section 2 briefly discusses classes of association rule 
algorithms. Section 3 presents the problem description. Next, Section 4 introduces the 
proposed approaches and algorithm. Then, Section 5; discusses the results and 
performance evaluation. Finally, the paper is concluded in Section 6.  

II. Classes of Association Rule Algorithms 
The various approaches proposed by researchers hide sensitive information 

efficiently and accurately but also face the problem of side effects. The side effects 
occur due to correlations existing between items in the database. Side effects may 
decrease the informational accuracy to the users. Due to the property of correlation, 
association rules may possess spurious or wrong information, hide non sensitive rules 
unnecessarily, and accidentally disclose some sensitive rules. So the challenging task is 
how to protect sensitive rules from users without effecting informational accuracy to the 
users that is avoiding side effects as far as possible. 

The algorithms which have been already developed for hiding association rules 
can be classified into three distinct classes, namely heuristic approaches, border-based 
approaches and exact approaches. The first class of approaches involves efficient and 
fast algorithms that selectively sanitize a set of transactions from the database to hide 
the sensitive knowledge [8]. Due to their efficiency and scalability, the heuristic 
approaches have been the focus of attention for the vast majority of researchers in the 
knowledge hiding field. However, there are several circumstances in which they suffer 
from undesirable side-effects that lead them to suboptimal solutions. 

The second set of approaches considers the task of sensitive rule hiding through 
modification of the original borders in the lattice of the frequent and the infrequent 
patterns in the dataset. In these schemes, the sensitive knowledge is hidden by enforcing 
the revised borders (which accommodate the hiding of the sensitive itemsets) in the 
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sanitized database. The algorithms in this class differ both in the borders that they track, 
use of the hiding strategy, and in the methodology that they follow to enforce the 
revised borders in the sanitized dataset. Finally, the third class of approaches contains 
non-heuristic algorithms which conceive the hiding process as a constraint satisfaction 
problem that they solve by using integer or linear programming. The main difference of 
these approaches, compared to the previous ones, is the fact that the sanitization process 
guarantees optimality in the hiding solution, provided that an optimal solution exists. On 
the other hand, these approaches are usually several orders of magnitude slower than the 
heuristic ones, especially due to the runtime of the integer/linear programming solver 
[1]. 

III. Problem Description 
Association rule mining was first introduced by Agrawal, R. et al. 

Let ={ } be a set of literals, called items. Given a set of transactions D, 
where each transaction T in D is a set of items such that T I , an association rule is an 
expression X Y where  As an example, for a given 
database in Table 1, for a minimum support of 33% and a minimum confidence of 70%, 
nine association rules can be found as follows: B=>A (66%, 100%), C=>A (66%, 
100%), B=>C (50%, 75%), C=>B (50%, 75%), AB=>C (50%, 75%), AC=>B (50%, 
75%), BC=>A(50%, 100%), C=>AB(50%, 75%), B=>AC(50%, 75%), where the 
percentages inside the parentheses are supports and confidences respectively [3]. 

Distributed system assumed that that there are n sites S , S , …, S and the 
transaction database DB is horizontally divided into n non-overlapping partitions db0, 
db , …, db , where DB =  , 0 ≤ i ≠ j ≤ . 
Each partition db  is assigned to site S , and DB is horizontally distributed. Clearly,     
|DB| = |db | + |db  | + … + |db |.  X.sup  is the local support counts of itemset X at 
site Si, for 0 ≤ i ≤ . The global support count of X in DB is given as 

.  X is globally frequent if X.sup ≥ minSup × |DB|. Similarly, X is 
locally frequent if X.sup  ≥ minSup × |db |. [4] 

Table I. Data Set Example [3] 
TID Items 
T1 ABC 
T2 ABC 
T3 ABC 
T4 AB 
T5 A 
T6 AC 

 

