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ABSTRACT 

Jet impingement cooling is considered to be one of the better techniques 

of achieving an especially high heat transfer improvement and hence is 

employed in several engineering applications. Various ribs shapes 

mounted on the target surfaces can be used to achieve high thermal 

performance.  

In the present investigation, the fluid flow, heat transfer, and entropy 

generation for the confined slot-jet impinging have been numerically and 

experimentally investigated. Three various shapes  of the ribs, namely; 

wing, oval, and flat ribs, which installed on the impinging target plate are 

used. The effects of different parameters such as rib shape, heights of rib, 

the spacing between the stagnation point and the rib, jet Reynolds number 

on the heat transfer and flow fields have been presented and discussed. 

Validations of the numerical results with previous investigations available 

in the literature have been conducted and a good agreement between the 

results is noted. On the other hand, the numerical results have been 

compared with the experimental data, and good concords are achieved. 

Results indicated that the average Nusselt number, pressure drop, and 

average total entropy generation increases when jet Reynolds number 

increases, rib height increases, and the spacing between the stagnation 

point and the rib location decreases. While the performance evaluation 

criteria increased with increasing rib height. It was found that the peak 

values of the average Nusselt number enhancement around 90.01, 74.16, 

and 65.34% for the wing, oval and flat ribs at rib height of 2 mm, rib 

location 10 mm and jet Reynolds number of 4000, 4000, and 3000, 

respectively. While the best performance evaluation criteria up to 1.682 

which provided by the wing ribs at the rib location of 10 mm, rib height 

of 2 mm, and jet Reynolds number of 3000. 
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1 CHAPTER ONE:  

INTRODUCTION 

 

 

1.1 Background 

Jet impingement is widely utilized to cool or heat solid surfaces. 

Generally, the heat transfer by jets impinging is better than that obtained 

with conventional convective transport methods. The technique of jet 

impinging cooling has higher rates of heat transfer compared with the 

technique of horizontal flow cooling. Therefore, certain practical 

impinging jet applications occur in industries where the requirements of 

the heat transfer have exceeded the ordinary capacity cooling and heating 

techniques. The range of applications of industrial jet impinging include 

cooling of electronic components, cooling of gas turbine blades, the 

cooling of the outer of combustors wall, drying of textiles and paper, 

annealing of metals as well as the tempering of glass [1, 2], as shown 

Figure 1.1. In various applications, the concept of heat transfer 

improvement has attracted significant attention by investigators in order 

to provide the increasing need for greater efficiencies in these 

applications. The improvement of heat transfer in jet impingement can be 

carried out utilizing different methods, which are categorized into three 

categories [3, 4]: active, passive, and compound methods. The active 

method includes external power input to improve heat transfer such as 

electrodynamics, spray, mechanical aids, and fluid and surface vibrations. 

Due to the costs, and the concerns connected with acoustic noise or 

vibration, this method has attracted little financial interest. While the 

passive heat transfer improvement methods do not need the external power 
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source such as using; extended surfaces, Inserts (for example; ribs, plates, 

and baffles), surface modification, additives used, and treated surfaces. 

This method often consists of growing the area of the transfer surface. 

When two or more of these methods are utilized simultaneously to 

improve heat transfer, this term is known compound method. In general, 

due to the acoustic of vibration and noise in the active methods, 

researchers choose the passive methods for enhancement in heat transfer. 

 

 

Figure 1.1: Application of jet impingement in the cooling of electronic components 

[5]. 
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1.1.1 Impinging Jet 

The impinging jet can be categorized into two types: free jet impinging 

and submerged jet impinging [6]. In the first case, the fluid released by the 

jet impinging has a various density and nature than of surrounding fluid. 

While the other case, the fluid released by the jet impinging is the same 

density and nature of the surrounding fluid. In the free jet case, this type 

of unstable is usually not significant and turbulent movement in the shear 

layer is not being an essential influence on the flow. In the submerged jet 

case, the shear layer is formed at the interface between the surrounding 

fluid and the jet impinging fluid. This layer is unsteady and generates 

turbulence. Figure 1.2 displays these two cases.  

 

 

 

Figure 1.2: Types of impinging jet (a) Free impinging jet, (b) Submerged impinging 

jet [6]. 

 

Moreover, there is a distinction  between the types of impinging jets such 

as unconfined and confined impinging jets. In the unconfined impinging 

jet, there is no upper surface or confinement, so after it impinges on an 

impinging target plate, the impinging jet flow is free to expand. The air 

atmosphere has a significant influence. In the case of a confined impinging 

jet, the fluid stays surrounded between two surfaces (orifice surface and 

target surface) during its flow. The air atmosphere has a very low 

influence. In this case, in order to influence the re-circulation zone, flow 

configuration, and improve heat transfer, the target plate is appropriately 

(a) (b) 
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close to the jet flow [7]. Thus, it is vastly employed in the cooling of 

electronic components. Figure 1.3 illustrates the different between the 

unconfined and confined impinging jets. 

 

 

 

 

 

Figure 1.3: (a) Unconfined impinging jet, (b) Confined impinging jet. 

 

 

1.1.2 Impinging jet regions 

When the fluid jet has been impinged on the target surface, three major 

regions are specified according to previous investigations [2, 6 and 8]. 

These zones are known as wall jet zone, stagnation zone (impingement 

zone), and free jet zone which can be described as below (as shown in 

Figure 1.4): 

❖ The wall jet zone: due to the viscous influences in this zone, the 

fluid flow velocity near the wall jet is low. 

❖ The stagnation zone: the ambient fluid impinges upon the target 

surface in this zone, and develops a sudden change of direction. The 

local stagnation point is generated when the flow strokes on the 

target surface. 

❖ Free jet zone: There is no significant influence of the wall in this 

zone on the flow field.  

Generally, the free jet zone can be divided into three regions: 

Flow Flow 

Target surface 

Jet Jet 

Target surface 

(a) (b) 
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❖ The potential core region: the velocity stays fixed and equal to the 

velocity of jet exit. The potential core length depends on the 

intensity of turbulence in the jet exit and the profile of initial 

velocity.  

❖ The developing region: this region is characterized by the 

degeneration of the profile of axial velocity due to significant shear 

stresses at the boundary of the jet. These significant shear stresses 

enhance additional fluid entrainment and generate turbulence.  

❖ The fully developed region: The velocity profile is fully developed 

after the developing region; the jet expands linearly in the fully 

developed region and the axial velocity decay is also linear. 

In addition, the flow experiences a sudden change of direction and slows 

after the impinging between the target surface and flow in the wall jet 

zone. 

 

 

Figure 1.4: Schematic diagram of impinging jet regions [8]. 
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1.2 Problem Statement 

Due to the miniaturization of the electronics components or devices along 

with the faster operational speed, the enhancement of thermal 

performance of such components or devices became very important to 

meet all the practical applications. In addition, the electronic devices 

should be operated in the ranges of a specific temperature. The exceeding 

allowable temperature, the devices will be under serious problem. 

Therefore, in order to keep the operating temperature constant, the cooling 

system must dissipate the generated heat. Generally, the temperature of 

fluid near the wall (impinging target surface) is always higher than the 

fluid temperature in the core region of the channel. Using combined 

techniques of heat transfer enhancement such as ribs and jet impingement 

can be enhancing the heat transfer significantly. Furthermore, the rate of 

heat transfer enhances if the cold fluid at the core region is mixed with the 

hot fluid near the wall. The use of various shapes of ribs on the impinging 

target surface can enhance the mixing of fluids, leading to improve the 

rates of heat transfer. It is hypothesized that by using impinging jets on the 

heated impinging target surfaces with ribs, the mixing of fluid in channels 

can be enhanced and, hence, improve the performance of the electronic 

components. 

Moreover, the current investigation attempts to answer the following 

questions: 

✓ What is the effect of the jet impingement alone? 

✓ What is the effect of the jet impingement and ribs together? 
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1.3 Objectives of the Study 

The study objectives can be formulated as: 

1) To study the effect of different shapes of ribs such as (Wing ribs, 

Flat ribs, and Oval ribs) as well as smooth target surface (without 

ribs) on the heat transfer, pressure drop, and entropy generation. 

2) To investigate the effect of the rib locations on the heat transfer and 

flow characteristics. 

3) To study the effect of the rib heights on the flow and thermal fields. 

 

1.4 Thesis Outlines  

This dissertation consists of six chapters, and it is briefly offered as 

follows: 

 

➢ Chapter One: Presents the background, types, and zones of an 

impinging jet, problem statement, and the objectives of the present 

investigation. As well as the outlines of this dissertation have been 

introduced in this chapter. 

➢ Chapter Two: Explains the literature review of experimental and 

numerical studies for the conventional fluid by using jet impingement 

on the smooth target surface, various shapes of the target surface and 

entropy generation. 

➢ Chapter Three:  Deals with the numerical solution employed in the 

present investigation. The problem description and assumptions, the 

governing equations of the turbulent flow in Cartesian coordinates, 

(k‑ε) turbulence model, the computational grid, the governing 

equations transformation from Cartesian coordinates into body-fitted 

coordinates, and entropy generation equations are described. Finally, 
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the thermo-physical properties for the working fluid (water) used in 

this investigation will be presented.  

➢ Chapter Four: The experimental setup is presented in this chapter, 

followed by the operational procedure. As well as the description of 

the test sections and experimental apparatus used in the present 

investigation. Therefore, the procedure of data reduction is 

introduced. This is followed by uncertainties calculation in the 

experimental measurement. 

➢ Chapter Five: Presents the results of the numerical and experimental 

obtained in the present investigation. The first section of this chapter 

focuses on the grid independence test of the current CFD code and 

the code validation. Then the comparison between the experimental 

data and the numerical results are presented. Furthermore, the effects 

of various parameters such as jet Reynolds number, the heights and 

locations of the ribs, and various ribs shapes on the heat transfer and 

flow characteristics as well as entropy generation are introduced in 

this chapter. 

➢ Chapter Six: Summarizes the main conclusions are obtained from 

the current investigation. Then some recommendations are proposed 

for future works. 
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2 CHAPTER TWO:  

LITERATURE REVIEW 

 

 

2.1 Overview  

This chapter shows some reviews of previous studies that concern with 

the flow field and heat transfer characteristics of impinging jet on the 

target surface. The first section introduces the effect of jet impingement 

on the heat transfer. The second section presents the effect of jet 

impingement and ribs on the convection heat transfer. The third section 

displays the effect of jet impingement on the entropy generation.  

 

2.2 Effect of Jet Impingement on the Convection Heat Transfer  

Park et al. [9] carried out a numerical investigation on fluid flow and heat 

transfer characteristics of air slot jet impingement. The (𝑘‑𝜔) turbulence 

model was adopted. The two-dimensional governing equations have been 

solved using the finite element method based on SIMPLE and upwind 

techniques. The effects of various parameters such as the jet Reynolds 

number range of (220 – 25,100) and the  jet-to-target plate spacing range 

of (0.5 - 4) on the skin friction coefficient of laminar and turbulent systems 

and the flow field. They observed that the maximum skin friction 

coefficient occurred nearby the stagnation zone. It was also found that the 

highest heat transfer rate was at the stagnation point whereas decreases 

gradually toward downstream. The highest local heat transfer coefficient 

occurred at the maximum Reynolds number and the jet-to-target plate 

spacing of 0.5. 
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Nirmalkumar et al. [10] presented an experimental study to investigate of 

local heat transfer distribution by the normal slot air jet impingement on a 

smooth surface. The data showed that the target surface was manufactured 

from stainless steel foil with (length of 202 mm, a width of 91 mm, and a 

thickness of 0.06 mm). They studied the effects of the jet-to- target surface 

distances of (0.5-12) and the jet Reynolds number ranged from 4200 to 

12,000 on a heat transfer distribution. They observed that the heat transfer 

coefficient increased with increasing Reynolds number and decreasing jet-

to-plate spacing. Furthermore, they found the highest Nusselt number 

happened at the  distance of the jet to the target surface of 0.5 and 

maximum Reynolds number of 12,000.   

Caggese et al. [11] have conducted an experimental and numerical study 

to investigate the heat transfer and flow characteristics of the fully 

confined impinging air jet. The momentum, energy, and pressure terms 

were solved by applying the second-order upwind scheme. The local heat 

transfer coefficient distributions were provided a bottom wall (smooth 

target surface)  and the top wall (jet surface). The effects of jet Reynolds 

numbers range of (16,500 - 41,800) and the  jet-to-plate distances (0.5-1 .5) 

jet diameters. They noted that the average Nusselt number of an impinging 

plate increases as the nozzle Reynolds number increases. Low dependence 

on the level of the local and average heat transfer with the jet-to-plate 

distances was observed for the smooth target surface, although the results 

for jet-to-plate distance of 1 appeared to provide the best performance of 

heat transfer. Therefore, the heat transfer rate of the impinging target 

surface was approximately 40% lower compared with the target surface 

which experiences impinging (stagnation) regions.     

Culun et al. [12] investigated heat transfer characteristics of the air 

confined multi-jet arrangement impingement on the flat impinging plate. 
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The Shear-Stress Transport (𝑆𝑆𝑇) turbulence model was utilized. The jet 

impinging flows were included inline and staggered arrays and two types 

of jets were used circular jets and square jets. The impingement target 

surface under a constant heat flux of 9000  𝑊 𝑚2⁄  .  Different jet-to-plate 

spacing of (2, 3, and 4) jet hydraulic diameter and various Reynolds 

numbers of 5000, 10,000, and 15000. The outlet fluid domains consisted 

of three cases of one exit and (two and three) exits. Numerical results 

showed that an increasing jet Reynolds number, the Nusselt number 

increased. It was the highest heat transfer occurred by using square jets 

compared to circular jets for one exit case. Also, it was noticed that the 

enhancement of heat transfer was 73% when increasing Reynolds number 

from (5000 to 10,000). 

Zhou et al. [13] conducted an experiment to improve the heat transfer and 

flow field using air jet impingement at narrow spacings. They used two 

types of jets which were sweeping and circular jets, and the length of the 

jet was 40 mm. The circular tube was 200 mm long, with outer and inner 

diameters of 13 mm and 10 mm, respectively. The influences of various 

coolant air nozzle Reynolds numbers varying of (Re = 5000, 10000, and 

15,000) for both jets and nozzle-to-plate spacing of (0.5, 1.0, 2.0, and 3.0) 

nozzle diameters on the heat transfer. The results were presented that the 

Nusselt number increased with increasing nozzle Reynolds number and 

decreasing narrow spacings. The heat transfer improvement for a 

sweeping nozzle was better than a circular nozzle in the stagnation zones. 

Furthermore, it was reported that the maximum heat transfer performance 

up to 40% compared with a circular nozzle around the stagnation zone.  

Fechter et al. [14] carried out a numerical and experimental study of heat 

transfer characteristics by employing the single-row of five impinging air 

jets cooling on a heated flat surface. The numerical part was used that the 
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Shear-Stress Transport (𝑆𝑆𝑇) turbulence model. In this investigation, the 

distribution of the jet was from inline and staggered pattern 

configurations. Various Reynolds numbers between (10,000 and 40,000) 

and jet-to-target spacing of 1 and 3 jet diameters. Results indicated that 

with the increasing Reynolds number, the average Nusselt number 

increase. Also, the discharge coefficient increased with increasing jet-to-

surface spacing. It was reported for the inline pattern configuration, the 

maximum heat transfer rate occurred at jet-to-target spacing of 1 jet 

diameter. Also, it was found that the discharge coefficient was 

approximately 20% higher for jet-to-target spacing of 3 jet diameters over 

Reynolds number range.  

Manca et al. [15] performed a numerical investigation to study the heat 

transfer performance using a confined slot jet impingement on the flat 

impinging surface. The (𝑘‑ɛ) turbulence model was employed. The two-

dimensional governing equations of momentum, continuity, and energy 

were solved utilizing the finite volume method (FVM). The length of the 

flat impinging plate, slot jet width, and height (between the impinging 

plate and orifice jet) were 310 mm, 6.2 mm, and (24.8-124 mm), 

respectively. The jet-to-target surface spacing of (4-20), and jet Reynolds 

numbers range of (5000-20,000). They observed that the highest local 

Nusselt number was at a stagnation point while the lowest value at end of 

a target surface. The average Nusselt number increased with increasing jet 

Reynolds number. The maximum heat transfer enhancement was up to 

18% at the jet-to-target surface distance of 10. The required pumping 

power was increased with jet Reynolds numbers. 

Lv et al. [16] carried out an experimental study to enhance the heat transfer 

using a free single impinging jet on the cylinder surface The test area 

included the copper cylinder (diameter of 100 mm, and height of 50 mm). 
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The effects were at jet Reynolds number between 4000 and 12,000, the jet 

angles of (50º, 70º, and 90º), and the jet-to-surface spacing of (2-5) jet 

diameters on the heat transfer coefficient. The results indicated that the 

heat transfer coefficients increased with increasing the jet angle, jet 

Reynolds number, and before the jet-to-surface distance of 4. They 

observed the better heat transfer performance occurred at the impinging 

point. It was shown that the maximum heat transfer coefficient was 61.4% 

at jet-to-surface spacing of 4, the nozzle angle of 90º. 

Chougule et al. [17] investigated the fluid flow and heat transfer 

characteristics of multiple impinging jets on the target smooth surface 

experimentally and numerically. The aluminum impinging flat surface 

with dimensions 60 mm of length, width of 60 mm, and thickness of 6 mm 

and all nozzles with diameter of 5 mm. The measurement indicated that 

the different of air jet Reynolds umbers of (Re = 7000 to 11,000), nozzle-

to- target plate spacing (6, 8, and 10) nozzle diameter, and the constant 

heat flux of (8333  𝑤
𝑚2⁄ ) applied on the bottom smooth plate. At the 

surface spacing-to-jet diameter ratio of 6 and increase Reynolds number, 

the temperature of the flat surface became colder. It was observed that the 

minimum temperature occurred at the stagnation point. The average heat 

transfer coefficient increased with increasing nozzle Reynolds number at 

jet-to-target spacing of 6, where the percentage of average heat transfer 

coefficient was up to 24%. The higher heat transfer enhancement occurred 

at a lower target spacing-to-jet diameter ratio of 6 due to a reduction in the 

impinging surface area. The deviation between the numerical and 

experimental results was (±5%). 

Afroz and Sharif [18] presented a numerical investigation to study heat 

transfer under two-dimensional oblique twin turbulent confined impinging 

slot-jet on an isothermal smooth target surface. They used two types of 
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numerical turbulence models; the Re-Normalization Group (𝑘‑ɛ) and 

Shear-Stress Transport (𝑘‑𝜔) turbulence models. The geometric 

parameters included the various air jet Reynolds numbers ranged between 

(23,000 and 50,000), jet-to-plate distance ratio of (2.6, 4, and 6), and jet 

impingement angle of (45º-90º). They reported that the Reynolds number 

and jet impingement angle played the major role for impinging the target 

surface on the heat transfer. With an increasing Reynolds number, the 

average Nusselt number increased. The average Nusselt number decreased 

about (25-50%) with decreasing jet impinging angle from (90º- 45º) for 

various jet Reynolds numbers. 

A numerical and experimental study of the heat transfer on the circular 

heated cylinder surface using impinging circular air jet was performed by 

Singh et al. [19]. The model of three dimensional of axial and 

circumferential directions.  The mass, momentum, and energy 

conservation equations were solved by using the Finite Volume Method 

to discretize governing equations. The length and overall diameter of the 

target circular cylinder were 600 mm and 50.5 mm, respectively. The 

cylinder surface was subjected to the fixed heat flux. Also, the circular 

pipe of the jet was made of aluminum and contained three different inner 

diameters of (6, 10.5, and 12.5 mm). The influence of air nozzle Reynolds 

numbers varied from 10,000 to 25,000, nozzle-to-target cylinder spacing 

of (4-16) nozzle diameters, and the ratio of jet diameter to target cylinder 

diameter ranged of (0.11-0.25) on the local Nusselt number. An increasing 

Reynolds number of the nozzle leads to the heat transfer rate increased. 

The stagnation point Nusselt number increased with decreasing the ratio 

of nozzle diameter to target cylinder diameter. At higher jet Reynolds 

number, as the ratio of jet diameter to the diameter of target cylinder 

decreased, the local Nusselt number was less than that of a higher ratio of 
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nozzle diameter to the diameter of the circular cylinder after some axial 

distance. Moreover, it was observed that the local Nusselt number was 

significant up to the axial direction of cylinder-to-cylinder diameter ratio 

of 1 and nozzle angle of 90º in axial and circumferential directions, 

respectively. 

Sharif and Banerjee [20] studied numerically the flow and heat transfer 

characteristics on an isothermal flat plate due to confined impinging-air 

slot jet. The two-dimensional (𝑘‑ɛ) turbulence model was used. The width 

of slot-jet of 6.2 mm and the target impinging length of 100 mm. They 

showed that the different nozzle exit Reynolds numbers of (5000, 10,000, 

15,000, and 20,000), nozzle-to-impinging surface spacing of (6 and 8), 

and dimensionless surface velocity (normalized plate velocity) varied 

from (0 - 2). The constant temperature of impingement plate of 338 K and 

the inlet temperature of the jet was 373 K. The results were, at the fixed 

location, the local Nusselt number increased with Reynolds number and 

at low normalized surface velocity for all jet to target spacing. It also noted 

at the fixed surface velocity, the average skin friction coefficient 

decreased while the average Nusselt number increased with increasing 

nozzle exit Reynolds number for all normalized nozzle to plate spacing. 

Amjadian et al. [21] carried out an experimental investigation to study the 

heat transfer performance of unconfined circular jet impingement on the 

heated smooth circular surface  (disk). The aluminum disk diameter was 

300 mm and its thickness was 4 mm. The jet diameter size of 12 mm as 

well as a constant jet-to-disk surface spacing. The influence of various 

Reynolds numbers between 7330 and 11,082 on the characteristics of heat 

transfer and fluid flow. The smooth disk surface applied under the constant 

heat flux of (1414.71  𝑊 𝑚2⁄ ). The experimental results presented that the 

highest Nusselt number appeared at a stagnation region (surface center). 
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The cooling nozzle impinging system heat transfer efficiency increased 

approximately 45% at Reynolds number of 7330. The minimum 

temperature of the disk surface occurred at the stagnation zone, and 

increased thereafter with a radial location. 

Huang et al. [22] have presented a numerical investigation on an 

isothermal smooth impinging surface to study the performance of the 

turbulence models heat transfer using a confined impinging slot-air 

nozzle. They used two types of turbulence models; the developed and 

standard Shear Stress Transport (𝑘‑𝜔) turbulences models. The nozzle 

Reynolds number of (11,000, 11,400, and 20,000), nozzle-to-target 

surface spacing of (2 to 9.2), and the nozzle width of (40 mm). The 

impinging surface was under a constant temperature of 310 K. The results 

obtained that the highest static pressure happened at the stagnation point. 

The velocity was increased away from a stagnation point and also, it was 

reported that the highest velocity at position-to-slot width ratio of 2 was 

higher than a position-to-slot width ratio of 1. For the higher value of 

nozzle-to-surface spacing, skin friction monotonously decreased after the 

first maximum value along a smooth impingement surface. The standard 

(𝑘‑𝜔) model provided higher values of skin friction at jet-to-surface 

spacing of 9.2. In addition, it was observed that the maximum Nusselt 

number value occurred at a stagnation point. For all jet-to-surface spacing, 

the developed Shear Stress Transport (𝑘‑𝜔) turbulence model performed 

better than standard Shear Stress Transport (𝑘‑𝜔) turbulence model. 

Buonomo et al. [23] numerically investigated the convective heat transfer 

on the isothermal heated smooth target plate of a confined slot-jet 

impingement. The two-dimensional (𝑘‑ɛ) turbulence model. As well as 

the governing equations were solved utilizing the Finite Volume Method. 