Two problems are addressed here: one for protection the privacy for each site 
when we evaluate the global support itemsets; the other is to hide a sensitive frequent 
itemsets from global support items. In the first problem, the commutative encryption 
should be applied to preserve the global candidate itemsets in each site. Each site 
encrypts its own local frequent itemsets and some fake itemsets, and then sends the 
encrypted itemsets to the next site until all sites have encrypted all itemsets. Next, it 
merges all encrypted itemsets, and all encrypted itemsets are then decrypted site by site. 
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The second problem is to hide the sensitive frequent itemsets or rules and 
minimize the loss items. When the global frequent for the sensitive rules satisfies these 
two conditions:- 

i. Support(X=>Y)= P(X and Y) >= Min_sup ; 
ii. Confidence(X=>Y)= P(X/Y)= [Support( Support(X)] >= Min_conf. 

where X and Y represent the candidate attributes. That means that this rule is frequent 
and it should be hidden. However, this rule can be hidden by:  

 Reducing the support of confidential rules (by decreasing the support of the 
corresponding large XY). 

 Reducing the confidence of rules (by Increasing the support of X in transactions 
not supporting Y or decreasing the support of Y in transactions supporting both X 
and Y) 

 

This can be done by deleting or adding a new data to the original database.  This 
way prevents tools from discovering these rules, but the challenge is the data quality. 
When a support of items is changed, some other insensitive rules will also be affected 
either by hiding it or supporting another frequent rule. Therefore, we need to define 
good ways to reduce the negative side effects on data quality. 

IV. Proposed Approache and Algorithms 
The main aim of our proposed system is to securely and efficiently preserve the 

privacy of distributed data mining of association rules on horizontally partitioned 
database. This section is intended to serve as a work-in-progress report on our proposed 
work. This work generally can be divided into two phases: The first phase is responsible 
for protection of the privacy for each site when we evaluate the global support itemsets. 
This can be done by using SMC protocol. In this proposal, we use a commutative 
encryption tool. Each site encrypts its own frequent itemsets or rules, and then passes it 
to other sites until all sites have encrypted all frequent itemsets. These are next passed to 
a common site to eliminate duplicates and to begin decryption. This set is then passed to 
each site that decrypts each frequent itemsets. The final result represents the global 
support frequent itemsets. 

In the second phase, we need to hide sensitive frequent itemsets from global 
support items. This can be done when we reduce the support of confidential rules by 
decreasing the number of items that support these rules. This can be done by removing 
these items from original database in each site until the frequent itemsets become less 
than min_support threshold.  Figure 1 represents the proposed system.  

The major steps for phase one can be explained as follows (Assuming that we 
have three sites S1, S2 and S3): 

 

1. Determination of the local frequent itemset:  
 Each site determines local frequent itemset for the sensitive rule (R) by using the 

following prior algorithm pseudo code: 
 

Ck: Candidate itemset of size k 
Lk: frequent itemset of size k 
L1= {frequent items};  
for(k= 1; Lk!=Ø; k++) do begin 
Ck+1= candidates generated from Lk; 
for each transaction tin database do 
increment the count of all candidates in Ck+1that are contained in t 
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Lk+1= candidates in Ck+1with min_support 
end 
return  k Lk; 

 Join Step: Ck is generated by joining Lk-1with itself. 
 Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a 

frequent k-itemset. 

 
Figure 1. General architecture of the proposed system 

 

2. Determining the global support itemsets for each site without disclosing the privacy 
of sites: 
 Assume that the FI1, FI2, and FI3 represent the local support items or rules and 

E1, E2, and E3 represent the commutative encryption algorithm with its keys, 
for sites S1, S2, and S3 respectively ( we use Pohlig–Hellman algorithm to 
perform the commutative encryption) . 

Where FI1 =  
            FI2 =                                                                              …(1) 
            FI3 =  

 Each site encrypts its rule and sends it to the next site: 
o S1 determines E1 (FI1) and sends it to S2. 
o S2 determines E2 (FI2) and sends it to S3. 
o S3 determines E3 (FI3) and sends it to S1. 

 Each site encrypts the received data with its key and sends the result to the next 
site: 
o S1 determines E1 (E3 (FI3)) and sends it to S2. 
o S2 determines E2 (E1 (FI1)) and sends it to S3. 
o S3 determines E3 (E2 (FI2)) and sends it to S1. 

 Again, each site encrypts the received data with its key and sends the result to 
the next site: 
o S1 determines E1 (E3 (E2 (FI2))) and sends it to S2. 
o S2 determines E2 (E1 (E3 (FI3))) and sends it to S3. 
o S3 determines E3 (E2 (E1 (FI1))) and sends it to S1. 

 Because we use a commutative algorithm the above encryption of data can be 
written as:  
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o E1 (E2 (E3 (FI1))) 
o E1 (E2 (E3 (FI2))) 
o E1 (E2 (E3 (FI3))) 

 This encrypted data is then sent to S1, and S1 decrypts it (removes E1) and 
sends the result to S2: 
o E2 (E3 (FI1)) 
o E2 (E3 (FI2)) 
o E2 (E3 (FI3)) 

 By the same way, S2 decrypts received data (removes E2) and sends the result to 
S3: 
o E3 (FI1) 
o E3 (FI2) 
o E3 (FI3) 

 S3 decrypts the remained data (removes E3) and gets FI1, FI2 and FI3 without 
knowing from which site each of these rules have come. 

 Now S3 has FI1+FI2+FI3. He can determine the global support and confidence 
for the rules and broadcast them to the other sites.  
 

In Phase two, a proposed algorithm is used to hide sensitive frequent itemsets or 
rules by decreasing the support of their generating itemsets until their support is below 
the minimum support threshold. The steps for hiding sensitive frequent itemsets or rules 
for each site in the system can be explained as follows: 

 

1. Each site has Local frequent itemset, global frequent itemsets, local database 
(|T ) and minimum support threshold. 

2. Input is the sensitive rule or frequent itemsets. 
3. Extract all transactions that support this sensitive frequent items (T . 
4. Evaluate the Site Remove Frequent Itemset (SRFI) that is representing how many 

frequent itemsets are needed to remove from each site as seen in eq. (2). 
 

)/100*|T                              …(2) 
where 
LSF = Local support frequent, 
GSF =Global support frequent, and 
min_supp =Minimum Support Threshold. 
|T  

5. Evaluation of the number of each item in sensitive itemsets needs to be removed 
from |T | by eq. (3): 

                                                                     …(3) 
where 
|Iri| =   number of item i needed to be removed, 
|IDi| = count for item i  in database, 
|IDt| = summation for all items count in database; 
|IDt|=                                                                                         …(4) 

This evaluation performed according to the ratio of each item in sensitive itemsets 
for all database transaction in order to reduce the side effects that may result from 
modifying the database. 

6. Sort (T ) in ascending order to minimize the impact that applied changes will 
have in database. 
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7. Sort items in itemsets in descending order according to the |Ir|. This also will 
minimize the side effects that can happen when modifying the database. 

8. Remove items from (T ) according to the above sorting, by setting the value for 
this item to “0” instead of “1”. 

 

These steps will be done at all sites in the system in order to recalculate the 
global support itemsets. After recalculation, the sensitive frequent itemsets or rules have 
been hidden from the new global support itemsets. The pseudo code for the proposed 
algorithm is shown in Figure 2. 

Let us take an example to clarify the operation of the proposed algorithm. 
Consider three local sites S1, S2 and S3, which have DB1, DB2 and DB3 respectively. 
We need to hide Sensitive Frequent Itemsets or rules “1, 15 and 16“. The local frequent 
itemset (LSF) in each site and global frequent itemset (GSF) for these rules are 
explained in Table II. Let the minimum support threshold be 5%. The size of database is 
30000 transactions (10000 transactions in each site). To hide this Sensitive Frequent 
Itemsets we need to modify the database in each site. The following steps perform the 
hiding operation in each site. 