The momentum and energy equations were chosen by using a second 
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order-upwind scheme. They presented that the length of the computational 

domain of 620 mm, slot jet width of 6.2 mm, and the distance between the 

upper surface and target surface, ranged from (24.8 to 120 mm). The inlet 

temperature of the jet was 293 K and the bottom plate of the target with a 

constant temperature of 343 K. They studied the jet Reynolds numbers 

range from (5000 to 20,000), nozzle-to-wall target spacing varied from (6-

10), and the plate-jet velocity ratio (dimensionless surface velocity) 

between (0 and 2). Results showed that the average Nusselt number 

increased with increasing nozzle Reynolds number, and plate-jet velocity 

ratio. The local Nusselt number at the impingement point started from the 

highest value for the stationary surface at the value of quasi-uniform in a 

downstream zone for the velocity surface of 2. In addition, the 

enhancement of heat transfer was not depending significantly on the 

nozzle-to-target moving surface spacing. It noted that the average skin 

friction coefficient increased with increasing dimensionless surface 

velocity and decreased with increasing Reynolds number for all jet-to-

target spacing. However, it found that both moving and stationary 

conditions, the maximum local Nusselt number increased about 20% for 

a heated plate. 

Adimurthy and Katti [24] performed an experimental investigation of 

local distribution of heat transfer and wall static pressure of impinging air 

unconfined slot-single jet cooling on the smooth target surface. The 

impinging surface made of stainless-steel foil with thickness of (0.06 mm) 

and the dimensions of the slot-jet geometry were high of 4.5 mm, width 

of 4 mm, and length of 90 mm. The effects of the exit jet Reynolds number 

ranging from (2500 to 20,000) and jet-to-target surface spacing (jet-to-

plate distance to hydraulic diameter of jet) on heat transfer distribution and 

fluid flow characteristics. The results of the experiments showed that the 
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coefficient of wall static pressure was independent of jet Reynolds number 

in a range from (5000-15,000) for all nozzle-to-surface spacing. At 

Reynolds number of 5000, the wall static pressure at a stagnation point 

decreased with an increase in the jet to plate spacing. Furthermore, the 

Nusselt number values were the maximum at a stagnation point for all 

Reynolds number and jet-to-target spacing. An increase in Reynolds 

number, the average Nusselt number increases. It was also observed that 

the average Nusselt number decreased gradually with further increases in 

nozzle-to-plate spacing. At jet-to-target spacing of 4 and any Reynolds 

number, the heat transfer rate was higher at the potential core zone end.      

A numerical investigation of heat transfer using a confined axis-

symmetric impinging circular jet on the heated surface was presented by 

Huang [25]. The Shear Stress Transport (𝑘‑𝜔) turbulence model was 

employed. The governing equations of continuity, momentum, and energy 

were solved utilizing the Finite Volume Method. Furthermore, the 

diameter of the jet orifice and the radius geometrical configuration of 2 

mm and 16 mm, respectively. The various circular jet Reynolds numbers, 

and jet-to-plate spacing were presented. The results presented at various 

Reynolds numbers from 5000 to 30,000, nozzle-to-target surface spacing 

of (1-5) nozzle diameters, and constant heat flux of (500000  𝑊 𝑚2⁄ ). They 

found that the highest local Nusselt number occurred at the stagnation 

point zone and the average Nusselt number increased with increasing 

Reynolds number. It was also observed that the peak average Nusselt 

number was up to 15% at Reynolds number of 30,000, and jet-to-plate 

spacing of 2. 
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2.3 Effect of Jet Impinging and Ribs on Convection Heat Transfer 

Xu et al. [26] carried out a numerical investigation of the behavior of heat 

transfer and flow under twin impingement air slot-jets on flat and rough 

plates. The governing equations were solved utilizing the Finite Volume 

Method. The Re-Normalization Group (𝑘‑ɛ) turbulence model was 

performed. The nozzle Reynolds number varied from (2000 to 14,000), 

nozzle-to-target spacing of (2-7), nozzle separation-to-slot width of (1-6), 

roughness amplitude of (0 - 40%), and roughness frequency of (100 to 400 

HZ) as well as constant impinging target temperature of 300 K. Results 

illustrated that the local Nusselt number for twin-slot impinging jets on 

the rough plate was significantly higher compared with the flat plate. Also, 

they found that the Nusselt number can be improved with surface 

roughness increase in the wall jet region. 

Attalla et al. [27]  investigated an experimentally heat transfer on the rough 

impinging target plate employing an impinging air circular jet. The target 

plate by a micro-cubic pin size was (0.4 × 0.4 mm) with various depths of 

(0.1, 0.2, and 0.3 mm). They studied several parameters such as roughened 

degree (rough plate area to flat plate area ratio) varied between 1 (for flat 

plate case), 1.64, 2.28, and 2.91, jet to impinging plate spacing range of 

(1-9), and Reynolds number ranged from 3150 to 10,150. Results 

illustrated that the local Nusselt number for a rough impinging surface was 

enhanced ranging of (9.9 to 32.17%) compared to flat plate. This 

enhancement depended on Reynolds number, roughened degree, and jet-

to-impinging plate. Moreover, it reported that the enhancement factor was 

enhanced by (8.9, 16, and 24%) for the roughened degrees of (1.64, 2.28, 

and 2.94), respectively.  

Mondal and Singh [28] numerically investigated the influence of convex 

protrusion on target surface using a single air slot-jet impingement. The 
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numerical model simulation was carried out using Shear Stress Transport 

(𝑘‑𝜔) turbulence model. They conducted that the performance of heat 

transfer over heated surface and a staggered nine by nine hemispherical 

(protrusion) convex dimple array. They used that the Reynolds numbers 

between 2750 and 11,000, fixed jet-to-plate spacing of 4, ratio of dimple 

depth to dimple diameter of (0.2), and ratio of the width of slot to the 

diameter of dimple of (0.5). It was noticed that when increased jet 

Reynolds number increased the Nusselt number over the flat plate as well 

as on a dimple plate at constant nozzle-to-surface spacing. Moreover, 

negligible Reynolds number influence was seen on a back and front 

locations of protrusions. The results were indicated that the heat transfer 

rate up to 50% in the case of the dimple presence (protrusion surface) 

when compared with the smooth plate. 

Sagot et al. [29] conducted an experimental investigation of heat transfer 

enhancement with the axis-symmetric grooves on a circular plate using air 

jet impingement. The impingement surface was an aluminum circular 

surface with thickness and radius of 3 mm and 24 mm, respectively. Two 

grooves were triangular or square cross-section with width, depth, and 

pitch of (1, 1, and 2 mm), respectively. The experimental results showed 

at a constant jet-to-target spacing of 2 jet diameters and Reynolds numbers 

between 15,000 and 30,000. They found that the average Nusselt number 

increased up to 80% for a square groove when compared with a smooth 

surface reference case. This heat transfer performance was attributed to 

secondary flows generated inside grooves. The vortex was more shedding 

and vigorous frequently in the case a square groove. This is due to a greater 

heat removal from a surface with compared to smooth and triangular 

cases.  
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The flow and heat transfer characteristics in an impinging multi-jet 

cooling system were evaluated numerically and experimentally by Wan et 

al. [30]. The Shear Stress Transport (𝑘‑𝜔) turbulence model was 

presented. Different types of the target plates were used: flat surface, and 

(inline and staggered) square-pin-fin roughened surfaces. The model 

dimensions were included that the impingement surface length of 300 mm, 

jet diameter of 10 mm, and the distance between jets to target plate of 30 

mm. The cooling air Reynolds number ranged from 15,000 to 35,000. The 

results were obtained that when Reynolds number increased, all the 

average Nusselt numbers increased. It was observed that the overall rate 

of heat transfer on the inline-pin-fin surface leads to an increase up to 

34.5% as compared with the flat surface. The performance of heat transfer 

on the inline-pin-fin surface was better than that a staggered-pin-fin 

surface. 

Ahmadi et al. [31] conducted a numerical study of  heat transfer and flow 

field characteristics on a circular concave surface using a turbulent 

confined-slot impinging jet. Using Control Volume Method, momentum, 

mass, and energy conservation equations have been discretized. The 

pressure and velocity coupling were developed employing the SIMPLE 

algorithm. The circular concave with a diameter of 150 mm, and a width 

of the inlet jet equal to 5 mm. The data were obtained at Reynolds number 

of (Re = 4740, 7100, and 9000), the nozzle-to-plate distances of (3-10, and 

constant heat flux on the concave surface of (5000  𝑊 𝑚2⁄ ). They found 

that the local and average Nusselt numbers, pumping power, and pressure 

drop increased with increasing Reynolds numbers. Also, the highest heat 

transfer occurred in an impinging zone. The maximum improvement of 

the heat transfer rate occurred at the nozzle-to-plate spacing of 5. 
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Beitelmal et al. [32] presented an experimental investigation of the surface 

roughness influences on the heated surface using a single impinging air 

circular jet to increase the average Nusselt number. Two different circular 

target plates were made of the aluminum with a thickness of 2.0 mm and 

a diameter of 70 mm, one of the plates with a smooth surface and the other 

plate with some roughness added to a target surface. The roughness shape 

was the circular array of the protrusions (dimples) of 1.8 mm spacing, 0.5 

mm base, and 0.5 mm height. As well as the jet diameter of 6.85 mm. The 

jet exit Reynolds numbers ranged from 9600 to 38,500. The temperatures 

were measured at the nozzle-to-target surface distance between 1 to 10 jet 

diameters. Results indicated that the average Nusselt number for both 

surfaces increased with increasing Reynolds number. The surface 

roughness protrusions disrupted the thermal boundary layer causing an 

increase in the average Nusselt number up to 6.0% when compared to the 

smooth surface. The highest heat transfer enhancement was at the jet-to-

plate spacing between (4 and 8) jet diameters. The maximum deviation 

between experimental values and correlations was less than 10%.  

Öztekin et al. [33] studied an experimentally and numerically the heat 

transfer characteristics of a turbulent slot air jet impinging on the concave 

plates. The convection terms in a momentum equation were obtained by 

applying the second-order upwind scheme. Also, the pressure-velocity 

coupling was solved by using a SIMPLE algorithm in the numerical 

simulation. The impinging aluminum flat surface was the dimensions of 

length, width, and thickness of (90, 63, and 0.2 mm), respectively. As well 

as the radiuses of a concave plate of (45, 65.25, and 117 mm). They 

showed that the effects of jet Reynolds numbers (Re = 3423-9485), 

nozzle-to-impinging surface spacing (1-14), and the curvature radius ratio 

of (0.5, 0.725, and 1.3) on the average Nusselt number were studied. They 
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noted that the average Nusselt number increased with increasing Reynolds 

number, curvature radius, and decreasing jet-to-impinging surface 

spacing. The highest Nusselt number happened at jet-to-impinging plate 

spacing of 1 and the curvature radius ratio of 1.3.  

Zhou et al. [34] conducted an experimental investigation on the concave 

surfaces to study the heat transfer characteristics using air circular jet 

impinging. The impingement aluminum surfaces were at a constant length 

of 150 mm, thickness of 2 mm, and different diameters of (100 and 200 

mm). The steel pipe with 16 mm inner and 20 mm outer diameters. The 

jet also was located inside of the steel pipe with diameters of (1, 2, and 3 

mm). The experimental results were indicated that the jet Reynolds 

numbers (Re = 27,000 to 130,000), nozzle-to-plate distances ranged from 

(3.3 and 30) jet diameters, and surface curvature ratio of (1-2.6). They 

reported that the average Nusselt number increased with increasing jet 

Reynolds number, surface curvature ratio, and decreasing nozzle-to-plate 

distance. Furthermore, they found that the better heat transfer performance 

was at the surface curvature ratio of 2.6.    

  Xing et al. [35] carried out a numerical and experimental investigation 

of heat transfer of multiple air flow jet impinging on the flat surface and 

the micro rib-roughened surface. The impingement target surface was 

made of Perspex and with length of 450 mm. The micro-rib roughened 

surface dimensions were height, width, and pitch ribs of (1, 1, and 5 mm), 

respectively. The effects of jet Reynolds number range of 15,000, 25,000, 

and 35,000, crossflow of (maximum, medium, and minimum) schemes, 

and jet-to-target surface spacing range of (3, 4, and 5) jet diameters on 

heat transfer and pressure loss. For both smooth surface and rib roughened 

surface, the highest heat transfer coefficient occurred at the jet-to-surface 

spacing of 3 jet diameter and for different crossflow schemes. In a 
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downstream part, the heat transfer performance was better than that of an 

upstream part. The maximum improvement of heat transfer of the rib 

roughened surface area was up to 40% compared to the flat plate at 

Reynolds number of 35,000, the distance of jet-to-plate of 3, and a 

maximum crossflow case.     

Shukla et al. [36] presented a numerical study of the slot-jet impingement 

to investigate the influence of the ribbed-rough impinging surface on the 

characteristics of flow and heat transfer. The standard (𝑘‑ɛ) turbulence 

model and Shear Stress Transport (𝑘‑𝜔) turbulence model were 

introduced. The convective and diffusive terms of governing equations 

have been discretized employing the second-order upwind and second-

order central difference schemes, respectively. The SIMPLE method was 

utilized for a pressure and velocity coupling. The jet-to-impinging surface 

spacing (4, 8, and 9.2) and jet Reynolds number ranging from (5500 to 

20,000). The results showed that the highest values of Nusselt number 

occurred at the stagnation zone vicinity for jet-to-surface spacing of 8 and 

Reynolds number of 5500 on the ribbed surface. It was also observed that 

the local Nusselt number prediction was more with a ribbed surface 

compared to flat surface. In addition, it found that the prediction of Nusselt 

number from (𝑘‑ɛ) turbulence model was more accurate than (𝑘‑𝜔) 

turbulence model. 

El-Gabry and Kaminski [37] conducted an experimental study to 

investigate the influence of the plate roughness on the heat transfer using 

air jet impinging arrays. The diameter of the jet was 1.27 mm, and the 

distance between jets was 6.35 mm. The angles of jet were ranged between 

(30º, 60º, and 90º) which measured an impinging target plate, which was 

either a flat plate or a randomly roughened plate. In this work, the 

measurements were presented that the Reynolds numbers varied from 
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(15,000 to 35,000), and the jet-to-target spacing of (1 and 2) jet diameters. 

The results showed that, when jet Reynolds number increased and jet 

angle increased, the average Nusselt number increases. As compared with 

a smooth plate, the average Nusselt numbers increased with the use of the 

roughness plate and produced the distribution of uniform heat transfer. In 

addition, the influences of the jets impinging angle of 90º (normal jets 

impinging) on both plates have the highest average Nusselt number 

occurred at jet-to-target spacing of 2 jet diameters compared to the other 

cases.  

Zhang et al. [38] introduced an experimental and numerical study of heat 

transfer and flow characteristics of impinging a single jet on a dimpled 

target plate. They used that the dimpled target surface was the thickness 

of 15 mm and with a (660 × 660 mm) square surface and the protrusion 

diameter was as large as   44 mm. In this paper, the various effects of air 

nozzle Reynolds number of (5000, 10,000, and 23,000), protrusion 

relative depth of (0.1, 0.2, and 0.3), and constant distance of jet-to-target 

surface of 2 jet diameter on the local, stagnation, and average Nusselt 

numbers were studied. The local Nusselt number increased with 

increasing nozzle Reynolds number. Furthermore, when a wall nozzle 

passes into dimple (protrusion) edge zone, the local Nusselt number 

decreased with increasing protrusion relative depth. The stagnation 

Nusselt number increased with increasing jet Reynolds number The 

stagnation Nusselt number on dimpled target plat was large than of smooth 

target plate. The overall heat transfer improvement was obtained by the 

performance of heat transfer in the stagnation zone and an increase of 

dimple sphere area. 

Lafmajani et al. [39] presented an experimental study of heat transfer 

characteristics on the convex heated surface using impinging jet. They 
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used that the aluminum convex surface with dimensions were; length of 

130 mm, width of 40 mm, radius of 200 mm, and the slot jet with length 

of 40 mm and width of 1.6 mm. The results presented that the effect of 

various Reynolds numbers varying between 1803 and 2782 on the heat 

transfer coefficient. They reported that the local and average heat transfer 

coefficients increased with increasing Reynolds numbers. Also, they 

found that the maximum performance of the average heat transfer 

coefficient up to 32.78% happened at Reynolds number of 2037.  

Tan et al. [40] studied enhancement of heat transfer on the rib-roughened 

plate for closed-one side of a semi-confined channel using air jet 

impinging. The impinging target was made from the copper plate with ribs 

of 60 mm length, with width of 35 mm, and thickness of 1.5 mm. The 

height and width of the ribs were all constant as 1 mm, and the rib-pitch 

was constant as 8 mm. Three types of rib configurations were included V-

shaped ribs, inverted V-shaped ribs, and orthogonal ribs. They presented 

that the jet-to- surface spacing range of (1-3) jet diameters, different air jet 

Reynolds number from 6000 to 30000, and constant heat flux of 

(8000  𝑊 𝑚2⁄ ). The results showed that the convective heat transfer was 

stronger at the lower jet-to-surface spacing because of the higher flow 

velocity in the channel, and it was observed that the convective heat 

transfer performance up to 30% in a ribbed region when compared with a 

smooth channel. Also, the convective heat transfer enhancement by using 

inverted V-shaped rib appeared to be advantageous. They reported that the 

flow coefficient inside a smooth channel was higher than a rib-roughened 

channel. However, they found that the flow coefficient of a rib-roughened 

was decreased (5-10%) compared with the smooth channel.   
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The effects of the plate roughness on an impinging target plate using an 

impingement cooling jet array were presented experimentally by Buzzard 

et al. [41]. The plate roughness shape was the rectangle in a combination 

with the larger rectangular-pin. The small rectangle roughness 

combinations and large-pins were studied together with a small 

rectangular roughness array only. The experimental tests were presented 

with air cooling at nozzle Reynolds numbers of (900-11,000). It showed 

that the higher local Nusselt numbers occurred with a small rectangle 

roughness, as compared with the surfaces including a large combination 

and small rectangle roughness at the low jet Reynolds number. The 

surfaces with the small combination and large rectangle roughness, 

presented higher local Nusselt numbers than other surfaces at the high jet 

Reynolds number. Also, for the all-jet Reynolds number, an increase in 

the height of small roughness led to the higher value of local Nusselt 

numbers.  

 

2.4 Effect of Jet Impingement on the Entropy Generation 

Xu et al. [42] carried out a numerical study of heat transfer and entropy 

generation of slot air impinging jet on the rough target surface. The 

numerical simulation was two-dimensional a (sinusoidal wave) model on 

the target surface with a length of the target surface of 100 mm. Results 

were at a different jet-to-plate distance (4-8) and Reynolds numbers of 

(2738-10,952). They noted that the heat transfer performance for a rough 

surface was significantly increased compared with that for a smooth 

surface. It was also conducted that the entropy generation which due to 

(viscous and heat transfer) as well as the average Nusselt number were 

increased with increasing Reynolds number. In addition, they found that 

the average Nusselt number for a rough target plate increased up to 40% 

when compared with that for a smooth surface.     
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2.5 Summary 

This chapter displayed that the previous extensive review of experimental 

and numerical investigations related to the characteristics of the heat 

transfer and flow field using the single impinging jet. It was noticed that 

many experimental and numerical investigations have been conducted on 

the convective heat transfer of the impinging jet on the smooth 

impingement target plate using traditional fluids based on the above 

reviews. There are only a few experimental and numerical studies have 

been performed on the influence of the impinging jet on the impinging 

target surfaces (severe turbulators such as; roughness and dimples 

surfaces) by using traditional fluids. Furthermore, there is no numerical 

and experimental study focused on the turbulent confined impinging slot-

jet on the impingement target surface with the various shapes of ribs. In 

addition, the influence of the various shapes of the ribs on heat transfer 

enhancement as well as the entropy generation of slot-jet impingement has 

never been investigated.  

 

2.6 Scope of investigation 

The scopes of the present investigation which utilized to obtain these 

objectives are: 

1) The jet Reynolds number is from 3000 to 8000 as well as the water 

is used as the working fluid. 

2) Three shapes of the ribs such as (Wing ribs, Flat ribs, and Oval ribs) 

as well as smooth target surface (without ribs). 

3) Four different ribs heights; 0.5, 1, 1.5, and 2 mm for all ribs shapes. 

4) Three different ribs locations (i.e., three different distances from the 

stagnation point to the rib) which are 10, 20, and 30  mm for all ribs 

shapes.
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3 CHAPTER THREE:  

NUMERICAL SOLUTION 

 

 

3.1 Overview 

This chapter introduces the numerical solution employed in the present 

investigation. The first part of this chapter explains the problem 

description and assumptions employed to solve the governing equations. 

Moreover, the governing equations of the turbulent flow in Cartesian 

coordinates are displayed. The low Reynolds number (𝑘‑𝜀) turbulence 

model of Launder and Sharma is adopted in the present investigation [43]. 

The CFD code is developed using the FORTRAN programming language 

to simulate turbulent flows. Furthermore, the body-fitted coordinate, the 

computational grid, and the governing equations transformation from 

Cartesian coordinates into body-fitted coordinates are presented. The 

discretization of governing equations is described in this chapter, 

employing the Finite Volume Method. Also, the entropy generation 

equations and the thermo-physical properties of the working fluid are 

introduced. Finally, the numerical calculations of (local and average 

Nusselt numbers and the performance evaluation criteria) are included.    

 

3.2 Problem Description and Assumptions 

In the current study, the basic geometries of confined single slot-jet 

impingement with different ribs shapes, which are wing, flat, and oval 

ribs, attached to the impinging target surface, are shown in Figure 3.1. The 

length of the impinging target surface (L) equals 110 mm, the distance 

between the slot-jet and impinging target surface (H) equals 10 mm, the 
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width of the confined slot-jet (W) equals 10 mm, and the ribs length (b) 

equals 10 mm. Two identical ribs with a height of (a =0.0, 0.5, 1, 1.5, and 

2 mm) attached to the impinging target surface, where the (a=0.0) is a 

smooth impinging target surface. The first rib was located left the 

stagnation point while the second rib located at right the stagnation point. 