A. Steps in Site 1 
Site 1 has the following parameters: 

|T |=692, |ID1|=4218, |ID2|=4176, |ID3|=3975, |IDt|=12360 and |T . Now, 
we modify DB1 according to the following calculations, and evaluate the New LSF for 
site1: 

SRFI = ((6.92/7.38)* (7.38-5)) /100 * 10000=223.64 
= (4218/12360)*223.64 = 77 (number of transactions that contains item 1 needed 

to be modified in DB1) 
= (4176/12360)*223.64 = 76 (number of transactions that contains item 15 needed 

to be modified in DB1) 
= (3975/12360)*223.64 = 72 (number of transactions that contains item 16 needed 

to be modified in DB1) 
Thus, the new LSF S1=692-(77+76+72) = 467. The percentage of the new LSF is 
S1=467/100 = 4.67%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Begin 

1. Extract |T | from database. 

2. Evaluate SRFI= (LSF/GSF)*(GSF-min_supp). 

3. Calculate  and |IDt,| where |IDt|  = . 

4. Evaluate |Iri|=|IDi|/|IDt|* SRFI. 

5. Sort (Tf) in ascending order. 

6. Sort items in item set  in descending order. 

7. Let N= number of items in sensitive itemset 

8.  For i=1 to N { 

      9. For j=1 to |Iri| 

       // choose the transaction in Tf 

      // with the lowest size 

    10. Choose item i 

    11. set to zero (i, t values of items). 

12. }   end loop 1 

13. }   end loop 2 

14. END 
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Table II. LSF and GSF before Hiding Sensitive Frequent Itemset 
Sensitive Freq. 

Itemsets or Rule  
LSF S1 

(%) 
LSF S2 

(%) 
LSF S3 

(%) 
GSF (%) 

1          15          16 6.92 7.57 7.53 7.38 
 

B. Steps in Site 2 
Site 2 has the following parameters: 

|T |=757, |ID1|=4310, |ID2|=4230, |ID3|=3996, |IDt|=12536 and |T . Now, 
we modify DB2 according to the following calculations, and evaluate the New LSF for 
site2: 

SRFI = (757/7.38)* (7.38-5) /100 * 10000=244.648 
= (4310/12536)* 244.648= 85 (number of transactions that contains item 1 needed 

to be modified in DB2) 
= (4230/12536)* 244.648= 83 (number of transactions that contains item 15 

needed to be modified in DB2) 
= (3996/12536)* 244.648= 78 (number of transactions that contains item 16 

needed to be modified in DB2) 
Thus, the new LSF S1=757-(85+83+78) = 511. The percentage of the new LSF is 
S1=511/100 = 5.11%. 
C. Steps in Site 3 

Site 3 has the following parameters: 
|T |=753, |ID1|=4305, |ID2|=4294, |ID3|=4010, |IDt|=12609 and |T . Now, 
we modify DB3 according to the following calculations, and evaluate the New LSF for 
site3: 
SRFI = ((7.53/7.3875)* (7.3875-5)) /100 *10000=243.35 

= (4305/12609) * 243.35= 84 (number of transactions that contains item 1 needed 
to be modified in DB3) 

= (4294/12609) * 243.35= 83 (number of transactions that contains item 15 needed 
to be modified in DB3) 

= (4010/12609)* 243.35= 78 (number of transactions that contains item 16 needed 
to be modified in DB3) 
Thus, the new LSF S1=757-(84+83+78) = 510. The percentage of the new LSF is 
S1=510/100 = 5.10 %. 