The spacing between the stagnation point and the rib (d) is (d=10, 20, and 

30 mm). In addition, the flow is two-dimensional, steady state, turbulent, 

and incompressible. The constant physical properties of working fluid 

(water) are taken into consideration. No-slip condition is assumed on the 

adiabatic and heated walls.  
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Figure 3.1: Physical domain of the current study: (a) Wing ribs, (b) Flat ribs, (c) Oval 

ribs, (d) Smooth impinging target surface, (e) Dimensions of ribs. 
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3.3 Governing Equations 

Two dimensional governing equations of continuity, momentum, and 

energy in Cartesian coordinates can be defined as follows [44]: 

Continuity equation: 

𝜕

𝜕𝑥
(𝑢) +

𝜕

𝜕𝑦
(𝑣) = 0                                                                                       (3.1)  

u-momentum equation: 

𝜕

𝜕𝑥
(𝜌𝑢𝑢) +

𝜕

𝜕𝑦
(𝜌𝑢𝑣) = −

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑥
 [𝜇𝑒𝑓𝑓

𝜕𝑢

𝜕𝑥
 ] +

𝜕

𝜕𝑦
 [𝜇𝑒𝑓𝑓

𝜕𝑢

𝜕𝑦
 ]  

                                        +
𝜕

𝜕𝑦
 [𝜇𝑒𝑓𝑓

𝜕𝑣

𝜕𝑥
 ] +

𝜕

𝜕𝑥
 [𝜇𝑒𝑓𝑓

𝜕𝑢

𝜕𝑥
−
2

3
𝜌𝑘ƒ]             (3.2)  

 where, 

   𝜇𝑒𝑓𝑓 = 𝜇 + 𝜇𝑡                                                                                              (3.3)  

v-momentum equation:   

𝜕

𝜕𝑥
(𝜌𝑢𝑣) +

𝜕

𝜕𝑦
(𝜌𝑣𝑣) = −

𝜕𝑝

𝜕𝑦
+

𝜕

𝜕𝑥
 [𝜇𝑒𝑓𝑓

𝜕𝑣

𝜕𝑥
 ] +

𝜕

𝜕𝑦
 [𝜇𝑒𝑓𝑓

𝜕𝑣

𝜕𝑦
 ]  

                                        +
𝜕

𝜕𝑥
 [𝜇𝑒𝑓𝑓

𝜕𝑢

𝜕𝑦
 ] +

𝜕

𝜕𝑦
 [𝜇𝑒𝑓𝑓

𝜕𝑣

𝜕𝑦
−
2

3
𝜌𝑘ƒ]             (3.4)  

 

Energy equation: 

𝜕

𝜕𝑥
(𝜌𝑢𝑇) +

𝜕

𝜕𝑦
(𝜌𝑣𝑇) =  

𝜕

𝜕𝑥
[𝛤𝑇

𝜕𝑇

𝜕𝑥
 ] +

𝜕

𝜕𝑦
[𝛤𝑇

𝜕𝑇

𝜕𝑦
 ]                                    (3.5)  

Where: 

𝛤𝑇 =
𝜇

𝑃𝑟
+

𝜇𝑡

𝑃𝑟𝑡
                                                                                                  (3.6)                                                                                             



33 
 

3.4 Transport Equations of Turbulence Model 

In general, there are two equations of (𝑘‑𝜀) turbulence model considered 

the most utilized to calculate  the turbulent dynamic viscosity (𝜇𝑡) based 

on a solution of turbulent kinetic energy (𝑘) and dissipation rate (𝜀). The 

(𝑘‑𝜀) turbulence model proposed by Launder-Sharma is one of the most 

common turbulence models [43].This model is referred to as a low-

Reynolds number (𝑘‑𝜀) model in the present study. Furthermore, it can be 

defined as follows: 

Turbulent kinetic energy equation: 

𝜕

𝜕𝑥
(𝜌𝑢𝑘) +

𝜕

𝜕𝑥
(𝜌𝑣𝑘) =

𝜕

𝜕𝑥
[Γ𝑘

𝜕𝑘

𝜕𝑥
] +

𝜕

𝜕𝑦
[Γ𝑘

𝜕𝑘

𝜕𝑦
] + 𝑃𝑘 − 𝜌(𝜀 + 𝜀𝑤)     (3.7)  

Where: 

𝛤𝑘 = 𝜇 +
𝜇𝑡

𝜎𝑘
                                                                                                     (3.8)  

The term 𝑃𝑘 is the turbulent kinetic energy production rate. It can be 

expressed as: 

𝑃𝑘 = 𝜇𝑡 {2 [(
𝜕𝑢

𝜕𝑦
)
2
+ (

𝜕𝑣

𝜕𝑥
)
2

] + (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
2

} −
2

3
𝑘 (

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
)            (3.9)  

 

 Dissipation rate at wall (𝜀𝑤):  

𝜀𝑤 = 2
𝜇

𝜌
[(
𝜕√𝑘

𝜕𝑥
)
2

+ (
𝜕√𝑘

𝜕𝑦
)
2

]                                                                    (3.10)  

 

Turbulent kinetic energy dissipation equation: 

𝜕

𝜕𝑥
(𝑢𝜀) +

𝜕

𝜕𝑦
(𝑣𝜀) =

𝜕

𝜕𝑥
[𝛤𝜀

𝜕Ɛ

𝜕𝑥
] +

𝜕

𝜕𝑦
[
𝜕Ɛ

𝜕𝑦
]  

                                       +(𝐶1𝑓1𝑃𝑘 − 𝐶2𝑓2𝜀)
Ɛ

𝑘
+ ∅𝜀                               (3.11)  
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where, 

𝛤𝜀 = µ +
µ𝑡

𝜎𝜀
                                                                                                   (3.12)  

 

∅𝜀 = 2µ𝑡
𝜇

𝜌
[[(

𝜕2𝑢

𝜕𝑥2
)
2

+ (
𝜕2𝑣

𝜕𝑥2
)
2

] + 2 (
𝜕2𝑢

𝜕𝑥𝜕𝑦
)
2

+ 2(
𝜕2𝑣

𝜕𝑥𝜕𝑦
)
2

+ (
𝜕2𝑣

𝜕𝑦2
)
2

]   

                             (3.13) 

 

 The turbulent eddy viscosity in the above equation is indicated by [45]: 

𝜇𝑡 = 𝐶𝜇 𝑓𝜇 𝜌 
𝑘2

𝜀
                                                                                           (3.14)  

 In the above equations, the empirical constants and the turbulent Prandtl 

number are defined as [45]: 

𝐶𝜇 = 0.09,   𝐶1 = 1.44,   𝐶2 = 1.92                                                         (3.15)  

𝜎𝑘 = 1.0,   𝜎𝜀 = 1.3,   𝑃𝑟𝑡 = 0.9                                                               (3.16)  

 

In addition, the wall damping functions are expressed as [46]: 

𝑓1 = 1.0                                                                                                         (3.17)  

𝑓2 = 1 − 0.3 𝑒𝑥𝑝(−𝑅𝑒𝑇
2)                                                                          (3.18)  

𝑓𝜇 = exp [
−3.4

(1+0.02𝑅𝑒𝑇)
2
]                                                                              (3.19)  

 

 The turbulent Reynolds number is expressed by: 

𝑅𝑒𝑇 =
𝜌

𝜀

𝑘2

𝜇
                                                                                                    (3.20) 
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3.5 Body Fitted Coordinates System 

The body-fitted coordinate system is utilized due to the irregular geometry 

of the present study. The irregular physical domain is converted into a 

rectangular (regular) computational domain as shown in Figure 3.2. The 

governing equations are transformed from the Cartesian coordinate 

system (x,y) to a body-fitted coordinate system (ζ,η) [47]; as shown in 

Appendix A. 

 

 

Figure 3.2: Transformation from Physical domain (left) to computational domain 

(right). 

 

 

3.6 Computational Grid  

In general, the computational grid used for CFD problems can be obtained 

through different methods, such as algebraic and differential equation 

methods. Due to the irregular geometries employed in the present study, 

the method of the differential equation (which is suggested by Thompson) 

can be employed to develop the computational mesh. Thus, this method is 

employed to evolve the computational mesh of the present geometry 

depends on Poisson equations. Therefore, the two-dimensional Poisson 

equations can be defined as follows [48]:                                                                        
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𝜕2𝜉

𝜕𝑥2
+
𝜕2𝜉

𝜕𝑦2
= 𝑃(𝜉, 𝜂 )                                                                                  (3.21)  

𝜕2𝜂

𝜕𝑥2
+
𝜕2𝜂

𝜕𝑦2
= 𝑄(𝜉, 𝜂 )                                                                                   (3.22)  

Where 𝑃(𝜉, 𝜂 ) and 𝑄(𝜉, 𝜂 ) are the control functions employed for the 

clustering of points near the boundaries given. The procedures employed 

for calculating the values of these functions are depicted in Appendix A 

in detail. The above equations are turned to the computational field by an 

interchange of dependent and independent variables, and thereafter 

calculated the unknowns (x,y) from the bellow equations.                 

𝑞11
𝜕2𝑥

𝜕𝜉2
− 2𝑞12

𝜕2𝑥

𝜕𝜉𝜂
+ 𝑞22

𝜕2𝑥

𝜕𝜂2
+ 𝐽2 (𝑃

𝜕𝑥

𝜕𝜉
+ 𝑄

𝜕𝑥

𝜕𝜂
) = 0                        (3.23)  

𝑞11
𝜕2𝑦

𝜕𝜉2
− 2𝑞12

𝜕2𝑦

𝜕𝜉𝜂
+ 𝑞22

𝜕2𝑦

𝜕𝜂2
+ 𝐽2 (𝑃

𝜕𝑦

𝜕𝜉
+ 𝑄

𝜕𝑦

𝜕𝜂
) = 0                        (3.24)                                

The 𝑞11,  𝑞12, and 𝑞22  in equation 3.23 and 3.24 are the geometry 

factors can be expressed as:                                                                        

𝑞11 = 𝛽11
2 + 𝛽21

2                                                                                           (3.25)  

𝑞12 = −(𝛽11𝛽12 + 𝛽21𝛽22)                                                                       (3.26)  

𝑞22 = 𝛽12
2 + 𝛽22

2                                                                                           (3.27)  

Equations 3.23 and 3.24 are solved numerically employing the Successive 

Line Over-Relaxation algorithm to calculate the values of (x,y) during 

each node of computational mesh [49]. Figure 3.3 displays the 

computational mesh utilized in the current study. From this figure, the grid 

shaped near the top and bottom walls can be noticed to be intense than that 

of the channel center. In addition, the mesh can also be shown to be 

orthogonal on the surfaces of all ribs. 
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Figure 3.3: Computational grid of the current study: (a) Wing ribs, (b) Flat ribs, (c) 

Oval ribs, (d) Smooth impinging target surface. 

 

 

3.7 Transformation of the Governing Equations in the Body-Fitted 

Coordinates Systems  

The governing equations are converted from Cartesian coordinates to the 

body-fitted coordinates as follows [44]: 

 

Continuity equation: 

1

𝐽
[
𝜕

𝜕𝜉
(𝜌𝑢𝑈𝑐) +

𝜕

𝜕𝜂
(𝜌𝑣𝑉𝑐)] = 0                                                               (3.28)  

                                                                                    

u-momentum equation: 

1

𝐽
[
𝜕

𝜕𝜉
(𝜌𝑢𝑈𝑐) +

𝜕

𝜕𝜂
(𝜌𝑢𝑉𝑐)] =

1

𝐽

𝜕

𝜕𝜉
[
Γ𝑢

𝐽
(𝑞11

𝜕𝑢

𝜕𝜉
− 𝑞12

𝜕𝑢

𝜕𝜂
)]  

(a) 

(b) 

(c) 

(d) 

Inlet 

flow 

v 

u 



38 
 

+
1

𝐽

𝜕

𝜕𝜂
[
Γ𝑢

𝐽
(𝑞22

𝜕𝑢

𝜕𝜂
− 𝑞12

𝜕𝑢

𝜕𝜉
)] +

Γ𝑢

𝐽

𝜕

𝜕𝜉
[
1

𝐽
(𝛽11

2 𝜕𝑢

𝜕𝜉
+ 𝛽11𝛽12

𝜕𝑢

𝜕𝜂
)]  

+
Γ𝑢

𝐽

𝜕

𝜕𝜂
[
1

𝐽
(𝛽12𝛽11

𝜕𝑢

𝜕𝜉
+ 𝛽12

2 𝜕𝑢

𝜕𝜂
)] +

Γ𝑢

𝐽

𝜕

𝜕𝜉
[
1

𝐽
(𝛽21𝛽11

𝜕𝑣

𝜕𝜉
+ 𝛽21𝛽12

𝜕𝑣

𝜕𝜂
)]  

+
Γ𝑢

𝐽

𝜕

𝜕𝜂
[
1

𝐽
(𝛽22𝛽11

𝜕𝑣

𝜕𝜉
+ 𝛽22𝛽12

𝜕𝑣

𝜕𝜂
)] −

2

3
𝜌
1

𝐽
[
𝜕

𝜕𝜉
(𝛽11𝑘ƒ) +

𝜕

𝜕𝜂
(𝛽12𝑘ƒ)]  

−
1

𝐽
[
𝜕

𝜕𝜉
(𝛽11𝑝) +

𝜕

𝜕𝜂
(𝛽12𝑝)]                                                                      (3.29)  

                                 

v-momentum equation: 

1

𝐽
[
𝜕

𝜕𝜉
(𝜌𝑣𝑈𝑐) +

𝜕

𝜕𝜂
(𝜌𝑣𝑉𝑐)] =

1

𝐽

𝜕

𝜕𝜉
[
Γ𝑣

𝐽
(𝑞11

𝜕𝑣

𝜕𝜉
− 𝑞12

𝜕𝑣

𝜕𝜂
)]  

+
1

𝐽

𝜕

𝜕𝜂
[
Γ𝑣

𝐽
(𝑞22

𝜕𝑣

𝜕𝜂
− 𝑞12

𝜕𝑣

𝜕𝜉
)] +

Γ𝑣

𝐽

𝜕

𝜕𝜉
[
1

𝐽
(𝛽21

2 𝜕𝑣

𝜕𝜉
+ 𝛽21𝛽22

𝜕𝑣

𝜕𝜂
)]  

+
Γ𝑣

𝐽

𝜕

𝜕𝜂
[
1

𝐽
(𝛽22𝛽21

𝜕𝑣

𝜕𝜉
+ 𝛽22

2 𝜕𝑣

𝜕𝜂
)] +

Γ𝑣

𝐽

𝜕

𝜕𝜉
[
1

𝐽
(𝛽11𝛽21

𝜕𝑢

𝜕𝜉
+ 𝛽11𝛽22

𝜕𝑢

𝜕𝜂
)]  

+
Γ𝑣

𝐽

𝜕

𝜕𝜂
[
1

𝐽
(𝛽12𝛽21

𝜕𝑢

𝜕𝜉
+ 𝛽12𝛽22

𝜕𝑢

𝜕𝜂
)] −

2

3
𝜌
1

𝐽
[
𝜕

𝜕𝜉
(𝛽21𝑘ƒ) +

𝜕

𝜕𝜂
(𝛽22𝑘ƒ)]  

−
1

𝐽
[
𝜕

𝜕𝜉
(𝛽21𝑝) +

𝜕

𝜕𝜂
(𝛽22𝑝)]                                                                     (3.30)  

 

Energy equation:  

1

𝐽
[
𝜕

𝜕𝜉
(𝜌𝑈𝑐𝑇) +

𝜕

𝜕𝜂
(𝜌𝑉𝑐𝑇)] =

1

𝐽

𝜕

𝜕𝜉
[
Γ𝑇

𝐽
(𝑞11

𝜕𝑇

𝜕𝜉
− 𝑞12

𝜕𝑇

𝜕𝜂
)]  

                                                   +
1

𝐽

𝜕

𝜕𝜂
[
Γ𝑇

𝐽
(𝑞22

𝜕𝑇

𝜕𝜂
− 𝑞12

𝜕𝑇

𝜕𝜉
)]                 (3.31)  

𝑈𝑐  and  𝑉𝑐 in above equations are referred to the Contra-variant velocity 

components of x and y direction as shown in Figure 3.4, these velocities 

can be expressed as [50]: 
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𝑈𝑐 = 𝑢𝑦𝜂 − 𝑣𝑥𝜂                                                                                           (3.32)   

𝑉𝑐 = 𝑣𝑥𝜉 − 𝑢𝑦𝜉                                                                                           (3.33)   

 

Figure 3.4: Contra-variant velocities components. 

 

 

Turbulent kinetic energy equation is: 

          
1

𝐽
[
𝜕

𝜕𝜉
(𝜌𝑈𝑐𝑘) +

𝜕

𝜕𝜂
(𝜌𝑉𝑐𝑘)] =

1

𝐽

𝜕

𝜕𝜉
[
Γ𝐾

𝐽
(𝑞11

𝜕𝑘

𝜕𝜉
− 𝑞12

𝜕𝑘

𝜕𝜂
)]  

          +
1

𝐽

𝜕

𝜕𝜂
[
Γ𝐾

𝐽
(𝑞22

𝜕𝑘

𝜕𝜂
− 𝑞12

𝜕𝑘

𝜕𝜉
)] + 𝑃𝑘(𝜉, 𝜂) − 𝜌(𝜀 + 𝜀𝑤(𝜉, 𝜂))              (3.34)   

                                                                      

where, 

𝑃𝑘(𝜉, 𝜂) = 2𝜇𝑡 {
1

𝐽2
[
𝜕

𝜕𝜉
(𝛽11𝑢) +

𝜕

𝜕𝜂
(𝛽12𝑢)]

2
+ [

1

𝐽2
𝜕

𝜕𝜉
(𝛽11𝑢) +

𝜕

𝜕𝜂
(𝛽22𝑣)]

2
 +  

 1

2

1

𝐽2
[
𝜕

𝜕𝜉
(𝛽21𝑢) +

𝜕

𝜕𝜂
(𝛽22𝑢) +

𝜕

𝜕𝜉
(𝛽11𝑣) +

𝜕

𝜕𝜂
(𝛽12𝑣)]

2

}  

        −
2

3
𝜌𝑘

1

𝐽
[
𝜕

𝜕𝜉
(𝛽11𝑢) +

𝜕

𝜕𝜂
(𝛽12𝑢) +

𝜕

𝜕𝜉
(𝛽21𝑣) +

𝜕

𝜕𝜂
(𝛽22𝑣)]                (3.35)  

                                              

𝜀𝑤 =
2𝜇

𝜌
{
1

𝐽2
[
𝜕

𝜕𝜉
(𝛽11√𝐾) +

𝜕

𝜕𝜂
(𝛽12√𝐾)]

2
+

1

𝐽2
[
𝜕

𝜕𝜉
(𝛽21√𝐾) +

       
𝜕

𝜕𝜂
(𝛽22√𝐾)]

2

}                                                                                      (3.36)  
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Turbulent kinetic energy dissipation equation: 

1

𝐽
[
𝜕

𝜕𝜁
(𝜌𝑈𝑐𝜀) +

𝜕

𝜕𝜂
(𝜌𝑉𝑐𝜀)] =

1

𝐽

𝜕

𝜕𝜉
[
𝛤𝜀

𝐽
(𝑞11

𝜕𝜀

𝜕𝜉
− 𝑞12

𝜕𝜀

𝜕𝜂
)]  

+
1

𝐽

𝜕

𝜕𝜂
[
Γ𝜀

𝐽
(𝑞22

𝜕𝜀

𝜕𝜂
− 𝑞12

𝜕𝜀

𝜕𝜉
)] + (𝐶1 𝑓1 𝑃𝐾 − 𝜌 𝐶2 𝑓2 𝜀)

𝜀

𝑘
+ 𝜙𝜀         (3.37)  

   Where: 

𝜙𝜀 = 2𝜇𝑡
𝜇

𝜌
{
1

𝐽2
{
𝜕

𝜕𝜉
[
1

𝐽
(𝛽11

2 𝜕𝑢

𝜕𝜉
+ 𝛽11𝛽12

𝜕𝑢

𝜕𝜂
)] +

𝜕

𝜕𝜂
[
1

𝐽
(𝛽12𝛽11

𝜕𝑢

𝜕𝜉
+

𝛽12
2 𝜕𝑢

𝜕𝜂
)]}

2
+

1

𝐽2
{
𝜕

𝜕𝜉
[
1

𝐽
(𝛽21

2 𝜕𝑢

𝜕𝜉
+ 𝛽21𝛽22

𝜕𝑢

𝜕𝜂
)] +

𝜕

𝜕𝜂
[
1

𝐽
(𝛽22𝛽21

𝜕𝑢

𝜕𝜉
+

𝛽22
2 𝜕𝑢

𝜕𝜂
)]}

2
+

2

𝐽2
{
𝜕

𝜕𝜉
[
1

𝐽
(𝛽11𝛽21

𝜕𝑢

𝜕𝜉
+ 𝛽11𝛽22

𝜕𝑢

𝜕𝜂
)] +

𝜕

𝜕𝜂
[
1

𝐽
(𝛽12𝛽21

𝜕𝑢

𝜕𝜉
+

𝛽12𝛽21
𝜕𝑢

𝜕𝜂
)]}

2
+

1

𝐽2
{
𝜕

𝜕𝜉
[
1

𝐽
(𝛽11

2 𝜕𝑣

𝜕𝜉
+ 𝛽11𝛽12

𝜕𝑣

𝜕𝜂
)] +

𝜕

𝜕𝜂
[
1

𝐽
(𝛽12𝛽11

𝜕𝑣

𝜕𝜉
+

𝛽12
2 𝜕𝑣

𝜕𝜂
)]}

2
+

1

𝐽2
{
𝜕

𝜕𝜉
[
1

𝐽
(𝛽21

2 𝜕𝑣

𝜕𝜉
+ 𝛽21𝛽22

𝜕𝑣

𝜕𝜂
)] +

𝜕

𝜕𝜂
[
1

𝐽
(𝛽22𝛽21

𝜕𝑣

𝜕𝜉
+

𝛽22
2 𝜕𝑣

𝜕𝜂
)]}

2
+

2

𝐽2
{
𝜕

𝜕𝜉
[
1

𝐽
(𝛽11𝛽21

𝜕𝑣

𝜕𝜉
+ 𝛽11𝛽22

𝜕𝑣

𝜕𝜂
)] +

𝜕

𝜕𝜂
[
1

𝐽
(𝛽12𝛽21

𝜕𝑣

𝜕𝜉
+

𝛽12𝛽22
𝜕𝑣

𝜕𝜂
)]}

2

}                                                                                             (3.38)  

  

3.8 Discretization of Governing Equations 

In the respect of body-fitted coordinate system, the general form of 

governing equations and turbulence model can be written as follows[51]: 

 
1

𝐽
[
𝜕

𝜕𝜉
(𝜌𝜙𝑈𝑐) +

𝜕

𝜕𝜂
(𝜌𝜙𝑉𝑐)] =

1

𝐽

𝜕

𝜕𝜉
[
Γ𝜙

𝐽
(𝑞11

𝜕𝜙

𝜕𝜉
− 𝑞12

𝜕𝜙

𝜕𝜂
)]                            

                                                       +
1

𝐽

𝜕

𝜕𝜂
[
Γ𝜙

𝐽
(𝑞22

𝜕𝜙

𝜕𝜉
− 𝑞12

𝜕𝜙

𝜕𝜂
)] + 𝑏𝜙 + 𝑏𝑝

𝜙
              (3.39)  

Equation 3.39 is discretized utilizing the Finite Volume Method (FVM) 

on the collocated grid as shown in Figure 3.5. The parameters of equation 



41 
 

3.39 are defined in Table 3.1. The central scheme is utilized to discretize 

the diffusion terms while the convection terms can be discretized by using 

the second-order upwind scheme.   

 

 

  

Figure 3.5: Control volume employed for the discretization of the governing 

equations. 

 

Table 3.1: The parameters of general transport equation (Equation 3.39) 

Equations 𝝓 𝚪𝝓 𝒃𝝓 𝒃𝒑
𝝓

 

continuty 1 0 0 0 

x-momentum 𝑢 𝜇 + 𝜇𝑡 S𝑢 𝑏𝑝
𝑢 

y-momentum 𝑣  S𝑣 𝑏𝑝
𝑣 

Energy 𝑇 𝑘ƒ/𝐶𝑝 + 𝜇𝑡/𝑃𝑟𝑡 0 0 

Turbulence kinatic 

energy 
𝑘 μ + μt/σk Pk − ρε 0 

Energy dissipation 

rate 
𝜀 𝜇 + 𝜇𝑡/𝜎𝜀 (𝐶𝜀1𝑓𝜀1𝑃𝑘 − 𝜌𝐶𝜀2𝑓𝜀2𝜀)𝜀/𝑘 0 

 

∆𝜉 

𝛿𝜉 

∆𝜂 

𝛿𝜂

  

𝜂 

𝜉 
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The integration of the convective, diffusion, and source terms on a control 

volume of around node P are given in Appendix A in detail. So, gathering 

all of the transport equation terms for convection, diffusion and source are 

as follows:   

𝐴𝑃𝜙𝑃 = 𝐴𝐸𝜙𝐸 + 𝐴𝑊𝜙𝑊 + 𝐴𝑁𝜙𝑁 + 𝐴𝑆𝜙𝑆 + 𝑆𝜙                                 (3.40)  

In the above equation, it can also be written in the following form: 

𝐴𝑃𝜙𝑃 = ∑ 𝐴𝑛𝑏𝜙𝑛𝑏 + 𝑆𝜙𝑛𝑏                                                                       (3.41)  

Here, nb refers for the adjacent nodes (E, W, N and S) of a control volume. 

In the above equation, the source term  𝑆𝜙 consisting of the non-orthogonal 

grid diffusion terms 𝑆𝑑
𝜙

, non-pressure terms 𝑏𝜙, and pressure terms 𝑏𝑃
𝜙

 is 

described as below: 

𝑆𝜙  = 𝑆𝑑
𝜙
+ 𝑏𝜙 + 𝑏𝑃

𝜙
                                                                                  (3.42)  

The coefficients (𝐴𝐸 , 𝐴𝑊, 𝐴𝑁 ,  𝐴𝑆, and 𝐴𝑃) in equation 3.40 include the 

conductivity of diffusion (𝐷𝑒 , 𝐷𝑤,  𝐷𝑛, and 𝐷𝑠) and the flow rate (𝐹𝑒 ,

𝐹𝑤 ,  𝐹𝑛,  and 𝐹𝑠). So, these coefficients can be described as follows:  

𝐴𝐸 = 𝐷𝑒 +max[−𝐹𝑒 , 0]                                                                           (3.43)  

𝐴𝑊 = 𝐷𝑤 +max[𝐹𝑤, 0]                                                                            (3.44)  

𝐴𝑁 = 𝐷𝑛 +max[−𝐹𝑛, 0]                                                                           (3.45)  

𝐴𝑆 = 𝐷𝑠 +max[−𝐹𝑠 , 0]                                                                            (3.46)  

𝐴𝑃 = 𝐴𝐸 + 𝐴𝑊 + 𝐴𝑁 + 𝐴𝑆                                                                       (3.47)  

 

All source terms of governing equations are given in Appendix A. [52] 
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3.9 SIMPLE Algorithms 

Generally, if the pressure field is recognized, the velocity field can be 

determined by solving discretized momentum equations. So, the produced 

velocity field must be achieved both the momentum and continuity 

equations. Furthermore, the continuity equation, which does not expressly 

include pressure, can be utilized to calculate the pressure field, along with 

momentum equations. The pressure field can thus be obtained employing 

the SIMPLE algorithm through a coupling of velocity and pressure 

equations over organized non-orthogonal grid [53]. To clarify the 

algorithm, discretized momentum equations are written as: 

𝑢𝑝 = [
1

𝐴𝑃
∑ 𝐴𝑛𝑏

𝑢
𝑛𝑏 𝑢𝑛𝑏 + 𝑆𝑑

𝑢 + 𝑏𝑢] + 𝐵𝑃
𝑢(𝑝𝑒 − 𝑝𝑤) + 𝐶𝑃

𝑢(𝑝𝑛 − 𝑝𝑠)   

(3.48)  

 

𝑣𝑝 = [
1

𝐴𝑃
∑ 𝐴𝑛𝑏

𝑣
𝑛𝑏 𝑣𝑛𝑏 + 𝑆𝑑

𝑣 + 𝑏𝑣] + 𝐵𝑃
𝑣(𝑝𝑒 − 𝑝𝑤) + 𝐶𝑃

𝑣(𝑝𝑛 − 𝑝𝑠)    

(3.49) 

 

Here                

𝐵𝑝
𝑢 = −

1

𝐴𝑃
𝑢 (∆𝜂𝛽11)𝑝                                                                                   (3.50)                                                                                           

𝐶𝑝
𝑢 = −

1

𝐴𝑃
𝑢 (∆𝜉𝛽12)𝑝                                                                                   (3.51)                                                                                           

𝐵𝑝
𝑣 = −

1

𝐴𝑃
𝑣 (∆𝜂𝛽21)𝑝                                                                                   (3.52)                                                                                           

𝐶𝑝
𝑣 = −

1

𝐴𝑃
𝑣 (∆𝜉𝛽22)𝑝                                                                                   (3.53)                                                                                           

Where nb indicates the adjacent nodes (E,  W,  N and S) of a control 

volume. The initial pressure value 𝑝∗ is estimated in order to begin the 

SIMPLE algorithm calculation procedure. In Appendix A, the 

components of velocity 𝑢∗ and 𝑣∗ can be calculated through solving above 
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equations. The interpolation of velocity  is achieved on a collocated non-

orthogonal grid to determine the face velocities for a control volume as 

given in Appendix A. Moreover, the under- relaxation is employed  to 

reduce the dependent variables updating for each iteration. The under-

relaxation factor also can be inserted to the discretized equation as 

follows: 

𝐴𝑃
𝜙

𝛼𝜙
𝜙𝑃 = ∑ 𝐴𝑛𝑏

𝜙
𝜙𝑛𝑏 +𝑛𝑏 𝑆𝜙 +

1−𝛼𝜙

𝛼𝜙
𝐴𝑃
0𝜙𝑃

0                                               (3.54)  

 

Where,  𝛼𝜙  represents that the under-relaxation factor, and thus the 

equation 3.54 can be re-written as: 

𝐴𝑃
𝜙

𝛼𝜙
𝜙𝑃 = ∑ 𝐴𝑛𝑏

𝜙
𝜙𝑛𝑏 +𝑛𝑏 𝑆𝜙

𝑟                                                                      (3.55)  

 

where, 

𝑆𝜙
𝑟 = 𝑆𝜙 +

1−𝛼𝜙

𝛼𝜙
𝐴𝑃
0𝜙𝑃

0                                                                                (3.56)  

for the equation of pressure correction, the under-relaxation is explicitly 

applied as showns: 

𝑃𝑛𝑒𝑤 = 𝑃∗ + 𝛼𝑃 𝑃
’                                                                                    (3.57) 

where, 𝛼𝑃  refers to the under-relaxation factor for the pressure correction 

equation. So, 0.7 for energy and momentum equations, 0.3 for (k and ɛ) 

equations as well as 0.2 for pressure are the under-relaxation factors values 

employed in the present investigation. 
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3.10 Convergence Criteria 

Since iteratively solved discretized transport equations, there is the 

residual through two sequential iterations. For all variables, if the residual 

is less than the specified value, the iteration is stopped. Then for all 

variables (except pressure), the relative convergence criteria can be 

formulated as follows [54]: 

 

𝑅𝜙 = 
∑ |𝐴𝑃

𝜙
𝜙𝑃−∑ 𝐴𝑛𝑏

𝜙
𝜙𝑛𝑏−𝑆𝑢

𝜙
𝑛𝑏 |𝑛𝑜𝑑𝑒

∑ |𝐴𝑃
𝜙
𝜙𝑃|𝑛𝑜𝑑𝑒

                                                            (3.58)  

Where  𝑆𝑢
𝜙

 indicates that the source term. Considering the continuity 

equation, the mass imbalance on the control volume should be checked. 

Therefore, the criterion of convergence for a continuity equation is 

specified by: 

𝑅 = ∑ |𝑆𝑚|𝑛𝑜𝑑𝑒                                                                                            (3.59)  

So, 𝑆𝑚 refers that the imbalance of mass which is previously expressed in 

equation A.140 in Appendix A. The computation is finished if the sum of 

absolute residual (i.e., 𝑅𝜙) is less than (1 × 10−4) for each parameter 

across the computational field [55]. Finally, the solution procedure of CFD 

code in the current investigation is shown in Figure 3.6.  
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Figure 3.6: Solution procedure for CFD program in the present study.  
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3.11 Entropy Generation 

Generally, entropy generation is one of the parameters directly associated 

with the second law of the thermodynamics that must be investigated in a 

process with fluid flow and heat transfer in order that the design efficient 

systems. The entropy generation rate is utilized to measure irreversibility 

attached to flow friction, heat transfer as well as other non-idealities inside 

the system due to modern thermodynamics. Furthermore, the entropy 

generation in processes can be classified into three main categories which 

the heat transfer and momentum are the occurring simultaneously: 

✓ The entropy generation due to (conduction and convection) heat 

transfer, 

✓ The entropy generation due to (flow friction) viscous dissipation, 

and 

✓ The entropy generation due to (radiation) heat transfer. 

The entropy generation is attached to heat transfer and viscous dissipation 

influences only. While the entropy generation caused by radiation heat 

transfer is conceded due to low fluid and system temperatures [56]. Thus, 

the average entropy generations due to the heat transfer (average thermal 

entropy generation) and the viscous dissipation (average viscous entropy 

generation) for two dimensional can be defined as follows [57]: 

𝑆̇′′′𝑔𝑒𝑛,𝑡ℎ. =
𝑘ƒ

𝑇2
[(
𝜕𝑇

𝜕𝑥
)
2
+ (

𝜕𝑇

𝜕𝑦
)
2

]                                                              (3.60)  

𝑆̇′′′𝑔𝑒𝑛,𝑣𝑖. =
𝜇ƒ

𝑇
{2 [(

𝜕𝑢

𝜕𝑥
)
2
+ (

𝜕𝑣

𝜕𝑦
)
2

] + (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
2

}                              (3.61)  

Where 𝑆̇′′′𝑔𝑒𝑛,𝑡ℎ.  and   𝑆̇′′′𝑔𝑒𝑛,𝑣𝑖.  in the above equations represent the 

averages of thermal and viscous entropy generations, respectively. 

Therefore, the averages of the thermal and viscous entropy generations 

can be expressed as the dimensionless number by employing slot width 

and thermal conductivity as follows:  
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(𝑆̇′′′𝑔𝑒𝑛,𝑡ℎ)𝑊
= 𝑆̇′′′𝑔𝑒𝑛,𝑡ℎ. ×

 𝑊2

𝑘ƒ
                                                             (3.62)   

(𝑆̇′′′𝑔𝑒𝑛,𝑣𝑖)𝑊
= 𝑆̇′′′𝑔𝑒𝑛,𝑣𝑖. ×

 𝑊2

𝑘ƒ
                                                              (3.63)   

 

Here (𝑆̇′′′𝑔𝑒𝑛,𝑡ℎ)𝑊
  and   (𝑆̇′′′𝑔𝑒𝑛,𝑣𝑖)𝑊

  indicate that the dimensionless 

number of the averages of the thermal and viscous entropy generations, 

respectively. Thus, the average total entropy generation rate is the sum of 

the averages of the thermal and viscous entropy generations can be 

described as follows [56]: 

 

𝑆̇′′′𝑔𝑒𝑛,𝑡𝑜𝑡𝑎𝑙 = 𝑆̇
′′′
𝑔𝑒𝑛,𝑡ℎ. + 𝑆̇

′′′
𝑔𝑒𝑛,𝑣𝑖.                                                      (3.64)  

Substituting equations 3.60 and 3.61 in equation 3.64, gives:  

 

𝑆̇′′′𝑔𝑒𝑛,𝑡𝑜𝑡𝑎𝑙 =
𝑘ƒ

𝑇2
[(
𝜕𝑇

𝜕𝑥
)
2
+ (

𝜕𝑇

𝜕𝑦
)
2

] +  
𝜇ƒ

𝑇
{2 [(

𝜕𝑢

𝜕𝑥
)
2
+ (

𝜕𝑣

𝜕𝑦
)
2

] +

                         (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
2

}                                                                         (3.65)  

 

Furthermore, the dimensionless number of the average total entropy 

generation represents the sum of the dimensionless number of the averages 

of the thermal and viscous entropy generations can be given as follows: 

 (𝑆̇′′′𝑔𝑒𝑛,𝑡𝑜𝑡𝑎𝑙)𝑊
=  (𝑆̇′′′𝑔𝑒𝑛,𝑡ℎ.)𝑊

+  (𝑆̇′′′𝑔𝑒𝑛,𝑣𝑖.)𝑊
                             (3.66)  

 

Substituting equations 3.62 and 3.63 in equation 3.66, gives:  

 

(𝑆̇′′′𝑔𝑒𝑛,𝑡𝑜𝑡𝑎𝑙)𝑊
=
𝑘ƒ.𝑊

2

𝑇2
[(
𝜕𝑇

𝜕𝑥
)
2
+ (

𝜕𝑇

𝜕𝑦
)
2

]  

                              + 
𝜇ƒ.𝑊

2

𝑇
{2 [(

𝜕𝑢

𝜕𝑥
)
2
+ (

𝜕𝑣

𝜕𝑦
)
2

] + (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
2

}             (3.67)  
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In addition, the previous relationships for equations A.10 and A.11 in 

Appendix A are utilized to transform equation 3.67 from the physical 

field into the computational field as shown below: 

 

(𝑆̇′′′𝑔𝑒𝑛,𝑡𝑜𝑡𝑎𝑙)𝑊
=
𝑘ƒ.𝑊

2

𝑇2
[(𝛽11

𝜕𝑇

𝜕𝜉
+ 𝛽12

𝜕𝑇

𝜕𝜂
)
2
+ (𝛽21

𝜕𝑇

𝜕𝜉
+ 𝛽22

𝜕𝑇

𝜕𝜂
)
2

]  

                              +
𝜇ƒ.𝑊

2

𝑇
{2 [(𝛽11

𝜕𝑢

𝜕𝜉
+ 𝛽12

𝜕𝑢

𝜕𝜂
)
2
+ (𝛽21

𝜕𝑣

𝜕𝜉
+ 𝛽22

𝜕𝑣

𝜕𝜂
)
2

]  

                              +((𝛽21
𝜕𝑢

𝜕𝜉
+ 𝛽22

𝜕𝑢

𝜕𝜂
) + (𝛽11

𝜕𝑣

𝜕𝜉
+ 𝛽12

𝜕𝑣

𝜕𝜂
))

2

}       (3.68)  

 

3.12 Thermo-physical Properties of Working Fluid 

The properties of water at the temperature of 25 ºC can be given in this 

investigation as follows [58]. 

 

Table 3.2: Thermo-physical Properties of water at 25 ºC. 

𝝆ƒ  (𝒌𝒈 𝒎𝟑⁄ ) 𝝁ƒ  (𝒌𝒈 𝒎. 𝒔)⁄  𝑪𝒑,ƒ (𝑱 𝒌𝒈.𝑲)⁄  𝒌ƒ  (𝑾 𝒎.𝑲)⁄  

997.9 0.001 4144 0.6094 
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3.13 Boundary Conditions 

Suitable boundary conditions of all relevant variables should be defined 

on each of the boundaries for the computational field in an attempt to solve 

the discretized governing equations. Although the final form for 

governing equations were obtained in term of the body-fitted coordinates 

system. In the same converted coordinate, the boundary conditions will be 

applied. The boundary conditions of the current investigation are the one 

inlet, two outlets, target surface (bottom wall), and the top wall. These 

boundary conditions are described in details as shown follows: 

 

❖ Inlet boundary 

In this boundary (Inlet of slot jet region), the distributions of the 

uniform temperature and the uniform velocity are usually assumed as 

follows: 

𝑣 = 𝑣𝑖𝑛, 𝑢 = 𝑤 = 0, and  𝑇 = 𝑇𝑖𝑛 = 298 𝐾                                  (3.69)                                                                                                                                                                                                                                                                              

Furthermore, the turbulent kinetic energy (𝑘𝑖𝑛) and its dissipation rate 

(𝜀𝑖𝑛) are determined from empirical correlation depending on the 

velocity at inlet and the turbulence intensity value (𝐼𝑜 ) and hence the 

inlet condition can be given as [59]: 

𝑘 = 𝑘𝑖𝑛 =
2

3
(𝐼𝑜 . 𝑣𝑖𝑛)

2                                                                         (3.70)  

 𝜀 = 𝜀𝑖𝑛 =
𝐶𝜇
3 4⁄
𝑘𝑖𝑛
3 2⁄

(0.07𝐷ℎ)
                                                                                (3.71)  

Here (𝐶𝜇 = 0.09) is given in equation 3.15. In present investigation, 

the turbulence intensity value (𝐼𝑜 ) at the inlet of slot jet region is 0.05 

[60].     
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❖ Outlet boundary 

Two outlets of the channel, the flow leaves the computational field in 

the left and right directions. The suitable location of the outlet 

boundary at the zone of fully developed occurs in the flow direction. 

Moreover, in a direction normal for the outlet boundary, the gradients 

for all variables are expressed by:  

𝜕𝑢

𝜕𝜉
= 0 ,

𝜕𝑣

𝜕𝜉
= 0 ,

𝜕𝑇

𝜕𝜉
= 0 ,

𝜕𝑘

𝜕𝜉
= 0 , and 

𝜕𝜀

𝜕𝜉
= 0                                 (3.72)  

 

❖ Bottom wall and top walls boundaries  

The condition of the uniform heat flux is applied only along the target 

surface (bottom wall) of the channel. The no-slip condition for 

velocities can be applied along the target surface (bottom wall) and top 

walls (on the left and right of the slot jet) of the channel. Also, the 

turbulent kinetic energy (𝑘) and its dissipation rate (𝜀) equal to zero 

[47, 49], while the top walls are assumed to be adiabatic as follows: 

𝑢 = 0 , 𝑣 = 0 , 𝑘 = 0 , and 𝜀 = 0                                                      (3.73) 

𝜕𝑇

𝜕𝜂
|
𝑤
=
𝑞𝑤

𝑘ƒ
 ,         (along target surface)                                          (3.74)  

𝜕𝑇

𝜕𝜂
|
𝑤
= 0 ,             (along top walls)                                                  (3.75)  

 

Here, 𝑤 indicates that the normal for the wall. Also, the heat flux (𝑞𝑤) 

equal to 8000 𝑊 𝑚2⁄  that applied to target surface in the present 

investigation. The normal derivatives for temperature at wall in equations 

3.74 and 3.75 can be obtained by:  

 
𝜕𝑇

𝜕𝜂
|
𝑤
=

1

𝐽√𝑞22
[𝑞22

𝜕𝑇

𝜕𝜂
− 𝑞12

𝜕𝑇

𝜕𝜉
]                                                                  (3.76)  
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Where 𝐽, 𝑞22, and 𝑞12 are given in Appendix A in equations A.9, A.23, 

and A.24, respectively. In addition, the pressure value at the outlet 

boundary (left and right of the channel) equals zero, while the values of 

pressure at the inlet and walls can be found by linear extrapolation of the 

interior points for the pressure. Furthermore, the boundary conditions are 

shown in Figure 3.7 as follows:  

 

 

 

 

 

 

 

 

 

 

Figure 3.7: The boundary conditions of the present study. 

 

 

3.14 Numerical Calculations  

3.14.1  Local and Average Nusselt Numbers 

After solving the discretized governing equations, the fields of the 

temperature and flow that are then utilized to compute the local and 

average Nusselt number are obtained. Thus, the local Nusselt number can 

be given as [61]: 

 

𝑁𝑢𝜉 =
𝐷ℎ

𝑘ƒ

𝑞𝑤

(𝑇(𝜉)𝑤−𝑇(𝜉)𝑏)
                                                                              (3.77)  

𝜕𝑢

𝜕𝜉
= 0 

𝜕𝑇

𝜕𝜉
= 0 

𝜕ɛ

𝜕𝜉
= 0 

𝜕𝑣

𝜕𝜉
= 0 

𝜕𝑘

𝜕𝜉
= 0 

𝜕𝑢

𝜕𝜉
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𝜕𝑇

𝜕𝜉
= 0 

𝜕ɛ

𝜕𝜉
= 0 

𝜕𝑣

𝜕𝜉
= 0 

𝜕𝑘

𝜕𝜉
= 0 

Outlet flow Outlet flow 

Inlet 

flow 

 

𝑢 = 0,   𝑣 = 𝑣𝑖𝑛 , T=Tin, 

𝑘 = 𝑘𝑖𝑛, and 𝜀 = 𝜀𝑖𝑛 

𝑢 = 0,   𝑣 = 0,   𝑞 = 𝑞𝑤 
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Here, 𝑇(𝜉)𝑤 indicates that the temperature distribution only along the 

target surface (bottom wall) and  𝑇(𝜉)𝑏 represents that the bulk fluid 

temperature that can be computed as follows [61]:  

 

𝑇(𝜉)𝑏 = 
    ∬𝜌ƒ 𝑢 𝐶𝑝 𝑇 𝑑𝐴     

𝐴                        

  
    ∬𝜌ƒ 𝑢 𝐶𝑝 𝑑𝐴  

𝐴                        

                                                                              (3.78)  

 

The average Nusselt number is obtained by:    

𝑁𝑢𝑎𝑣 =
1

𝐿
∫ 𝑁𝑢𝜉  𝑑𝜉    
𝐿

0
                                                                               (3.79)  

Moreover, the percentage of average Nusselt number enhancement can be 

expressed as below: 

𝑁𝑢𝑒𝑛ℎ(%) = [
𝑁𝑢𝑎𝑣,𝑟−𝑁𝑢𝑎𝑣,𝑠

𝑁𝑢𝑎𝑣,𝑠
] × 100                                                         (3.80)  

 

3.14.2  Thermal-Hydraulic Performance Factor 

It is necessary to show how the enhancement techniques will affect the 

thermal-hydraulic performance for jet impingement. Moreover, the 

performance evaluation criteria PEC is employed to assess the 

enhancement techniques which are utilized in the present investigation. It 

can be expressed as follows [59]: 

𝑃𝐸𝐶 =
(𝑁𝑢𝑎𝑣,𝑟 𝑁𝑢𝑎𝑣,𝑠⁄ )

(𝑓𝑟 𝑓𝑠⁄ )1 3⁄
                                                                                 (3.81)  

Where, (𝑓)  indicates that the Darcy friction factor in equation 3.81 which 

can be given as [62]: 

𝑓 = ∆𝑝
𝐷ℎ

𝐿

2

𝜌ƒ 𝑢
2
                                                                                             (3.82)  

In above equation, ∆𝑝 is the pressure drop and thus it can be defined as : 

∆𝑝 = 𝑝𝑖𝑛 − 𝑝𝑜𝑢𝑡                                                                                          (3.83)
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4 CHAPTER FOUR:  

EXPERIMENTAL SET-UP 

 

 

4.1 Overview 

In this chapter, the experimental set-up and the operational procedure 

utilized to perform the experimental work are presented. This chapter 

offers the description of the experimental instruments as well as the test 

sections utilized in the current investigation. The procedure of the data 

collection is described. This is also followed by uncertainties calculation 

in the experimental measurements. 

 

4.2 Experimental Set-up 

In order to validate the current numerical results, experiments are 

conducted to measure convective heat transfer and pressure drop in the jet 

impingement employing water, in according to those for a numerical 

investigation. The experimental set-up mainly consists of the water tank, 

pipes, water pump, control valves, water flow meter, test section, 

thermocouples type-K, electrical heater, AC power regulator, digital 

multimeter, thermostat, and digital data logger as depicted in Figure 4.1 

and Appendix B. in addition, the schematic diagram of the experimental 

set-up as illustrated in Figure 4.2. 
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Figure 4.1: photograph of the experimental set-up. 
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 Figure 4.2: Schematic diagram of the experimental set-up. 

 

 

4.2.1 Test Sections 

In this part, the test section involves the lower and the upper surfaces and 

two side walls. The lower (smooth and ribbed) target surfaces for the test 

section were designed by using (Soildwork Program) and fabricated from 

an aluminum plate with dimensions of 122 mm long (110 mm heated part 

and 12 mm flanges thickness), 35 mm depth (30 mm heated part and 5 

mm axial groove side walls), and 6 mm thick. Therefore, the ribs were 

created by using (CNC) machine as presented in Appendix B. Also, the 

dimensions of ribs of 10 mm length (L), 30 mm depth (Z), and 2 mm 

height (a). The upper surface and side walls of the test section were made 

of acrylic (sheet), 6 mm thick, to minimize the heat losses to the 

surrounding. The side walls have two axial grooves with deep of 2.5 mm 
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(over the length of the side wall) to avoid leakage of the working fluid 

(water) from the test section. The target surface and the upper surface of 

the test section were installed in the axial grooves formed in the side walls 

employing thermal epoxy. The lower surface was heated utilizing an 

electrical heater while the others were unheated (insulated) walls in the 

experiments. Three various shapes of ribs such as wing ribs, flat ribs, and 

oval ribs as well as the smooth surface were fabricated and tested in the 

present investigation, see Figure 4.3.  