 

Therefore, the new GSF is calculated as: 
New GSF = (new LSF S1+new LSF S2+new LSF S3)/3                                …(5) 
     = (4.67+5.11+5.10)/3 = 4.96% 

The new GSF (4.96%) is less than the minimum-support threshold (5%). That means 
that these frequent itemsets or rules have been successfully hidden. Table III represents 
the local frequent itemset in each site and global frequent itemset for Sensitive Frequent 
Itemsets or rule “1 15 16“ after the application of the proposed algorithm and hiding this 
frequent itemset. 

Figure 2. The pseudo code of the proposed hiding algorithm. 
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Table III. LSF and GSF after Hiding Sensitive Frequent Itemset 
Sensitive Freq. 

Itemsets or Rule 
LSF 

S1(%) 
LSF 

S2(%) 
LSF 

S3(%) 
GSF (%) 

1           15           16 4.67 5.11 5.10 4.96 

V. Results Analysis and Performance Evaluation  
The experiments for the proposal algorithm performed on a notebook with 2G 

MHz processor and 2 GB memory, under Windows XP operating system ( in a 
distributed system setting there are three notebooks with the same properties). The 
sequence database generated for the experiments can be generated by using a Sequence 
Database Generator “SeqDBGen” [15] that works like IBM data generator [16]. 
Databases with sizes 30000, 60000, and 90000 transactions are generated for the series 
of experiments. The average length of transactions of each database (ATL) is 10 and 30 
items in the generated database. The range of minimum support threshold given is 5-
8%. The experimental results are obtained by averaging from 4 independent trials for 
each size of transaction with different sensitive frequent itemsets. Figure 3 represents 
the percentage of the difference between the evaluated global frequent itemset in central 
and distributed system with privacy. The result obtained a ratio of the global frequent 
itemset in the distributed system of about 99.99 % when it is compared with the global 
frequent itemset in the centralized system.  

 
Figure 3. Percentage of Lost Rules in the Distributed System over Centralized System 

 

The performance of the hiding algorithms has been measured according to two 
criteria: time requirements and side effects produced. Concerning the time requirements, 
we have considered the time needed by each algorithm to hide a specified set of rules. 
Concerning the side effects, we have considered the number of “lost” rules introduced 
by the hiding process. Hiding rules produce some changes in the original database. Such 
changes affect the set of rules mined. In particular, not all the rules that can be mined 
from the source DB can still is retrieved in the released DB. We call the former rules 
“lost rules”. 

To assess the performance of the proposed algorithms, this algorithm is used to 
hide sets of 5 and 10 frequent itemsets or rules mined from the datasets. In each time, 
the time required for hiding process will be measured. There is a file that contains the 
global frequent itemsets with the minimum support threshold. After the completion of 
the hiding process, we mine the released database and then compare the frequent 
itemsets or rules generated by the two databases. In order to do that, we check if the 
non-sensitive rules mined from the source database could still be mined in the released 
database. To do so, we compare each frequent itemsets or rules mined from the original 
database with each frequent itemsets rule mined form the released DB. If the rule is not 
found, it is considered as “lost”. Note that this process of rule checking tends to 
consider the rules selected for hiding as “lost”, since they cannot be retrieved from the 
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released database. However, since they have been hidden on purpose, we excluded them 
from the set of “lost rules”. 

The proposed algorithm applied on both centralized and distributed database. 
Tables IV-VII below represent the results for time measurements and the lost frequent 
itemsets in both cases. As shown in Tables IV and VI and Figures 4, 5, 6 and 7, there is 
no clear change for the number of lost itemsets in the distributed system when it is 
compared with the centralized database system. That means the proposal algorithm not 
more effected when it works on the distributed database system. However, the lost 
frequent itemsets do not have a significant effect on the results, because they are of very 
low percentage. Also, from the mentioned Figures, we can observe that the number of  
the lost itemsets is independent of the size of database, but it is linearly-related with the 
size of sensitive frequent itemsets. 