 

 

 
Figure 4.3: Different shapes of ribs for test section, (a) wing ribs (b) flat ribs, (c) oval 

ribs, and (d) smooth target surface. 
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On the other hand, the fixing method of the impinging target surface in the 

axial grooves for the acrylic sheets is shown in Figure 4.4.  

 

Figure 4.4: Front view of test section after installation. 

 

 

4.2.2 Inlet Slot and Exit Sections  

In order to create suitable conditions of the inlet flow and the outlet flows 

for the test section, three straight (inlet slot and two exits) sections have 

been used. The inlet slot section was located in the middle of the test 

section while the two exits were located at the right and left of the test 

section. These sections were made with a thickness of 6 mm from acrylic 

sheets. The inlet slot section has a vertical length of 250 mm and a cross-

sectional area of (30 × 10 mm) (Z × W) while the axial length of two exits 

sections was 150 mm and the cross-sectional area of two exits was (30 × 

10 mm) (Z × H). The two exit sections were fixed at the ends of the test 

section using the flanges, which were made of acrylic sheets of 6 mm 

thickness and it was installed on these sections utilizing thermal epoxy. 

However, exit sections were connected directly to the test section 

employing these flanges with fastening equipment; bolts and nuts, as 

shown in Figure 4.5 and Appendix B. Therefore, it is easy to change the 

Impinging Target Plate 

Acrylic Flange 
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test section with other geometric shapes. Four different shapes including 

the smooth surface shape were tested. 

 

Figure 4.5: Front and top views for test section that connected with exit sections. 

 

In order to avoid leakage of the working fluid from these junctions, a thin 

layer of clear (EASYSEAL EZ 1200) silicone sealant (gasket) was applied 

at the faces of the flanges. Also, all sections (test section, inlet, and exit 

sections) were fabricated by CNC machine as presented in Appendix B. 

 

4.2.3 Thermocouples  

 The thermocouples (type-K) with 1 mm diameter of the probes were 

employed, which is considered the most common thermocouple type, in 

order to measure the temperatures of the bulk base fluid at the inlet slot 

and outlets of the test section and the surface temperatures of the target  

surface. Moreover, the temperature of the inlet bulk working fluid (water) 

was measured using two thermocouples inserted in the inlet slot-jet 

section at a distance of 100 and 200 mm, respectively. While, the other 

four thermocouples were that inserted into the two exit sections (two 
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Exit section Exit section 
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view 
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thermocouples were inserted in the left exit section and the other two 

thermocouples were inserted in the right exit section) at distance between 

two thermocouples of 30 mm for two exit sections, to measure the working 

fluid outlet temperatures. On the other hand, the five thermocouples were 

installed on the back face of the impingement target surface (lower 

surface) of the test section to measure the temperature distribution on the 

target surface. The thermocouples were inserted into holes that drilled 

with a diameter of 2 mm and the depth of holes equal 4 mm on the back 

side of the lower surface (on the aluminum plate) and then installed 

utilizing an epoxy. The holes were distributed evenly and centered on the 

back face of the impingement target surface as depicted in Figure 4.6. 

These holes were located at a distance of 8, 30.5, 53, 75.5, and 98 mm. 

Furthermore, the points of temperature calibration for a single 

thermocouple were identified to be (0, 30, 60, and 90 ºC). The single 

thermocouple can be considered as the reference thermocouple while the 

other thermocouples are calibrated based on the reference thermocouple. 

The calibration results were displayed in Figure 4.7. 

 

Figure 4.6: Bottom view for test section showing holes of thermocouples. 

 

Thermocouples holes 

Side wall 
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Figure 4.7: Calibration of thermocouple. 

 

 

4.2.4 Electrical Heater and Power Regulator 

To heat the impinging target surface of the test section, an electrical heater 

plate was attached to the back side of this surface. The electrical heater 

dimensions were 26 mm width, 106 mm length, and 4 mm thickness. The 

electrical heater was designed on the basis of the required power in the 

experimental work, load voltage (0-220 V), and the power (320 Watt). The 

electric heater has five holes with a diameter of 2 mm, which were 

employed to insert the thermocouples during holes as illustrated in Figure 

4.8. However, the heater was jointed to the AC power regulator (Variac 

AC) unit which was utilized to control the current and input voltage to the 

heater. The Variac AC was connected with the stabilizer to maintain the 

constant voltage to be generated by the electrical heater. Also, the test 

section was surrounded by three layers of fiber glass insulation with a 
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thickness of 30 mm, in order to avoid the heat transfer from the test section 

to the outside environment, see Appendix B. 

 

 

Figure 4.8: Installation of test section. 

 

 

4.2.5 Water Pump, PPR Pipes,  and Water Tank 

In order to push the working fluid into the test section, a water pump 

(15WBX-15), the maximum flow rate of (26 LPM), a maximum head of 

15m, and (0.15 PH, 0.6 A, 220-240 V, and 50 HZ) was used. The water 

pump was connected to the water tank and the test section by using plastic 

hollow pipes made of (Polypropylene Random Copolymer) that do not 

allow heat transfer into the environment. The water tank was designed 

with dimensions (250 × 250 × 400 mm) and a capacity of 25 liters. 

Moreover, three valves were used; after and before the water pump and on 

the bypass line, as shown in Figure 4.1. The amount of the water flow is 

controlled by the control valve after the pumped as well as the bypass 

valve. In experiments, the working fluid temperature was 25 ºC at the test 

section inlet, as illustrated in Appendix B. 

Thermocouple Heater  Heater wires 
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4.2.6 Heat Exchanger 

A heat exchanger with dimensions of (450 × 450 mm) was used to cool 

the working fluid. The upper part of the radiator contains an inlet through 

which the working fluid exits of the test section and passes to be cooled, 

and pushed from the outlet of the lower part connected to the water tank 

from the upper side. The fan consists of four blades that draw air from the 

surrounding and push it towards the radiator for the purpose of cooling the 

working fluid inside the radiator. It has been installed on the radiator using 

fastening equipment and separated by dampers to prevent vibration from 

the fan, as described in Appendix B. 

 

4.3 Measurement Devices 

To evaluate the performance of the jet impingement, various parameters 

such as the water flow rate, temperature of (inlet, outlet, and impinging 

target surface) for test sections, and pressure drop were measure.  

 

4.3.1 Flowmeter and Flow Sensor 

The water flow meter (LZM-15T) was fixed between the water pump and 

the inlet of the slot-jet section to determine the water flow rate. The water 

flow rate range of (2-18 LPM) with an accuracy of ±5.0% FS. To calibrate 

the water flow meter, the method of stopwatch and the laboratory glass 

beaker for determining the fluid flow rate was employed. In addition, a 

digital water flow sensor (YF-S201), the ranged (1-30 LPM), was placed 

between the final exit sections resulting from the combination of the two 

exit sections with the radiator.  The flow meter and flow sensor of the 

water used in this study are presented in Appendix B. 
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4.3.2 Manometer and Pressure Sensor 

The tube manometer was attached to two pressure taps installed on the 

inlet and outlet sections in order to measure the pressure drop. Also, the 

flow pressure sensor was created and connected to the (LCD) display 

screen using the Arduino to read the inlet and exit pressures. The pressure 

values resulting from the pressure sensor were not adopted due to the 

instability in the results and replaced by the tube manometer method.  The 

pressure sensor and tube manometer have been displayed in Appendix B.  

 

4.3.3 Data Logger 

Generally, all thermocouples mounted on the impinging target surface, 

inlet slot section, and two exit sections for the test section were linked to 

48-channels digital data logger (KH448G-U-NN Paperless Recorder) to 

measure the temperatures of bulk fluid and the target surface. The digital 

data logger is illustrated in Appendix B.  

 

4.3.4 Thermostat 

The temperature controller (thermostat) was connected with an accuracy 

of (0.1 ºC) to the fan, and the thermocouple in the thermostat was linked 

to the water tank for the purpose of controlling the inlet temperature to the 

test section. When the temperature reaches more than 25 ºC, the thermostat 

will connect the electrical circuit to run the fan. Also, the thermostat was 

calibrated with the reference thermocouple. The thermostat is illustrated 

in Appendix B. 

 

4.3.5 Multimeter 

 A digital multimeter (PZEM-061) has been joined to the electrical heater 

circuit for measuring voltage and current that delivered to the electrical 



65 
 

heater. This device operates under a voltage range (AC 80 to 260 V), 

current (0 to 100 A), and frequency (50 to 60 Hz). It has been calibrated 

in the electrical engineering department. The digital multimeter is 

displayed in Appendix B. 

 

4.4 Experimental Procedure  

For the purpose of conducting practical experiments, the following steps 

were followed: 

✓ The tank container was filled with the primary liquid (water), then 

it was pumped by the water pump attached at the bottom of the tank 

to the flowmeter.  

✓ The required flow rate was controlled through the control valve 

installed under the flowmeter to the test section. Therefore, the 

working fluid was discharged through the two exit sections and then 

collected in one outlet.  

✓ The working fluid coming out from the test section was discharged 

into the radiator for cooling by a fan connected to the thermostat 

when the temperature of the water tank reaches higher than (25 ºC) 

to obtain the required temperature.  

✓ Also, the cold water was stored in the tank container and returned 

pumping to the test section.  

✓ After the flow was stabilized, the electric heater is turned on, set it 

to the desired heat flux using a digital multimeter waited for a time 

period (one hour) for the temperature values displayed by the data 

logger to stabilize, which displays the temperatures of the 

impingement target surface, inlet jet and exit for the test section. 
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✓ Additionally, the pressure drop values were taken by measuring the 

difference between the inlet and exit pressures (head) in the tube 

manometer. 

✓ This process was repeated periodically for a whole range of flow 

rates (i.e., jet Reynolds number of 3000, 4000, 5000, 6000, 7000, 

and 8000). 

✓ In addition, the experimental work was used different shapes of test 

sections such as smooth target surface, wing, oval and flat ribs. 

 

4.5 Data Reduction 

The average Nusselt number, friction factor, and performance evaluation 

criteria of the ribs shapes can be measured based on collected 

experimental data such as the temperature of bulk fluid, target plate 

temperatures, flow rate, pressure drop, current, and voltage. On the other 

hand, the heat provided to the electrical heater is expressed by: 

𝑄ℎ𝑒𝑎𝑡𝑒𝑟 = 𝐼 .  𝑉                                                                                               (4.1)  

here, (I) and (V) indicate the current and voltage, respectively. Further, the 

heat received by the working fluid from the test section is expressed as 

follows [63]:                                                                                                 

𝑄𝑓 = 𝑚̇ƒ 𝐶𝑝,ƒ (𝑇𝑏,𝑜 − 𝑇𝑏,𝑖𝑛)                                                                          (4.2)  

where 𝑚̇ƒ is the mass flow rate of working fluid, 𝐶𝑝,𝑓 is the specific heat 

of working fluid and 𝑇𝑏,𝑜 and  𝑇𝑏,𝑖𝑛 represent the mean temperatures of 

bulk working fluid at outlet and inlet jet for test section, respectively. 

However, the average heat transfer coefficient is given as follows [63]:   

ℎ𝑎𝑣 =
𝑄ƒ

𝐴𝑠(𝑇𝑤,𝑎𝑣−𝑇𝑏,𝑎𝑣)
                                                                                      (4.3)  
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here, 𝐴𝑠 is the area of the impingement target surface, 𝑇𝑤,𝑎𝑣  is the mean 

wall temperature and 𝑇𝑏,𝑎𝑣 the mean bulk working fluid temperature. 

Hence, the average Nusselt number can be determined as follows [63, 64]: 

𝑁𝑢𝑎𝑣 =
ℎ𝑎𝑣 𝐷ℎ

𝑘ƒ
                                                                                                (4.4)  

where, 𝑘ƒ is the thermal conductivity of working fluid, 𝐷ℎ is the hydraulic 

diameter of the slot jet width which can be expressed as follows: 

𝐷ℎ = 𝑊                                                                                                            (4.5)  
 

From equations (4.1) and (4.2), the heat loss out of thermal insulation can 

be given as follows: 

𝑄𝑙𝑜𝑠𝑠 = 𝑄ℎ𝑒𝑎𝑡𝑒𝑟 − 𝑄ƒ                                                                                    (4.6)  

Hence, the error of heat balance, which is computed as: 

 (
𝑄𝑙𝑜𝑠𝑠

𝑄ℎ𝑒𝑎𝑡𝑒𝑟
) × 100%                                                                                         (4.7)  

The friction factor (𝑓) can be calculated as follows [65]: 

𝑓 =  
2𝐷ℎ 𝐴𝑐

2 ∆𝑝 𝜌ƒ 

𝐿 𝑚̇2
                                                                                             (4.8)  

𝑚̇ = 𝜌ƒ .  𝑣𝑖𝑛 .  𝐴𝑐                                                                                             (4.9) 

Furthermore, the jet Reynolds number can be expressed as follows: 

𝑅𝑒 =
𝑚̇ 𝐷ℎ

𝜇ƒ 𝐴𝑐
                                                                                                     (4.10) 

where, 𝜌ƒ is the density of working fluid, 𝑚̇ is the mass flow rate which is 

obtained from the flowmeter, and 𝜇ƒ is the viscosity of working fluid.        

𝐴𝑐 is the cross-section area of the slot jet which is given as: 

𝐴𝑐 = 𝑊 .  𝑍                                                                                                   (4.11) 
                                                                                                                                                                                                                                                                                 

Here, 𝑊 is the width of slot jet and 𝑍 is the depth of channel. 
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4.6 Uncertainty Analysis 

In the present investigation, the experimental uncertainties of the key 

parameters such as jet Reynolds number, friction factor, and average 

Nusselt number were calculated according to the Kline and McClintock 

method [66]. For example, given the key parameters, R, as follows: 

𝑅 = 𝑅(𝑋1,  𝑋2,  𝑋3, ⋯⋯⋯ , 𝑋𝑛)                                                               (4.12)  

Here, 𝑋1,  𝑋2,  𝑋3 and  𝑋𝑛 are the independent measured parameters. Thus, 

the uncertainty of 𝑅 is computed as below: 

𝑈𝑅 = ±√(
𝜕𝑅

𝜕𝑋1
 𝑈𝑋1)

2
+ (

𝜕𝑅

𝜕𝑋2
 𝑈𝑋2)

2
+ (

𝜕𝑅

𝜕𝑋3
 𝑈𝑋3)

2
+⋯⋯+ (

𝜕𝑅

𝜕𝑋𝑛
 𝑈𝑋𝑛)

2
   

                                                                                                                        (4.13) 

Where,  𝑈𝑋1 , 𝑈𝑋2 , 𝑈𝑋3 , ⋯⋯ ,𝑈𝑋𝑛 are the independent parameters 

uncertainties. Also, the partial derivatives 
𝜕𝑅

𝜕𝑋1
,
𝜕𝑅

𝜕𝑋1
,
𝜕𝑅

𝜕𝑋1
, ⋯⋯ ,

𝜕𝑅

𝜕𝑋𝑛
  are 

computed from equation 4.12  

Furthermore, the uncertainty in measurements was computed for the wing 

ribs with the highest jet Reynolds number of (Re=8000). The procedure of 

sample calculations for the key parameter's uncertainty is illustrated in 

Appendix C. It was also found that the uncertainties in jet Reynolds 

number (𝑅𝑒) and friction factor (𝑓), as well as average Nusselt number 

(𝑁𝑢𝑎𝑣), were within  ± 5.20%, ± 10.808%, and ± 8.427%, respectively. 
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5 CHAPTER FIVE:  

RESULTS AND DISCUSSION  

 

 

5.1 Overview 

This chapter introduces the experimental and numerical results achieved 

in the current investigation. The first section in this chapter focuses on the 

grid independence test and then on the validation of the numerical solution 

given in chapter three. Furthermore, the comparison of the  experimental 

data with the numerical results is displayed. Moreover, the influences of 

various parameters such as jet Reynolds number, ribs heights, ribs 

locations,  and ribs shapes on heat transfer and flow characteristics have 

been displayed and studied in this chapter. Also, the results of the local 

Nusselt number and the contours are displayed in the right half domain 

because the physical domain is symmetric around the Y-axis. 

 

5.2 Grid Independence Test 

Generally, the grid resolution determines the accuracy of the numerical 

results. In order to test the mesh independence for the current 

investigation, five various mesh sizes which are 361 × 51, 461 × 61,

561 × 71, 661 × 81, and  761 × 101 have been selected. The average 

Nusselt number at the impinging target surface and the average friction 

factor for different jet Reynolds number at a = 2 mm and d = 20 mm 

using flat ribs are illustrated in Figure 5.1 and 5.2, respectively. It was 

found that the mesh size of 661 × 81 (i.e., 661 grid nodes in the X-

direction and 81 grid nodes in the Y-direction) can give the grid 

independence results. 
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Figure 5.1: Average Nusselt number with jet Reynolds number for various mesh 

sizes at a=2 mm and d=20 mm. 

 

 

Figure 5.2: Friction factor with jet Reynolds number for various mesh sizes at a=2 

mm and d=20 mm. 
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5.3 Code Validation 

Generally, several comparisons with various previous investigations have 

been carried out in order to check the accuracy of the CFD code developed 

in the present investigation. In this section, a first comparison has been 

presented between the current study and the numerical study of Manca et 

al. [15]. Figure 5.3 shows the comparison of the average Nusselt number 

of a two-dimension confined impinging slot-jet for a previous numerical 

investigation with the present results. In their investigation, it has been 

assumed that the smooth impinging target surface kept at the jet Reynolds 

which; varied between 5000 and 9000 at a constant wall temperature of 

343 K, inlet jet temperature of 293 K, slot width of 6.2 mm, channel height 

of 24.8 mm and the non-dimensional jet-to-target surface spacing of 4. The 

working fluid was water. It was noted that good results have been 

achieved. Also, the deviation between these results was 6.5%. 

 

Figure 5.3: The comparison of the average Nusselt number for present study with 

numerical investigation of Manca et al. [15]. 

Furthermore, the local Nusselt number for the single-slot impinging 

nozzle from stagnation point to the channel exit has been presented and 
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compared with a numerical investigation of Sharif and Banerjee [20]. 

Figure 5.4 illustrates the variation of the local Nusselt number at jet 

Reynolds number of 5000, channel height of 24.8 mm, slot nozzle width 

of 6.2 mm, and nozzle to target spacing of 6. They assumed that the inlet 

temperature of nozzle was 373 K, impinging target plate under constant 

temperature of 338 K, and utilized air as the working fluid. It is found that 

the results are in a good agreement. 

Moreover, the average friction factor and average Nusselt number at the 

stationary impinging target surface of the impinging confined slot jet have 

been calculated and compared with the numerical results of  Buonomo et 

al. [23]. Figure 5.5 and 5.6 display the friction factor and the average 

Nusselt number, respectively at the jet-to-target plate spacing of 6 for jet 

Reynolds numbers between 5500 and 8500. They assumed that the target 

surface under constant temperature of 338 K and the water as a working 

fluid. It found that these results are in a good correspondence. 

 

 

Figure 5.4: The comparison of the local Nusselt number for present study with the 

numerical investigation of Sharif and Banerjee [20]. 
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Figure 5.5: The comparison of the friction factor for present study                         

with the numerical investigation of Buonomo et al. [23]. 

 

Figure 5.6: The comparison of the average Nusselt number for present study with the 

numerical investigation of Buonomo et al. [23]. 
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(8000  𝑊 𝑚2⁄ ), and the fluid inlet temperature of 298 K. The results were 

obtained at Reynolds number of 5500, non-dimensional wave amplitude 

of 0.3, and non-dimensional wavelength range of 1, 2, and 3 as well as the 

water was employed as a working fluid. It was found that the comparison 

between the present results and the previous results has good consistency 

as shown in Figure 5.7. Concerning the average total entropy generation, 

there was a good concord between these investigations.  

 

Figure 5.7: The comparison of the average total entropy generation for                           

present study with the numerical investigation of Rashidi et al. [57]. 

 

Also, the local Nusselt number of the confined air slot-jet impinging from 

the impinging point into the end of the target surface was determined and 

compared with the experimental results of Cadek [67] as well as Gardon 

and Akfirat [68]. Figure 5.8 shows the local Nusselt number with non-

dimensional half domain to slot width at jet Reynolds number of 11,000, 

jet-to-target surface spacing of 6, flat target plate temperature of 338 K, 

the air fluid inlet slot-jet temperature of 373 K, and jet width of 6.2 mm. 

Regarding those comparisons, it was reported that the results have a good 

consistency. 
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Figure 5.8: The comparison of the local Nusselt number for present study with the 

numerical investigation of Cadek [67], and Gardon and Akfirat [68]. 
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the target surface increase and hence increase the heat transfer rate. 

Furthermore, the wing ribs have the highest average Nusselt number for a 

given jet Reynolds number followed by the oval ribs and flat ribs due to 

the big size of re-circulation regions that grow in the vicinity between the 

upper wall and the lower target surface and hence improve the fluid 

mixing. Moreover, the smooth target surface (without ribs) has the lowest 

Nusselt number as compared to the using ribs due to the poor fluid mixing. 

It is also found that the average deviation between the current numerical 

and experimental result is around 9.12% 

 

 

Figure 5.9: Average Nusselt number versus jet Reynolds number for various shapes 

of ribs at a=2 mm and d=10 mm. 

 

Figure 5.10 shows the comparison between the pressure drop obtained 

from experimental data with the numerical results. As expected, the 

pressure drop obtained numerically and experimentally increases with jet 
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followed by the oval ribs and flat ribs due to the high velocity gradient at 

the impinging target surface particularly in the ribs zones, as well as the 

influence of recirculation zones that created at the confined upper surface 

and the target surface. The smooth impinging target surface (without ribs) 

gives minimum pressure drop, as predicted. Furthermore, the average 

deviation between the experimental data and numerical results was about 

11.14%. 

 

 

Figure 5.10: Pressure drop versus jet Reynolds number for various shapes of ribs at 

a=2 mm and d=10 mm. 

 

On the other hand, the average Nusselt number enhancement was 

calculated and compared with the experimental results of the current study 

for different geometries of ribs as shown in Figure 5.11. It was found that 

the wing ribs have the highest average Nusselt number enhancement 

followed by the oval and the flat ribs. Also, the average deviation between 

numerical results and experimental data for all geometries of ribs was 

about 8.24%. 
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Figure 5.11: Average Nusselt number enhancement vs. jet Reynolds number for 

various shapes of ribs at a=2 mm and d=10 mm. 

 

Figure 5.12 depicts the variation of the performance evaluation criteria 

versus jet Reynolds number with various ribs shapes. It is found that the 

wing ribs have the best of the performance evaluation criteria (PEC) 

followed by oval ribs and flat ribs at jet Reynolds number less than 7500. 

In addition, the mean deviation between the experimental data and 

numerical results for all shapes of ribs on the impinging target surface was 

3.98 %. 
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Figure 5.12: Performance evaluation criteria versus jet Reynolds number for various 

shapes of ribs at a=2 mm and d=10 mm. 
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secondary clockwise vortex grows downstream the rib with all shapes 

close to the impinging target surface. It is observed that as the jet Reynolds 

number rises from 3000 to 7000, the intensity and size of initial and 

secondary vortices rise. For different jet Reynolds numbers, the other 

counter-clockwise vortex occurs on the impingement target surface near 

the stagnation point. The development of these vortices leads to a decrease 

in the flow produced by the secondary re-circulation zone creating the 

gradient of reverse pressure in the flow domain. 

Figure 5.15 illustrates the temperature contours for the slot jet 

impingement at various jet Reynolds numbers of (3000, 5000, and 7000) 

for the wing, oval, and flat ribs. Furthermore, it can be clearly observed 

that the minimum thermal boundary layer thickness occurred at the 

stagnation point, and it is also growing along with the impingement target 

plate. This is because of the high temperature drop that happened in the 

stagnation zone. The results indicated that all ribs have an important 

influence on the thermal boundary layer, disrupting these layers and thus 

improve heat transfer. Moreover, the appearance of a recirculation region 

downstream of all ribs can improve the hot fluid mixing close to the 

impingement target plate with the cold fluid in the channel core, resulting 

in raising the rates of heat transfer. Especially in the stagnation zone, the 

thickness of the thermal boundary layer decrease with increasing jet 

Reynolds number from 3000 to 7000. 

Figure 5.16 presents the dimensionless total entropy generation contours 

(which includes the effect of thermal and viscous) for different jet 

Reynolds numbers and different rib shapes. It is found that the highest 

entropy generation happens at the stagnation point and progressively 

decreases along an impinging target surface because of the rise in the 

temperature gradients at a stagnation point. Whereas the total entropy 
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generation decreases along streamwise direction due to the thermal 

boundary layer thickness increases. Furthermore, all ribs have a significant 

effect on the total entropy generation. With increasing jet Reynolds 

number from 3000 to 7000, the viscous and heat transfer entropy 

generation rise owing to the irreversibility of thermal and viscous 

dissipation. 
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Figure 5.13: Streamwise velocity contours for various jet Reynolds number at a=2 

mm and d=10 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 
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Figure 5.14: Velocity vector for various jet Reynolds number at a=2 mm and d=10 

mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 
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Figure 5.15: Temperature contours for various jet Reynolds number at a=2 mm and 

d=10 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 

 

Re=3000 

Re=5000 

Re=7000 

(a) 

Re=3000 

Re=5000 

Re=7000 

(b) 

Re=3000 

Re=5000 

Re=7000 

(c) 

T(K) 



85 
 

 

Figure 5.16: Total entropy generation contours for various jet Reynolds number at 

a=2 mm and d=10 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 
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5.5.2 Effect of Ribs Heights  

The effect of ribs height (a=0.0, 0.5, 1, 1.5, and 2 mm) on the flow and 

heat transfer characteristics for the wing, oval, and flat ribs of at d=10 mm 

has been displayed in this section. 

The streamwise velocity contours for various rib heights at jet Re = 5000 

with wing, oval, and flat ribs shapes and a smooth impinging target surface 

(without ribs) are depicted in Figure 5.17. Generally, the streamwise 

velocity has an identical behavior for all rib shapes. The addition of ribs 

on the target plate has a high influence on the initial vortex that grows near 

the top confined plate, resulting in the reduced intensity and size of the 

initial vortex. It should be noted that the initial vortex does not enhance 

heat transfer adiabatic (confined surface). But it increases the reverse flow 

of the working fluid and hence increases pressure drop. As a result, 

decreasing the intensity and size of the initial vortex leads to a reduction 

in the pressure drop. Moreover, at the impingement target surface, a 

secondary-clockwise vortex was created downstream of ribs with different 

shapes. The intensity and size of the secondary vortex increase with 

increasing the heights of the rib, resulting in enhanced mixing of working 

fluid flow and thus heat transfer improvement. Furthermore, the velocity 

of the fluid in the core of the channel increases with increasing the heights 

of the rib, due to the decrease in the spacing between the upper and lower 

surfaces. However, the rate of heat transfer improvement increases with 

an increase in the height of the rib. It has been observed that the highest 

intensity and size of the secondary vortex created with wing rib at a=2 

mm, and hence can be enhanced the best enhancement in heat transfer. 

 

 



87 
 

 

Figure 5.17: Streamwise velocity contours for various rib height at jet Re=5000 and 

d=10 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 

u(m/s) 

(a) 

a=0.0 

a=0.5mm 

a=1mm 

a=1.5mm 

a=2mm 

(b) 

a=0.5mm 

a=1mm 

a=1.5mm 

a=2mm 

(c) 

a=0.5mm 

a=1mm 

a=1.5mm 

a=2mm 



88 
 

Figure 5.18 presents the temperature contours using wing, oval, and flat 

ribs with different heights at jet Re=5000. It can be observed that the 

smallest thermal boundary layer thickness occurs at the impingement 

point (stagnation point) for a=0.0 (without ribs) and the thickness of the 

thermal boundary layer increases along the target surface. As the rib 

heights increase, the size of recirculation regions increases and hence 

improve the mixing of the hot fluid near the target surface with the cold 

fluid in the core of the channel. It was also found that the similar trend has 

been seen for all shapes of ribs. 

Figure 5.19 shows the total entropy generation contours of the wing, oval, 

and flat ribs for different rib heights at jet Re = 5000. For all shapes of 

ribs, it can be seen that the peak total entropy generation happens at the 

rib surface and a stagnation point and reduced progressively toward 

downstream. Therefore, the total entropy generation rises with increasing 

the heights of rib due to increasing the effects of irreversibility of viscous 

dissipation and heat transfer. 

Figure 5.20 displays the local Nusselt number along target surface (from 

the stagnation point until the right outlet) with various rib heights (a=0.0, 

0.5, 1, 1.5, and 2 mm) at d=10 mm and jet Re=5000. It can be seen that 

the influence of rib heights upon the local Nusselt number comparable 

behavior for all impingement target surfaces. It is also noted that at the 

stagnation point, the highest local Nusselt number will happen and reduce 

gradually along the impinging target surface owing to the high 

temperature gradient which is generated in that zone (stagnation zone). 

This result is consistent with the numerical study of Manca et al. [15]. 

When the rib height increases from 0.5 to 2 mm, the local Nusselt number 

rises notably at location (X=75 mm) and thereafter greatly increases at 

(X=90 mm) to the highest values for all rib shapes. In this zone, the rise in 
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the local Nusselt number is owing to the decrease cross sectional area in a 

convergence zone (at separation point), resulting grow the velocity of 

working fluid flow. Hence, the local Nusselt number increases in the 

convergence zone. On the other hand, the reduction in the local Nusselt 

number towards the downstream rib region is because of the increase in a 

cross-sectional area (at reattachment point) as well as the opposite fluid 

flow which generates at downstream rib that creates a poor flow zone. 

However, the location from (X=95 to 100 mm), the local Nusselt number 

increases owing to the enhancement in the mixing of fluid flow. It can be 

noted that the local Nusselt number rises as the rib height increases, thus, 

a=2 mm has the peak improvement of heat transfer, and the without ribs 

(a=0.0) has the lowest. 

Figure 5.21 illustrates the average Nusselt number versus jet Reynolds 

number with various rib heights. According to this figure, it should be 

observed that the jet Reynolds number, as well as rib heights, have a strong 

effect on the average Nusselt number. At a given rib height, the average 

Nusselt number increase as the jet Reynolds number increases due to the 

increasing temperature gradient and at the lower target surface. It is also 

found that, at a given jet Reynolds number, the average Nusselt number 

increase with the rib height. This due to the fact, the size of re-circulation 

zones increases and hence improve fluid mixing and consequently 

increase the heat transfer rate. The results were similar to numerical 

investigation performed by Xu et al. [42]. In general, the average Nusselt 

number for all shapes of ribs has a similar trend. 
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Figure 5.18: Temperature contours for various rib height at jet Re=5000 and d=10 

mm for (a) Wing rib, (b) Oval rib, (c) Flat rib.  
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Figure 5.19: Total entropy generation contours for various rib heights at jet Re=5000 

and d=10 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 
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Figure 5.20: Local Nusselt number along the impinging target surface for various rib 

heights at jet Re=5000 and d=10 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 

X (m)

L
o

c
a
l

N
u

ss
e
lt

n
u

m
b

e
r

0.07 0.08 0.09 0.1 0.11
0

20

40

60

80

100

120

140

160

180

200

a=0.0

a=0.5 mm

a=1 mm

a=1.5 mm

a=2 mm

X (m)

L
o

c
a
l

N
u

ss
e
lt

n
u

m
b

e
r

0.07 0.08 0.09 0.1 0.11
0

20

40

60

80

100

120

140

160

180

200

a=0.0

a=0.5 mm

a=1 mm

a=1.5 mm

a=2 mm

X (m)

L
o

c
a
l

N
u

ss
e
lt

n
u

m
b

e
r

0.07 0.08 0.09 0.1 0.11
0

20

40

60

80

100

120

140

160

180

200

a=0.0

a=0.5 mm

a=1 mm

a=1.5 mm

a=2 mm

(a) 

(b) 

(c) 

 

 

 

X (*103 mm) 

X (*103 mm) 

X (*103 mm) 



93 
 

 

 

 

Figure 5.21: Average Nusselt number vs. jet Reynolds number for various rib heights 

at d=10 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 
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The pressure drop versus jet Reynolds number with various rib heights at 

d=10 mm is depicted in Figure 5.22. For all heights rib, the pressure drop 

increases with increasing jet Reynolds number due to the velocity 

gradients. Moreover, it is noted that the minimum pressure drop occurred 

at a=0.0 (without ribs) compared with other rib heights. It is also found 

that the pressure drop increase as rib heights increases, due to the increase 

of the intensity and size recirculation region which led to increase the 

pressure drop.  

The dimensionless mean total entropy generation versus jet Reynolds 

number with various rib heights utilizing wing, oval, and flat ribs at d=10 

mm is illustrated in Figure 5.23. It may be observed that the average total 

entropy generation increases as the jet Reynolds number increase for all 

heights of rib. With increasing heights of rib, the mean total entropy 

generation increase, due to increasing the irreversibility. The result is 

consistent with the numerical investigation of Xu et al. [42]. A similar 

trend of entropy generation is observed for all shapes of ribs. 

The average Nusselt number enhancement for jet impingement for 

different rib heights with various rib shapes is shown in Figure 5.24. It 

was found that the enhancement of the average Nusselt number increases 

with increasing rib height. This because the improve the fluid mixing in 

the spacing between the upper and lower surfaces. It is also observed that 

the highest enhancement in heat transfer was obtained at a=2 mm with 

different rib shapes over jet Reynolds number range. 

 

 



95 
 

 

 

 

Figure 5.22: Pressure drop versus jet Reynolds number for various rib heights at 

d=10 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 
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Figure 5.23: Average total entropy generation versus jet Reynolds number for 

various rib heights at d=10 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 
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Figure 5.24: Average Nusselt number enhancement with jet Reynolds number for 

various rib heights at d=10 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 
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Figure 5.25 displays the variation of the performance evaluation criteria 

(PEC) with jet Reynolds number for various rib shapes and different rib 

heights at d=10 mm. It may be noted that the rib heights have a clear 

influence on the PEC. Generally, the highest PEC can be obtained at a=2 

mm with different rib shapes over jet Reynolds number range (except for 

wing ribs at Re=3000). This means that the positive effect of the heat 

transfer enhancement is higher than the negative effect of the pressure 

drop penalty. It was also found that the PEC at a=0.5 mm has the lowest 

value when jet Re < 6000 (except Re < 5000 for wing ribs). While the 

lowest value of PEC can be observed at a=1 mm when Re > 6000 for 

different rib shapes (except for wing ribs Re > 5000). Further, it was found 

that the maximum values of PEC for the wing, oval and flat ribs were 

1.682, 1.61, and 1.52, respectively, at Re=3000 and a=2 mm. 
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Figure 5.25: Performance evaluation criteria versus jet Reynolds number for various 

rib heights at d=10 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 
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5.5.3 Effect of Ribs Locations 

The effect of spacing between the stagnation point and the rib (d=10, 20, 

and 30 mm) for the wing, oval, and flat ribs at a=2 mm and jet Re=7000 

on the velocity contours is depicted in Figure 5.26. For all rib shapes, it 

can be noted that the rib locations have a clear effect on the velocity. When 

d=10 mm, the reversal vortex fluid flow that creates downstream the ribs 

is very small as well as the ribs influence on the intensity and size of the 

initial recirculation at the top surface (confined wall) is higher than its 

effects on the secondary vortex. For d=20 mm, it may be observed that the 

secondary vortex zones begin increasing behind ribs, while the size of the 

initial recirculation significantly increases compared with the case of d=10 

mm, which leads to reduce the enhancement of heat transfer. For d=30 

mm, it was found that the size of the initial vortex largely increases 

compared with other cases. Therefore, the size of the initial vortex grows 

with increasing rib locations.  

Figure 5.27 demonstrates the temperature contours at a=2 mm and jet 

Re=7000 with various rib locations for the wing, oval, and flat ribs. It can 

be clearly noted that the thermal boundary layer thickness in the region 

above ribs (upstream the rib) was less than that in the region after ribs 

(downstream the rib) due to the vortex zone effect that grows behind the 

ribs for all rib shapes. At the vortex zone which creates behind the ribs, 

the thermal boundary layer thickness increases as the spacing between the 

rib and stagnation point increases. Thus, the minimum thermal boundary 

layer thickness occurs at the stagnation point for all rib shapes because of 

the high-temperature gradient which occurred in this zone.  
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Figure 5.26: Velocity contours for various rib locations at jet Re=7000 and a=2 mm 

for (a) Wing rib, (b) Oval rib, (c) Flat rib, (d) smooth surface. 
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Figure 5.27: Temperature contours for various rib locations at jet Re=7000 and a=2 

mm for (a) Wing rib, (b) Oval rib, (c) Flat rib, (d) smooth target. 
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The effect of various rib locations of (d=10, 20, and 30 mm) on the total 

entropy generation contours employing wing, oval and flat ribs at a=2 mm 

and jet Re=7000 is illustrated in Figure 5.28. It can be seen that the spacing 

between the stagnation point and the rib has a clear influence on the 

entropy generation. The total entropy generation close to the stagnation 

zone has the maximum values because of the high-temperature gradient in 

this zone. However, it can be observed that at the downstream rib, the total 

entropy generation is higher than that upstream the ribs due to the presence 

of vortex zones. Moreover, the highest total entropy generation occurs at 

the rib location of d=10 mm as well as it reduces when the spacing 

between the stagnation point and the rib increases. 

Figure 5.29 shows the average Nusselt number with jet Reynolds number 

for using wing, oval and flat ribs at a=2 mm with various rib locations. It 

may be noted that the rib locations effect on the mean Nusselt number has 

a similar trend for all target shapes. With increasing jet Reynolds number, 

the average Nusselt number increases for all rib locations. Moreover, the 

average Nusselt number increases with decreasing distance (d) between 

the rib and the stagnation point. Regarding the velocity contours as 

depicted in Figure 5.26, the rib location of (d=10 mm) has the smallest 

size of the initial vortex zone at the adiabatic top wall close to slot jet, and 

also the intensity of this vortex will highest that leads to improve the 

mixing of working fluid and the augmentation in heat transfer compared 

to the other rib locations. Obviously, from the velocity contours, it was 

found that the weak mixing of working fluid occurred at d=30 mm which 

refers to the minimum heat transfer at that location. This due to increasing 

the size of the initial vortex compared to its intensity. 
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Figure 5.28: Total entropy generation contours for various rib locations at jet 

Re=7000 and a=2 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib, (d) smooth target. 
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Figure 5.29: Average Nusselt number with jet Reynolds number for various rib 

locations at a=2 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 
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Figure 5.30 gives the variation of the pressure drop versus jet Reynolds 

number for the wing, oval and flat ribs with various rib locations at a=2 

mm. It can be indicated that the rib locations effect on the pressure drop 

has a similar trend for all shapes of ribs. As expected, it should be seen 

that the pressure drop increases as jet Reynolds number increases at 

presented rib locations. For all rib shapes, it was found that the pressure 

drop increases with decreasing the distance between the stagnation point 

and the ribs. This is due to the flow becomes more disturbed with 

decreasing the distance between the stagnation point and the ribs. 

Therefore, from the velocity contours as depicted in Figure 5.26, there is 

the influence of rib on the size and intensity of the initial vortex close to 

slot jet at the confined surface for d=10 mm which refers to the reverse 

working fluid flow in that location is the highest. Moreover, the intensity 

of the initial vortex zone at the top surface is the smallest for d=20 mm, 

this means that the pressure drop is lowest at this location. At d=30 mm, 

the reduce in the intensity of the initial vortex, which happens in this 

location, leads to a decrease in the reverse working fluid flow. However, 

the pressure drop of d=10 mm is higher than that of d=20 and 30 mm.   

Figure 5.31 demonstrates the influence of the different spacing between 

the stagnation point and the rib on the average entropy generation using 

wing, oval, and flat ribs for various jet Reynolds numbers at a=2 mm. For 

all rib locations, with increasing jet Reynolds number, the mean of total 

entropy generation increases. It is seen that at jet Re < 4000, the rib 

locations influence on the mean of entropy generation has a small 

influence, and this influence increases with jet Reynolds number. It was 

also found that the total entropy generation increase with decreasing the 

spacing between stagnation point and rib. This is due to the effect of initial 
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and secondary regions that created near the upper and lower surfaces, 

respectively.  

Figure 5.32 illustrates the variation of the performance evaluation criteria 

(PEC) with jet Reynolds number for various rib locations. It can be noted 

that the spacings between the rib and the stagnation point have a sharp 

influence on the PEC. With increasing jet Reynolds number, the 

performance factor decreases when d=10 and 20 mm. When d=30 mm, 

the performance factor increases when jet Re < 4000, and then it gradually 

decreases when jet Re > 4000 due to decrease the pressure losses 

compared to the heat transfer enhancement at that location. From Figure 

5.32 (a), at  the rib location of (d=10 mm), the peak value of the 

performance factor is around 1.68 at jet Re=3000, while, the minimum 

value of the PEC is approximately 1.044 at jet Re=8000 at this location. 

From Figure 5.32 (b), it may be noted that the highest performance factor 

happens at the rib location of (d=10 mm) and jet Re=3000, that equal to 

1.61, whereas, the lowest value of the PEC equals 1.101 at d=20 mm and 

jet Re=8000. According to Figure 5.32 (c), it can be observed that the 

maximum thermal-hydraulic performance factor equals 1.562 which 

occurs at Re=3000 and the spacing between the stagnation point and the 

rib is (d=20 mm). At this location, the lowest performance factor value is 

1.053, which occurs at the highest value of jet Reynolds number. 

Moreover, all values of the performance factor are higher than that unity 

for all rib shapes. This means that the increase in heat transfer 

enhancement is higher than the increase in pressure drop. Just when the 

jet Re < 5000, while jet Re > 5000 at d=30 mm is the optimum.        
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Figure 5.30: Pressure drop with jet Reynolds number for various rib locations at  a=2 

mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 
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Figure 5.31: Average total entropy generation versus jet Reynolds number for 

various rib locations at a=2 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 
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Figure 5.32: Performance evaluation criteria versus jet Reynolds number for various 

rib locations at a=2 mm for (a) Wing rib, (b) Oval rib, (c) Flat rib. 
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5.5.4 Effect of Ribs Shapes  

In this section, the ribs shape effect on the average Nusselt number at rib 

location of (10 mm) for various rib height (a=0.5, 1, 1.5, and 2 mm) is 

depicted in Figure 5.33. It can be noted that with increasing jet Reynolds 

number, the average Nusselt number increases. It was also found that the 

average Nusselt number of various ribs shapes on the impinging target 

surface is higher than that of the smooth target surface (without ribs) due 

to the enhance mixing of working fluid flow. For (a=0.5 and 1 mm), the 

flat ribs have the highest Nusselt number compared with other shapes. For 

(a=1.5 mm), it can be observed that at jet Re < 6000, the rib shapes have 

a weak influence on the Nusselt number, and then it increases. At (a=2 

mm), the shapes of ribs have a high influence on the mean Nusselt number. 

Moreover, the wing ribs give the maximum values of the mean Nusselt 

number followed by oval ribs and flat ribs at jet Reynolds number (Re < 

7000). This is due to the wing ribs provide better mixing of working fluid 

flow compared to other shapes. 

Figure 5.34 illustrates the variation of the pressure drop versus jet 

Reynolds number for rib height of a=0.5, 1, 1.5, and 2 mm with various 

shapes of ribs at d=10 mm. As expected, with increasing jet Reynolds 

number, the pressure drop increases due to increasing the velocity gradient 

with jet Reynolds number. For rib height of (d=0.5, 1, and 1.5 mm), it 

noted that the flat ribs have the highest pressure drop at jet Re > 4000. 

Whereas, the peak values of the pressure drop occur for wing ribs followed 

by flat ribs and oval ribs at rib height of (d=2 mm), due to the secondary 

vortex zone that generated downstream the ribs. In addition, using a 

smooth target surface (without ribs) provides the minimum pressure drop 

as compared to various shapes of ribs at d=1.5 and 2 mm.      
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Figure 5.33: Average Nusselt number versus jet Reynolds number for various rib 

shapes at d=10 mm for (a) a=0.5 mm, (b) a=1 mm, (c) a=1.5 mm, (d) a=2 mm. 
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Figure 5.34: Pressure drop versus jet Reynolds number for various rib shapes at d=10 

mm for (a) a=0.5 mm, (b) a=1 mm, (c) a=1.5 mm, (d) a=2 mm. 
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other shapes. When rib height of (a=2 mm), the average of the total 

entropy generation in flat ribs is higher than that of the wing ribs at jet     

Re < 7000, but the peak value of the total entropy generation happens at 

this height and the highest jet Reynolds number (Re=8000) for wing ribs 

compared with the other target shapes.  

 

 

 

 

Figure 5.35: Average total entropy generation with jet Reynolds number for various 

rib shapes at d=10 mm for (a) a=0.5 mm, (b) a=1 mm, (c) a=1.5 mm, (d) a=2 mm. 
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Figure 5.36 shows the variation of the average Nusselt number 

enhancement with various rib height at d=10 mm for shapes of ribs. It can 

be observed that the flat ribs display the best heat transfer enhancement 

over jet Reynolds number range at a=0.5 and 1 mm. While the highest 

enhancement in heat transfer can be obtained by using wing ribs at a=1.5 

and 2 mm over jet Reynolds number range (except Re between 5000 and 

6500 at a=1.5 mm). It was also found that the maximum Nusselt number 

enhancement is around 90.01% which can be obtained using wing ribs at 

a=2 mm and jet Re=4000.  

 

Figure 5.37 presents the performance evaluation criteria versus jet 

Reynolds number with various shapes of ribs and rib heights at d=10 mm. 