Furthermore, from Tables V and VII and Figures 8 and 9, it is possible to notice 
that the measured time is of a linear growth with the size of database. The time 
requirement for hiding 10 frequent itemsets is higher than time needed to hide 5. This is 
an expected result because in the case of hiding 10 frequent itemsets, we need more 
modifications in database transactions; this will consume more time. Also, we observe 
that the time required in the distributed system is less than time required in central 
system. This is because the database is divided into different sites and the hiding 
algorithm work independently and in parallel on each of these sites. The number of the 
lost frequent itemsets is dependent on the sensitive frequent itemsets or rules. If these 
sensitive rules have high support, they will be of more impact on the database and more 
items would be required to be removed from transactions. This will increase the number 
of lost frequent itemsets or rules. 

Table IV. Lost frequent itemsets in centralized DB 

30000(1484) 60000 (1437) 90000 (1448)  

Lost 
F. 

Items 
Lost F. 
Items % 

Lost F. 
Items 

Lost 
F. 

Items 
% 

Lost F. 
Items 

Lost F. 
Items % 

5  18 1.2 8 0.55 10 0.6 
10 35 2.3 23 1.6 17 1.1 

 

Table V. Required Time in Centralized DB 

30000 (1484) 60000 (1437) 90000 (1448)  
 
 Time (second) Time (second) Time (second) 

5  3.3 7 10 
10  7 11.2 17.2 

 

Table VI. Lost frequent itemsets in the distributed DB 

30000(1478) 60000 (1434) 90000 (1447)  

Lost F. 
Items 

Lost F. 
Items 

% 
Lost F. 
Items 

Lost F. 
Items 

% 
Lost F. 
Items 

Lost F. 
Items 

% 
5  15 1 9 0.6 8 0.5 

10 37 2.5 28 1.9 19 1.31 

Sensitive 
Frequent 

Items 
 

Transaction 

 

Transaction 

 

Transaction 

 Sensitive 
F. Items 

 

Sensitive 
F. Items 
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Table VII. Measured Time in the distributed DB 

30000 (1478) 60000 (1434) 90000 (1447)  
 Time (second) Time (second) Time (second) 

5  1 1.6 3.3 
10  2.1 3.9 7 

 

  
Figure 4. Number of lost frequent itemsets 

in the centralized system 
 

Figure 5. Percentage of lost frequent 
itemsets in centralized system 

 

  
Figure 6. Number of lost frequent itemsets 

in the distributed system 
 

Figure 7. Percentage of lost frequent 
itemsets in the distributed system 

 

 
Figure 8. Required time in the centralized 

system 
Figure 9. Required time in the distributed 

system 

VI. Conclusion and Future Work 
Privacy-preserving data mining on the distributed databases has become a hot 

research area. Not only in this competitive, but also cooperative business environment, 
companies, hospitals and other organizations need to share information with others, but 
not sharing the data. Also, some organizations need to hide some sensitive frequent sets 
or rules from any other external miner. In this paper, we proposed a system to allow 

Transaction 

 Sensitive 
F. Item 
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sites like companies or other organizations to share knowledge while protecting at the 
same time the privacy of each site. We have extracted the frequent itemsets or rules 
from the distributed database and compared the resultant rules with the rules extracted 
from the same database, but in a centralized system setting. We have obtained a very 
small percentage error (about 0.002 %) in the distributed setting case. Also, we have 
proposed a new algorithm for hiding sensitive itemsets in distributed database. Its 
operation depends on the ratio of the frequent for sensitive itemsets in each site and the 
ratio of item counts for each item in the sensitive itemsets for the local database.  

According to the obtained results, our proposal has resulted in a very limited 
side effect (lost frequent itemsets), while obtaining a significant reduction in the time 
requirement for the case of the distributed database system. As a future work, we will 
continue to improve the performance of our algorithm to hide sensitive association rules 
with the lowest possible level of side effects (lost rules and new rules) in a distributed 
system. We also try to more reduction of the algorithm time requirements.  
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