It can be seen that the performance evaluation criteria (PEC) sharply 

decrease as jet Reynolds number increases especially at rib height of (a=1, 

1.5, and 2 mm), due to an increase in the pressure drop percentage. When 

a=0.5 mm, the wing ribs have a minimum value of the performance factor 

at jet Reynolds number of (Re=6000). Also, at a=1 mm, the lowest 

performance factor occurs at jet Re ≥ 5000 for wing ribs and it happens 

at jet Re  ≥  5000 for oval ribs and flat ribs. The reduced values of 

performance factor are due to the increase in pressure drop higher than 

that the augmentation in heat transfer. However, the wing ribs have the 

highest performance factor compared with other shapes. Moreover, it was 

found that at a=2 mm the maximum performance factor can occur for wing 

ribs followed by oval ribs and flat ribs at jet Re ≤ 7000 and then all values 

of performance factor are higher than unity for a whole range of jet 

Reynolds number at the same height. The peak values of the PEC are 1.68, 

1.61, and 1.52 for wing ribs, oval ribs, and flat ribs, respectively, at jet 

Re=3000 and a=2 mm.   
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Figure 5.36: Average Nusselt number enhancement with jet Reynolds number for 

various rib shapes at d=10 mm for (a) a=0.5 mm, (b) a=1 mm, (c) a=1.5 mm, (d) a=2 

mm. 
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Figure 5.37: Performance evaluation criteria versus jet Reynolds number for various 

rib shapes at d=10 mm for (a) a=0.5 mm, (b) a=1 mm, (c) a=1.5 mm, (d) a=2 mm. 
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6 CHAPTER SIX:  

CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1 Conclusions  

Generally, experimental and numerical studies have been carried out to 

investigate the confined turbulent slot-jet impingement on heat transfer, 

fluid characteristics, and entropy generation in ribs shapes of target 

surfaces in this research. The numerical simulations have been conducted 

of three various ribs shapes; wing, oval, and flat ribs with rib heights of 

(a=0.5, 1, 1.5, and 2 mm) and rib locations of (d=10, 20, and 30 mm), as 

well as smooth target surface (a=0.0) have been considered in the present 

investigation. Also, the CFD code was developed using the FORTRAN 

programming language to simulate turbulent flows. The low Reynolds 

number (𝑘‑𝜀) turbulence model of Launder and Sharma was utilized to 

study the turbulent flow. Furthermore, the numerical results for the present 

investigation have been compared with some previous investigations to 

check the validity of the CFD code. The experiments have been carried 

out for various shapes of ribs; wing, oval, and flat ribs with rib location of 

(d=10 mm) and rib height of (a=2 mm) over jet Reynolds number range 

of 3000 to 8000. According to the experimental and numerical results 

presented in the previous chapter, the following conclusion can be 

summarized: 

1. The average Nusselt number, pressure drop and average total 

entropy generation increase with increasing jet Reynolds number 

for all cases. 
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2. The performance evaluation criteria decreases as the jet Reynolds 

number increases. 

3. The average Nusselt number, pressure drop, average total entropy 

generation, the enhancement of average Nusselt number, and 

performance evaluation criteria increase as height of rib increases. 

4. The average Nusselt number and pressure drop as well as the total 

entropy generation decrease with increasing the spacing between 

the stagnation point and the rib. 

5. The wing ribs have the highest values of average Nusselt number, 

pressure drop, entropy generation, average Nusselt number 

enhancement, and performance evaluation criteria at rib location of 

10 mm and rib height of 2 mm compared with other ribs shapes. 

6. The maximum values of the average Nusselt number enhancement 

are around 90.01, 74.16, and 65.34% for wing ribs, oval ribs and 

flat ribs at jet Reynolds number of 4000, 4000, and 3000, 

respectively, at rib location 10 mm and rib height of 2 mm. 

7. The highest values of the performance factor are 1.68, 1.61, and 

1.52 for the wing, oval and flat ribs, respectively, at jet Reynolds of 

3000 and rib height of 2 mm. 

In general, the flat ribs are recommended when jet Re > 5000, due to 

its highest PEC, while the wing ribs are the optimum design when jet 

Re < 5000.   
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6.2 Suggestions for Future Work 

Based on the experimental and numerical results of the present 

investigation, the scope for further investigations can be presented as 

follows: 

 

1. Numerical and experimental investigations to study the flow and 

heat transfer behavior employing multiple slot jets impinging on the 

isothermal target surface. 

2. Numerical and experimental investigation to study the effect of a 

number of ribs on the heat transfer characteristics using the 

impinging slot jet. 

3. Experimental study to investigate the effects of rib height and rib 

location on the flow and thermal field. 

4. The effect of slot jet width on heat transfer improvement and 

entropy generation should be numerically and experimentally 

studied. 
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APPENDIX A:  

NUMERICAL SOLUTION 

 

A.1 Body-Fitted Coordinates System 

 The governing equations are transformed from the Cartesian coordinate 

system (x, y) to a body-fitted coordinate system (ζ, η) presented as follows 

[47]:  

𝜉 = 𝜉(𝑥, 𝑦)                                                                                                     (A. 1)  

𝜂 = 𝜂(𝑥, 𝑦)                                                                                                    (A. 2)  

 

In the above equations, the chain rule can be applied to express 𝜉 and 

𝜂 derivatives in term of x and y as given below: 

𝜕𝜙

𝜕𝜉
=
𝜕𝜙

𝜕𝑥

𝜕𝑥

𝜕𝜉
+
𝜕𝜙

𝜕𝑦

𝜕𝑦

𝜕𝜉
                                                                                       (A. 3)  

𝜕𝜙

𝜕𝜂
=
𝜕𝜙

𝜕𝑥

𝜕𝑥

𝜕𝜂
+
𝜕𝜙

𝜕𝑦

𝜕𝑦

𝜕𝜂
                                                                                       (A. 4)  

 

These equations can be given in a matrix form as below: 

[

𝜕𝜙

𝜕𝜉

𝜕𝜙

𝜕𝜂

] = [

𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂

      

𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂

]  [

𝜕𝜙

𝜕𝑥
𝜕𝜙

𝜕𝑦

 ]                                                                            (A. 5)  

   

Using Cramer's rule to invert the above equation as below: 

𝜕𝜙

𝜕𝑥𝑖
=
1

𝐽
 𝛽𝑖,𝑗

𝜕𝜙

𝜕𝜉𝑗
 , where 𝑖 = 1, 2; 𝑗 = 1, 2                                                (A. 6)  
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The system is become in matrix form as follow: 

[

𝜕𝜙

𝜕𝑥
𝜕𝜙

𝜕𝑦

] =
1

𝐽
[𝛽] [

𝜕𝜙

𝜕𝜉

𝜕𝜙

𝜕𝜂

 ]                                                                                       (A. 7)  

Where 

[𝛽] = [
𝛽11     
𝛽21     

𝛽12
𝛽22
] = [

𝑦𝜂      
−𝑥𝜂      

−𝑦𝜉
   𝑥𝜉

]                                                        (A. 8)  

Also, J: is the Jacobin of the transformation and is expressed as follows 

[51]: 

𝐽 = 𝛽22𝛽11 − 𝛽21𝛽12 = 𝑥𝜉𝑦𝜂 − 𝑥𝜂𝑦𝜉                                                       (A. 9) 

Hence, in the terms of body-fitted coordinate, the transformation of the 

first partial derivatives can be described as follows [47]: 

𝜕𝜙

𝜕𝑥
= 

1 

𝐽
[𝛽11

𝜕𝜙

𝜕𝜉
+ 𝛽12

𝜕𝜙

𝜕𝜂
]                                                                        (A. 10)  

𝜕𝜙

𝜕𝑦
= 

1 

𝐽
[𝛽21

𝜕𝜙

𝜕𝜉
+ 𝛽22

𝜕𝜙

𝜕𝜂
 ]                                                                        (A. 11)  

 

With respect to second derivatives, in a term of body-fitted coordinates, 

the general format of those derivatives is presented by: 

𝜕

𝜕𝑥𝑗
(
𝜕𝜙

𝜕𝑥𝑙
) =  

1 

𝐽

𝜕

𝜕𝜉𝑖
[
1 

𝐽
𝛽𝑗𝑖𝛽𝑙𝑘

𝜕𝜙

𝜕𝜉𝑘
] , 𝑖 = 1, 2; 𝑗 = 1, 2; 𝑙 = 1, 2; 𝑘 = 1, 2 

(A. 12)  

 

Therefore, the second partial derivatives transformation for the respect of 

x is presented by: 

𝜕

𝜕𝑥
(
𝜕𝜙

𝜕𝑥
) =

1 

𝐽

𝜕

𝜕𝜉
[
1 

𝐽
 ( 𝛽11 𝛽11

𝜕𝜙

𝜕𝜉
+  𝛽11 𝛽12

𝜕𝜙

𝜕𝜂
) ]   
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  +
1 

𝐽

𝜕

𝜕𝜂
[
1 

𝐽
 (( 𝛽12 𝛽11

𝜕𝜙

𝜕𝜉
+  𝛽12 𝛽12

𝜕𝜙

𝜕𝜂
) ]                                            (A. 13)  

Moreover, the second partial derivatives transformation for the respect of 

y is expressed as: 

𝜕

𝜕𝑦
(
𝜕𝜙

𝜕𝑦
) =

1 

𝐽

𝜕

𝜕𝜉
[
1 

𝐽
 ( 𝛽21 𝛽21

𝜕𝜙

𝜕𝜉
+  𝛽21 𝛽22

𝜕𝜙

𝜕𝜂
) ]  

                +
1 

𝐽

𝜕

𝜕𝜂
[
1 

𝐽
 (( 𝛽22 𝛽21

𝜕𝜙

𝜕𝜉
+  𝛽22 𝛽22

𝜕𝜙

𝜕𝜂
) ]                              (A. 14)  

Furthermore, the second mixed partial derivative transformation for the 

respect of x and y is defined as: 

𝜕

𝜕𝑥
(
𝜕𝜙

𝜕𝑦
) =

1 

𝐽

𝜕

𝜕𝜉
[
1 

𝐽
 ( 𝛽11 𝛽21

𝜕𝜙

𝜕𝜉
+  𝛽11 𝛽22

𝜕𝜙

𝜕𝜂
) ]  

                +
1 

𝐽

𝜕

𝜕𝜂
[
1 

𝐽
 (( 𝛽12 𝛽21

𝜕𝜙

𝜕𝜉
+  𝛽12 𝛽22

𝜕𝜙

𝜕𝜂
) ]                              (A. 14)  

In addition, the second mixed partial derivative transformation for the 

respect of y and x is given as: 

𝜕

𝜕𝑥
(
𝜕𝜙

𝜕𝑥
) =

1 

𝐽

𝜕

𝜕𝜉
[
1 

𝐽
 ( 𝛽21 𝛽11

𝜕𝜙

𝜕𝜉
+  𝛽21 𝛽12

𝜕𝜙

𝜕𝜂
) ]  

                +
1 

𝐽

𝜕

𝜕𝜂
[
1 

𝐽
 (( 𝛽22 𝛽11

𝜕𝜙

𝜕𝜉
+  𝛽22 𝛽12

𝜕𝜙

𝜕𝜂
) ]                              (A. 15)  

Where, 

 𝜙 ∶ is the general dependent variable, such as (𝑢, 𝑣, 𝑇, and 𝑃).   

 

 

 



134 
 

A.2 Computational Grid 

Two-dimensional Poisson equations described in equation 3.21 and 3.22 

in chapter three, can be defined as below: 

𝑞11
𝜕2𝑥

𝜕𝜉2
− 2𝑞12

𝜕2𝑥

𝜕𝜉𝜂
+ 𝑞22

𝜕2𝑥

𝜕𝜂2
+ 𝐽2 (𝑃

𝜕𝑥

𝜕𝜉
+ 𝑄

𝜕𝑥

𝜕𝜂
) = 0                       (A. 16)  

𝑞11
𝜕2𝑦

𝜕𝜉2
− 2𝑞12

𝜕2𝑦

𝜕𝜉𝜂
+ 𝑞22

𝜕2𝑦

𝜕𝜂2
+ 𝐽2 (𝑃

𝜕𝑦

𝜕𝜉
+ 𝑄

𝜕𝑦

𝜕𝜂
) = 0                       (A. 17)  

Now, utilizing Finite Difference Method (FDM), equation A.16 and A.17 

are discretized as below. 

𝑞11(𝑖,𝑗) [
𝑥𝑖+1,𝑗−2𝑥𝑖,𝑗+𝑥𝑖−1,𝑗

∆𝜉2
] − 2𝑞12(𝑖,𝑗) [

𝑥𝑖+1,𝑗+1−𝑥𝑖+1,𝑗−1−𝑥𝑖−1,𝑗+1+𝑥𝑖−1,𝑗−1

4∆𝜉 ∆𝜂
] +  

𝑞22(𝑖,𝑗) [
𝑥𝑖,𝑗+1−2𝑥𝑖,𝑗+𝑥𝑖,𝑗−1

∆𝜂2
] + 𝐽2(𝑖,𝑗) [𝑃(𝑖,𝑗)

𝑥𝑖+1,𝑗−𝑥𝑖−1,𝑗

2∆𝜉
+ 𝑄(𝑖,𝑗)

𝑥𝑖,𝑗+1−𝑥𝑖,𝑗−1

2∆𝜂
] = 0  

(A. 18) 

𝑞11(𝑖,𝑗) [
𝑦𝑖+1,𝑗−2𝑦𝑖,𝑗+𝑦𝑖−1,𝑗

∆𝜉2
] − 2𝑞12(𝑖,𝑗) [

𝑦𝑖+1,𝑗+1−𝑦𝑖+1,𝑗−1−𝑦𝑖−1,𝑗+1+𝑦𝑖−1,𝑗−1

4∆𝜉 ∆𝜂
] +  

𝑞22(𝑖,𝑗) [
𝑦𝑖,𝑗+1−2𝑦𝑖,𝑗+𝑦𝑖,𝑗−1

∆𝜂2
] + 𝐽2(𝑖,𝑗) [𝑃(𝑖,𝑗)

𝑦𝑖+1,𝑗−𝑦𝑖−1,𝑗

2∆𝜉
+ 𝑄(𝑖,𝑗)

𝑦𝑖,𝑗+1−𝑦𝑖,𝑗−1

2∆𝜂
] = 0  

(A. 19)  

Re-arrangement equation A.18 and A.19 can be given as follow:  

𝑥𝑖,𝑗 = −(
∆𝜉2+∆𝜂2

 ∆𝜂2𝑞11(𝑖,𝑗)+∆𝜉
2𝑞22(𝑖,𝑗)

) [𝑞11(𝑖,𝑗) (
𝑥𝑖+1,𝑗+𝑥𝑖−1,𝑗

∆𝜉2
) + 𝑞22(𝑖,𝑗) (

𝑥𝑖,𝑗−1+𝑥𝑖,𝑗−1

∆𝜂2
) −

2𝑞12(𝑖,𝑗) (
𝑥𝑖+1,𝑗+1−𝑥𝑖+1,𝑗−1−𝑥𝑖−1,𝑗+1+𝑥𝑖−1,𝑗−1

4∆𝜉 ∆𝜂
)     + 𝐽(𝑖,𝑗)

2 𝑃(𝑖,𝑗) (
𝑥𝑖+1,𝑗−𝑥𝑖−1,𝑗

2∆𝜉
) +

𝐽(𝑖,𝑗)
2 𝑄(𝑖,𝑗) (

𝑥𝑖,𝑗+1−𝑥𝑖,𝑗−1

2∆𝜂
)]                                                                                       (A. 20)  

𝑦𝑖,𝑗 = −(
∆𝜉2+∆𝜂2

 ∆𝜂2𝑞11(𝑖,𝑗)+∆𝜉
2𝑞22(𝑖,𝑗)

) [𝑞11(𝑖,𝑗) (
𝑦𝑖+1,𝑗+𝑦𝑖−1,𝑗

∆𝜉2
) + 𝑞22(𝑖,𝑗) (

𝑦𝑖,𝑗−1+𝑦𝑖,𝑗−1

∆𝜂2
) −

2𝑞12(𝑖,𝑗) (
𝑦𝑖+1,𝑗+1−𝑥𝑖+1,𝑗−1−𝑦𝑖−1,𝑗+1+𝑦𝑖−1,𝑗−1

4∆𝜉 ∆𝜂
)    + 𝐽(𝑖,𝑗)

2 𝑃(𝑖,𝑗) (
𝑦𝑖+1,𝑗−𝑦𝑖−1,𝑗

2∆𝜉
) +

𝐽(𝑖,𝑗)
2 𝑄(𝑖,𝑗) (

𝑦𝑖,𝑗+1−𝑦𝑖,𝑗−1

2∆𝜂
)]                                                                                       (A. 21)  
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Where:  

𝑞11(𝑖,𝑗) = 𝑥𝜂
2 + 𝑦𝜂

2 = [
𝑥𝑖,𝑗+1−2𝑥𝑖,𝑗+𝑥𝑖,𝑗−1

∆𝜂2
]
2
+ [

𝑦𝑖,𝑗+1−2𝑦𝑖,𝑗+𝑦𝑖,𝑗−1

∆𝜂2
]
2
       (A. 22)  

𝑞22(𝑖,𝑗) = 𝑥𝜉
2 + 𝑦𝜉

2 = [
𝑥𝑖,𝑗+1−2𝑥𝑖,𝑗+𝑥𝑖,𝑗−1

∆𝜉2
]
2
+ [

𝑦𝑖,𝑗+1−2𝑦𝑖,𝑗+𝑦𝑖,𝑗−1

∆𝜉2
]
2
       (A. 23)  

𝑞12(𝑖,𝑗) = 𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂 

              = [
𝑥𝑖+1,𝑗−𝑥𝑖−1,𝑗

2∆𝜉
] [
𝑥𝑖,𝑗+1−𝑥𝑖,𝑗−1

2∆𝜂
] + [

𝑦𝑖+1,𝑗−𝑦𝑖−1,𝑗

2∆𝜉
] [
𝑦𝑖,𝑗+1−𝑦𝑖,𝑗−1

2∆𝜂
]   (A. 24)  

  

Furthermore, equation A.20 and A.21 are resolved iteratively that use 

Successive Over-Relaxation algorithm. The control functions P(𝜉,𝜂), 

Q(𝜉,𝜂) in equation A.20 and A.21 for all an interior nodes of 

computational space can be expressed as below: 

𝑃(𝜉, 𝜂) = 𝑝(𝜉). 𝑒−𝑎1𝜂 + 𝑟(𝜉). 𝑒−𝑎2(𝜂𝑚𝑎𝑥−𝜂)                                        (A. 25)  

𝑄(𝜉, 𝜂) = 𝑞(𝜉). 𝑒−𝑎1𝜂 + 𝑠(𝜉). 𝑒−𝑎2(𝜂𝑚𝑎𝑥−𝜂)                                        (A. 26)  

 

In equation A.25 and A.26, the first terms for control the grid nodes at 

south (lower) boundary of computational space (𝜂 = 0), while the other 

terms for control the nodes at north (upper) boundary of computational 

space (𝜂𝑚𝑎𝑥 = 0 ), where 𝑎1 and 𝑎2 are called the positive constants. So, 

the functions p(𝜉), r(𝜉), q(𝜉), and s(𝜉) can be given as below: 

𝑝(𝜉) = 𝑃(𝜉, 0)                                                                                            (A. 27)  

𝑟(𝜉) = 𝑃(𝜉, 𝜂𝑚𝑎𝑥)                                                                                     (A. 28)  

𝑞(𝜉) = 𝑄(𝜉, 0)                                                                                           (A. 29)  

𝑠(𝜉) = 𝑄(𝜉, 𝜂𝑚𝑎𝑥)                                                                                     (A. 30)  
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Two conditions are applied at the boundaries defined in the grid spacing 

and orthogonally to determine values of the functions p(𝜉), r(𝜉),  q(𝜉), and 

s(𝜉). Furthermore, if 𝑆𝜂 is the required grid spacing along the boundaries, 

the condition can be displayed as below: 

𝑆𝜂
2 = 𝑟𝜂⃗⃗⃗   . 𝑟𝜂⃗⃗⃗  = 𝑥𝜂

2 + 𝑦𝜂
2                                                                              (A. 31)                                                                                 

 While, the other condition (orthogonally) can be expressed as below: 

𝑟𝜉⃗⃗  ⃗ . 𝑟𝜂⃗⃗⃗  = 𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂 = 0                                                                       (A. 32) 

Equation A.31 and A.32, the values of  𝑥𝜉  and 𝑦𝜉   at the lower boundary 

(𝜂 = 0), and the upper boundary (𝜂𝑚𝑎𝑥 = 0 ) are known. While, 𝑥𝜂 and  𝑦𝜂  

in the above equations are unknown and it can be expressed as below:         

𝑥𝜂 =
−𝑆𝜂𝑦𝜉

√𝑥𝜉
2+𝑦𝜉

2
                                                                                                (A. 33)  

𝑦𝜂 =
−𝑆𝜂𝑥𝜉

√𝑥𝜉
2+𝑦𝜉

2
                                                                                                (A. 34)  

𝑟𝜂⃗⃗⃗  = 𝑥𝜂  𝑖 + 𝑦𝜂  𝑗 = 0                                                                                  (A. 35)  

In generalized form, two-dimensional Poisson equations, equation A.16 

and A.17, it can be presented by as below: 

(𝑟𝜂 ⃗⃗⃗⃗ . 𝑟𝜂⃗⃗⃗  )(𝑟𝜉𝜉 ⃗⃗ ⃗⃗ ⃗⃗  . 𝑃𝑟𝜉𝜉⃗⃗ ⃗⃗  ⃗) + (𝑟𝜉 ⃗⃗ ⃗⃗ . 𝑟𝜉⃗⃗  ⃗)(𝑟𝜂𝜂 ⃗⃗⃗⃗⃗⃗ . 𝑄𝑟𝜂⃗⃗⃗  ) − 2(𝑟𝜉  ⃗⃗⃗⃗  ⃗. 𝑟𝜂⃗⃗⃗  )𝑟𝜉𝜂⃗⃗⃗⃗⃗⃗ = 0        (A. 36)       

Where, 

𝑞11 = 𝑟𝜂⃗⃗⃗⃗  . 𝑟𝜂⃗⃗⃗⃗ = 𝑥𝜂
2 + 𝑦𝜂

2                                                                              (A. 37)  

𝑞22 = 𝑟𝜉⃗⃗  ⃗ . 𝑟𝜉⃗⃗  ⃗ = 𝑥𝜉
2 + 𝑦𝜉

2                                                                              (A.38)  

𝑞12 = 𝑟𝜉⃗⃗  ⃗ . 𝑟𝜂⃗⃗⃗⃗ = 𝑥𝜉𝑥𝜂 + 𝑦𝜉𝑦𝜂                                                                       (A. 39)  
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𝑟 = 𝑥𝑖 +  𝑦𝑗                                                                                                  (A. 40)  

𝑟𝜉⃗⃗  ⃗ =  𝑥𝜉 𝑖 + 𝑦𝜉 𝑗                                                                                           (A. 41)  

𝑟𝜂⃗⃗ =  𝑥𝜂 𝑖 + 𝑦𝜂 𝑗                                                                                            (A. 42)  

𝑟𝜉𝜉⃗⃗ ⃗⃗  ⃗ =  𝑥𝜉𝜉  𝑖 + 𝑦𝜉𝜉  𝑗                                                                                     (A. 43)  

𝑟𝜂𝜂⃗⃗⃗⃗ =  𝑥𝜂𝜂 𝑖 + 𝑦𝜂𝜂 𝑗                                                                                       (A. 44)  

𝑟𝜉𝜂⃗⃗⃗⃗  ⃗ =  𝑥𝜉𝜂 𝑖 + 𝑦𝜉𝜂 𝑗                                                                                       (A. 45)  

Equation A.32 can be replaced by equation A.36, which gives: 

(𝑟𝜂 ⃗⃗⃗⃗ . 𝑟𝜂⃗⃗⃗  )(𝑟𝜉𝜉 ⃗⃗ ⃗⃗ ⃗⃗  . 𝑃𝑟𝜉𝜉⃗⃗ ⃗⃗  ⃗) + (𝑟𝜉 ⃗⃗ ⃗⃗ . 𝑟𝜉⃗⃗  ⃗)(𝑟𝜂𝜂 ⃗⃗⃗⃗⃗⃗ . 𝑄𝑟𝜂⃗⃗⃗  )│𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 0                 (A. 46)  

 

The control functions at the boundaries are obtained as in below equations, 

multiplying equation A.40 by 𝑟𝜂 ⃗⃗⃗⃗  or 𝑟𝜉 ⃗⃗ ⃗⃗  and utilizing the orthogonally 

condition as defined in equation A.32. 

𝑃(𝜉, 𝜂)│𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =
−(𝑟𝜉 ⃗⃗⃗⃗  ⃗.𝑟𝜉𝜉⃗⃗ ⃗⃗ ⃗⃗  )

(𝑟𝜉 ⃗⃗⃗⃗  ⃗.𝑟𝜉⃗⃗⃗⃗ )
−
(𝑟𝜉 ⃗⃗ ⃗⃗  ⃗.𝑟𝜂𝜂⃗⃗ ⃗⃗ ⃗⃗  )

(𝑟𝜂 ⃗⃗⃗⃗  ⃗.𝑟𝜂⃗⃗⃗⃗ )
                                                (A. 47)  

𝑄(𝜉, 𝜂)│𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =
−(𝑟𝜂 ⃗⃗⃗⃗  ⃗.𝑟𝜂𝜂⃗⃗ ⃗⃗ ⃗⃗  )

(𝑟𝜂 ⃗⃗⃗⃗  ⃗.𝑟𝜂⃗⃗⃗⃗ )
−
(𝑟𝜂 ⃗⃗⃗⃗  ⃗.𝑟𝜉𝜉⃗⃗ ⃗⃗ ⃗⃗  )

(𝑟𝜉 ⃗⃗⃗⃗  ⃗.𝑟𝜉⃗⃗⃗⃗ )
                                                (A. 48)  

 

The functions p(𝜉), r(𝜉), q(𝜉), and s(𝜉) can be obtained after calculating 

the values of control functions P and Q on the boundaries. Equation A.15 

and A.26 are then used to determine the values of the control functions P 

and Q for the interior nodes. Also, in Figure A.1, the solution procedure 

for the computational grid of the present study is shown as below: 
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Figure A.1: Solution procedure for computational grid of present investigation. 

Define the boundaries of the computational 

mesh 

Assume the values of p, q, r and s are zero  

Evaluate the functions p, q, r and s using 

Equations A.27 - A.30 

Check 

convergent  

 

onvergence  Yes 

Develop initial grid using algebraic grid 

method 

No 

Stop 

 

Start 

Input the values of cell spacing at south and 

north boundaries (∆Ss and ∆Sn) 

Solve Poisson equations A.20 and A.21 to 

obtain x (𝜉, 𝜂) and y (𝜉, 𝜂) 

 

Calculate control functions P and Q using 

equations A.25 and A.26  

Develop final grid using Poisson equations 

(as shown in Figure 3.3 and Figure A.2) 
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Figure A.2: Computational grid of current study; (a) Wing rib, (b) Flat rib, (c) Oval 

rib, (d) Smooth target. 

(a) 

(b) 

(c) 

(d) 
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A-3 Discretization of governing equations 

In chapter three, the convective terms in equation 3.39 is integrated over 

a control volume around node P can be given as:  

∬
1

𝐽
[
𝜕

𝜕𝜉
(𝜌𝜙𝑈𝑐) +

𝜕

𝜕𝜂
(𝜌𝜙𝑉𝑐)] 𝐽𝑑𝜉𝑑𝜂

𝑤.

𝑉
  

                     = ∫[𝜌𝜙𝑈𝑐𝑑𝜂]
𝑒
𝑤
+ [𝜌𝜙𝑉𝑐𝑑𝜉]

𝑛
𝑠

  

              = (𝜌𝜙𝑈𝑐∆𝜂)𝑒 − (𝜌𝜙𝑈
𝑐∆𝜂)𝑤 + (𝜌𝜙𝑉

𝑐∆𝜉)𝑛 − (𝜌𝜙𝑉
𝑐∆𝜉)𝑠  

                    = 𝐹𝑒𝑢𝑒 − 𝐹𝑤𝑢𝑤 + 𝐹𝑛𝑢𝑛 − 𝐹𝑠𝑢𝑠                                          (A. 48)  

Here (𝐹𝑒 ,  𝐹𝑤, 𝐹𝑛, and  𝐹𝑠)  are the rates of mass flow for a cross cell faces 

that are expressed as follows: 

𝐹𝑒 = (𝜌𝑈
𝑐∆𝜂)𝑒                                                                                             (A. 49) 

𝐹𝑤 = (𝜌𝑈
𝑐∆𝜂)𝑤                                                                                           (A. 50)  

𝐹𝑛 = (𝜌𝑉
𝑐∆𝜉)𝑛                                                                                           (A. 51)  

𝐹𝑠 = (𝜌𝑉
𝑐∆𝜉)𝑠                                                                                            (A. 52)  

 

Also, integrating the diffusion terms of equation 3.39 in chapter three, over 

control volume can be given as  

∬[
𝜕

𝜕𝜉
[
𝛤𝜙

𝐽
(𝑞11

𝜕𝜙

𝜕𝜉
− 𝑞12

𝜕𝜙

𝜕𝜂
)] +

𝜕

𝜕𝜂
[
𝛤𝜙

𝐽
(𝑞22

𝜕𝜙

𝜕𝜂
− 𝑞12

𝜕𝜙

𝜕𝜉
)]] 𝑑𝜉𝑑𝜂 = 

= ∫[
𝛤𝜙

𝐽
(𝑞11

𝜕𝜙

𝜕𝜉
− 𝑞12

𝜕𝜙

𝜕𝜂
)𝑑𝜂]

𝑒

𝑤
+∫[

𝛤𝜙

𝐽
(𝑞22

𝜕𝜙

𝜕𝜂
− 𝑞12

𝜕𝜙

𝜕𝜉
)𝑑𝜉]

𝑛

𝑠
  

= [
𝛤𝜙

𝐽
𝑞11

𝜕𝜙

𝜕𝜉
∆𝜂] 𝑒

𝑤
− [

𝛤𝜙

𝐽
𝑞12

𝜕𝜙

𝜕𝜂
∆𝜂] 𝑒

𝑤
+ [

𝛤𝜙

𝐽
𝑞22

𝜕𝜙

𝜕𝜂
∆𝜉] 𝑛

𝑠
−

     [
𝛤𝜙

𝐽
𝑞12

𝜕𝜙

𝜕𝜉
∆𝜉] 𝑛

𝑠
                                                                                      (A. 53)  

 

Re-arrangement the above equation affords: 

= (
𝛤𝜙

𝐽
𝑞11

𝜕𝜙

𝜕𝜉
∆𝜂)

𝑒
− (

𝛤𝜙

𝐽
𝑞11

𝜕𝜙

𝜕𝜉
∆𝜂)

𝑤
+ (

𝛤𝜙

𝐽
𝑞22

𝜕𝜙

𝜕𝜂
∆𝜉)

𝑛
  



141 
 

−(
𝛤𝜙

𝐽
𝑞22

𝜕𝜙

𝜕𝜂
∆𝜉)

𝑠
− 𝑆𝑑

𝜙
                                                 

= (
𝛤𝜙

𝐽
𝑞11

∆𝜂

∆𝜉
)
𝑒
(𝜙𝐸–𝜙𝑃) − (

𝛤𝜙

𝐽
𝑞11

∆𝜂

∆𝜉
)
𝑤
(𝜙𝑃–𝜙𝑊)  

+(
𝛤𝜙

𝐽
𝑞22

∆𝜉

∆𝜂
)
𝑛
(𝜙𝑁–𝜙𝑃) − (

𝛤𝜙

𝐽
𝑞22

∆𝜉

∆𝜂
)
𝑠
(𝜙𝑃–𝜙𝑆) − 𝑆𝑑

𝜙
  

= 𝐷𝑒𝜙𝐸 + 𝐷𝑤𝜙𝑊 + 𝐷𝑛𝜙𝑁 + 𝐷𝑠𝜙𝑆 − (𝐷𝑒 + 𝐷𝑤 + 𝐷𝑛 + 𝐷𝑠)𝜙𝑃 − 𝑆𝑑
𝜙
   

(A. 54) 

Here, (𝐷𝑒 , 𝐷𝑤, 𝐷𝑛, and 𝐷𝑠) are the diffusion conductance that can be 

awarded by: 

𝐷𝑒 = (
𝛤𝜙

𝐽
𝑞11

∆𝜂

∆𝜉
)
𝑒
                                                                                     (A. 55)  

𝐷𝑤 = (
𝛤𝜙

𝐽
𝑞11

∆𝜂

∆𝜉
)
𝑤
                                                                                    (A. 56)  

𝐷𝑛 = (
𝛤𝜙

𝐽
𝑞22

∆𝜉

∆𝜂
)
𝑛
                                                                                     (A. 57)  

𝐷𝑠 = (
𝛤𝜙

𝐽
𝑞22

∆𝜉

∆𝜂
)
𝑠
                                                                                      (A. 58)  

In equation A.54, the linear interpolation can be used to evaluate the 

interface values of (𝜙𝑒, 𝜙𝑤, 𝜙𝑛, and 𝜙𝑛 ) from nodal point’s values as 

shown: 

𝜙𝑒 =
𝜙𝐸+𝜙𝑃

2
                                                                                                 (A. 59)  

𝜙𝑤 =
𝜙𝑊+𝜙𝑃

2
                                                                                               (A. 60)  

𝜙𝑛 =
𝜙𝑁+𝜙𝑃

2
                                                                                                (A. 61)  

𝜙𝑠 =
𝜙𝑆+𝜙𝑃

2
                                                                                                 (A. 62)  

 

Also in equation A.54, the term 𝑆𝑑
𝜙

 is generated from converging the 

diffusion terms over a non-orthogonal grid. So, the term 𝑆𝑑
𝜙

 is added to a 

source term and thus can be discretized as below: 
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𝑆𝑑
𝜙
= [

𝛤𝜙

𝐽
𝑞12

𝜕𝜙

𝜕𝜂
∆𝜂] 𝑒

𝑤
− [

𝛤𝜙

𝐽
𝑞12

𝜕𝜙

𝜕𝜉
∆𝜉] 𝑛

𝑠
  

      = (
𝛤𝜙

𝐽
𝑞12

𝜕𝜙

𝜕𝜂
∆𝜂)

𝑒
− (

𝛤𝜙

𝐽
𝑞12

𝜕𝜙

𝜕𝜂
∆𝜂)

𝑤
+ (

𝛤𝜙

𝐽
𝑞12

𝜕𝜙

𝜕𝜉
∆𝜉)

𝑛
                   −

      − (
𝛤𝜙

𝐽
𝑞12

𝜕𝜙

𝜕𝜉
∆𝜉)

𝑠
   

      = (
𝛤𝜙

𝐽
𝑞12

∆𝜂

∆𝜂
)
𝑒

(𝜙𝑛𝑒–𝜙𝑠𝑒) − (
𝛤𝜙

𝐽
𝑞12

∆𝜂

∆𝜂
)
𝑤

(𝜙𝑛𝑤–𝜙𝑠𝑤) 

       + (
𝛤𝜙

𝐽
𝑞12

∆𝜉

∆𝜉
)
𝑛
(𝜙𝑛𝑒–𝜙𝑛𝑤) − (

𝛤𝜙

𝐽
𝑞12

∆𝜉

∆𝜉
)
𝑠
(𝜙𝑠𝑒–𝜙𝑠𝑤)              (A. 63)  

 

In the above equation, the simple interpolation can be employed to 

determine the values of (𝜙𝑛𝑒, 𝜙𝑠𝑒, 𝜙𝑛𝑤, and 𝜙𝑠𝑤 ) as follows: 

𝜙𝑛𝑒 =
1

4
[𝜙𝑁𝐸 + 𝜙𝑁 + 𝜙𝐸 + 𝜙𝑃]                                                            (A. 64)  

𝜙𝑠𝑒 =
1

4
[𝜙𝐸 + 𝜙𝑃 + 𝜙𝑆𝐸 + 𝜙𝑆]                                                              (A. 65)  

𝜙𝑛𝑤 =
1

4
[𝜙𝑁 + 𝜙𝑁𝑊 + 𝜙𝑃 + 𝜙𝑊]                                                         (A. 66) 

𝜙𝑠𝑤 =
1

4
[𝜙𝑃 + 𝜙𝑊 + 𝜙𝑆 + 𝜙𝑆𝑊]                                                           (A. 67) 

Equation A.65 is subtracted from equation A.64 and thus gets: 

𝜙𝑛𝑒 − 𝜙𝑠𝑒 =
1

4
[𝜙𝑁𝐸 + 𝜙𝑁 + 𝜙𝐸 + 𝜙𝑃] −

1

4
[𝜙𝐸 + 𝜙𝑃 + 𝜙𝑆𝐸 + 𝜙𝑆]   

 (A. 68) 

Re-arrangement the above equation and thus provides: 

𝜙𝑛𝑒 − 𝜙𝑠𝑒 =
1

4
[𝜙𝑁𝐸 − 𝜙𝑆𝐸 + 𝜙𝑁 − 𝜙𝑆]                                               (A. 69)  

In the same above method, the following values can be calculated by 

𝜙𝑛𝑤 − 𝜙𝑠𝑤 =
1

4
[𝜙𝑁 + 𝜙𝑁𝑊 + 𝜙𝑃 + 𝜙𝑊] −

1

4
[𝜙𝑃 + 𝜙𝑊 + 𝜙𝑆 + 𝜙𝑆𝑊]  

(A. 70) 
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                       =
1

4
[𝜙𝑁 − 𝜙𝑆 + 𝜙𝑁𝑊 − 𝜙𝑆𝑊]                                          (A. 71)  

 

𝜙𝑛𝑒 − 𝜙𝑛𝑤 =
1

4
[𝜙𝑁𝐸 + 𝜙𝑁 + 𝜙𝐸 + 𝜙𝑃] −

1

4
[𝜙𝑁 + 𝜙𝑁𝑊 + 𝜙𝑃 + 𝜙𝑊]       

(A. 72) 

                      =
1

4
[𝜙𝑁𝐸 − 𝜙𝑁𝑊 + 𝜙𝐸 − 𝜙𝑊]                                          (A. 73)  

 

𝜙𝑠𝑒 − 𝜙𝑠𝑤 =
1

4
[𝜙𝐸 + 𝜙𝑃 + 𝜙𝑆𝐸 + 𝜙𝑆] −

1

4
[𝜙𝑃 + 𝜙𝑊 + 𝜙𝑆 + 𝜙𝑆𝑊]           

(A. 74) 

                     =
1

4
[𝜙𝐸 − 𝜙𝑊 + 𝜙𝑆𝐸 − 𝜙𝑆𝑊]                                            (A. 75) 

 

Thus, the term 𝑆𝑑
𝜙

 can be given in the final form: 

𝑆𝑑
𝜙
= 𝐵𝐸𝜙𝐸 + 𝐵𝑊𝜙𝑊 + 𝐵𝑁𝜙𝑁 + 𝐵𝑆𝜙𝑆 + 𝐵𝑁𝐸𝜙𝑁𝐸 + 𝐵𝑆𝐸𝜙𝑆𝐸 + 𝐵𝑁𝑊𝜙𝑁𝑊 

         +𝐵𝑆𝑊𝜙𝑆𝑊                                                                                                (A. 76)              

Here, 

𝐵𝐸 =
1

4
[(
𝛤𝜙

𝐽
𝑞12

∆𝜉

∆𝜉
)
𝑛
− (

𝛤𝜙

𝐽
𝑞12

∆𝜉

∆𝜉
)
𝑠
]                                                   (A. 77)  

𝐵𝑊 = −
1

4
[(
𝛤𝜙

𝐽
𝑞12

∆𝜉

∆𝜉
)
𝑛
− (

𝛤𝜙

𝐽
𝑞12

∆𝜉

∆𝜉
)
𝑠
]                                              (A. 78)  

𝐵𝑁 =
1

4
[(
𝛤𝜙

𝐽
𝑞12

∆𝜂

∆𝜂
)
𝑒

− (
𝛤𝜙

𝐽
𝑞12

∆𝜂

∆𝜂
)
𝑤

]                                              (A. 79) 

𝐵𝑆 = −
1

4
[(
𝛤𝜙

𝐽
𝑞12

∆𝜂

∆𝜂
)
𝑒
− (

𝛤𝜙

𝐽
𝑞12

∆𝜂

∆𝜂
)
𝑤
]                                               (A. 80)  

𝐵𝑁𝐸 =
1

4
[(
𝛤𝜙

𝐽
𝑞12

∆𝜂

∆𝜂
)
𝑒
+ (

𝛤𝜙

𝐽
𝑞12

∆𝜉

∆𝜉
)
𝑛
]                                                 (A. 81)  

𝐵𝑁𝑊 = −
1

4
[(
𝛤𝜙

𝐽
𝑞12

∆𝜂

∆𝜂
)
𝑤
+ (

𝛤𝜙

𝐽
𝑞12

∆𝜉

∆𝜉
)
𝑛
]                                           (A. 82)  

𝐵𝑆𝐸 = −
1

4
[(
𝛤𝜙

𝐽
𝑞12

∆𝜂

∆𝜂
)
𝑒
+ (

𝛤𝜙

𝐽
𝑞12

∆𝜉

∆𝜉
)
𝑠
]                                              (A. 83)  
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𝐵𝑆𝑊 =
1

4
[(
𝛤𝜙

𝐽
𝑞12

∆𝜂

∆𝜂
)
𝑤
+ (

𝛤𝜙

𝐽
𝑞12

∆𝜉

∆𝜉
)
𝑠
]                                                (A. 84)  

 

Furthermore, the source term of the u-momentum equation is known as 

follows: 

𝑆𝑢  = 𝑆𝑑
𝑢 + 𝑏𝑢 + 𝑏𝑃

𝑢                                                                                   (A. 85)  

The coefficients 𝑏𝑢 and 𝑆𝑑
𝑢 in above equation can be written as follows:   

𝑏𝑢 = ∬[
𝜕

𝜕𝜉
[
Γ𝑢

𝐽
(𝛽11

2 𝜕𝑢

𝜕𝜉
+ 𝛽11𝛽12

𝜕𝑢

𝜕𝜂
)] +

𝜕

𝜕𝜂
[
Γ𝑢

𝐽
(𝛽12𝛽11

𝜕𝑢

𝜕𝜉
+ 𝛽12

2 𝜕𝑢

𝜕𝜂
)]  

      +
𝜕

𝜕𝜉
[
Γ𝑢

𝐽
(𝛽21𝛽11

𝜕𝑣

𝜕𝜉
+ 𝛽21𝛽12

𝜕𝑣

𝜕𝜂
)] +

𝜕

𝜕𝜂
[
Γ𝑢

𝐽
(𝛽22𝛽11

𝜕𝑣

𝜕𝜉
+ 𝛽22𝛽12

𝜕𝑣

𝜕𝜂
)]  

      −
2

3
𝜌 (

𝜕

𝜕𝜉
(𝛽11𝑘) +

𝜕

𝜕𝜂
(𝛽12𝑘))]𝑑𝜉𝑑𝜂                                             (A. 86)  

 

𝑏𝑢 = [
Γ𝑢∆𝜂

𝐽
(𝛽11

2 𝜕𝑢

𝜕𝜉
+ 𝛽11𝛽12

𝜕𝑢

𝜕𝜂
)]
𝑒
. 𝑤
𝑤
+ [

Γ𝑢∆𝜉

𝐽
(𝛽12𝛽11

𝜕𝑢

𝜕𝜉
+ 𝛽12

2 𝜕𝑢

𝜕𝜂
)]
𝑛
. 𝑤
𝑠

  

      + [
Γ𝑢∆𝜂

𝐽
(𝛽21𝛽11

𝜕𝑣

𝜕𝜉
+ 𝛽21𝛽11

𝜕𝑣

𝜕𝜂
)]
𝑒
. 𝑤
𝑤
+ [

Γ𝑢∆𝜉

𝐽
(𝛽22𝛽11

𝜕𝑣

𝜕𝜉
+

          𝛽22𝛽12
𝜕𝑣

𝜕𝜂
)]
𝑛
. 𝑤
𝑠
−
2

3
𝜌[∆𝜂𝛽11𝑘]

𝑒
. 𝑤
𝑤
−
2

3
𝜌[∆𝜉𝛽12𝑘]

𝑛
. 𝑤
𝑠
               (A. 87)  

 

𝑏𝑢 = [
Γ𝑢

𝐽

∆𝜂

∆𝜉
𝛽11
2 ]

𝑒
(𝑢𝐸–𝑢𝑃) − [

Γ𝑢

𝐽

∆𝜂

∆𝜉
𝛽11
2 ]

𝑤
(𝑢𝑃– 𝑢𝑊) + [

Γ𝑢

𝐽

∆𝜂

∆𝜂
𝛽11𝛽12]

𝑒

(𝑢𝑛𝑒  

         – 𝑢𝑠𝑒)  + [
Γ𝑢

𝐽

∆𝜉

∆𝜂
𝛽12
2 ]

𝑛

(𝑢𝑁–𝑢𝑃) − [
Γ𝑢

𝐽

∆𝜉

∆𝜂
𝛽12
2 ]

𝑠

(𝑢𝑃– 𝑢𝑆) +

         [
Γ𝑢

𝐽

∆𝜂

∆𝜉
𝛽21𝛽11]

𝑒
(𝑣𝐸– 𝑣𝑃) − [

Γ𝑢

𝐽

∆𝜂

∆𝜉
𝛽21𝛽11]

𝑤
(𝑣𝑃– 𝑣𝑊) +

         [
Γ𝑢

𝐽

∆𝜂

∆𝜂
𝛽21𝛽11]

𝑒

(𝑣𝑛𝑒– 𝑣𝑠𝑒) − [
Γ𝑢

𝐽

∆𝜂

∆𝜂
𝛽21𝛽11]

𝑤

(𝑣𝑛𝑤– 𝑣𝑠𝑤)  
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+ [
Γ𝑢

𝐽

∆𝜉

∆𝜉
𝛽22𝛽11]

𝑛
(𝑣𝑛𝑒– 𝑣𝑛𝑤) − [

Γ𝑢

𝐽

∆𝜉

∆𝜉
𝛽22𝛽11]

𝑠
(𝑣𝑠𝑒– 𝑣𝑠𝑤) +

[
Γ𝑢

𝐽

∆𝜉

∆𝜂
𝛽22𝛽12]

𝑛

(𝑣𝑁– 𝑣𝑃) − [
Γ𝑢

𝐽

∆𝜉

∆𝜂
𝛽22𝛽12]

𝑠

(𝑣𝑃– 𝑣𝑆) −
2

3
𝜌[∆𝜂𝛽11]𝑃 (𝑘𝑒–𝑘𝑤) −

2

3
𝜌[∆𝜉𝛽12]𝑃 (𝑘𝑛–𝑘𝑠)                                                                                            (A. 88)  

 

Also, in the u-momentum equation, the pressure terms 𝑏𝑃
𝑢 can be assessed 

as follows:    

𝑏𝑃
𝑢 = −∬[(

𝜕

𝜕𝜉
(𝛽11𝑝) +

𝜕

𝜕𝜂
(𝛽12𝑝))] 𝑑𝜉𝑑𝜂    

      = −[∆𝜂 𝛽11 𝑝]𝑤
𝑒 − [∆𝜉 𝛽12 𝑝]𝑠

𝑛  

      = −(∆𝜂 𝛽11)(𝑝𝑒 − 𝑝𝑤) − (∆𝜉 𝛽12)(𝑝𝑛 − 𝑝𝑠)                               (A. 89)  

 

Here, 𝑆𝑑
𝑢 = 𝑆𝑑

𝜙
 (Equation A.85). In addition, the pressure at cell faces (𝑝𝑒 ,

𝑝𝑤 ,  𝑝𝑛, and 𝑝𝑠) in above equation can be defined as shown:  

 

𝑝𝑒 =
𝑝𝐸+𝑝𝑃

2
                                                                                                  (A. 90)  

𝑝𝑤 =
𝑝𝑊+𝑝𝑃

2
                                                                                                (A. 91)  

𝑝𝑛 =
𝑝𝑁+𝑝𝑃

2
                                                                                                  (A. 92)  

𝑝𝑠 =
𝑝𝑆+𝑝𝑃

2
                                                                                                   (A. 93)  

 

Substituting the values of above equations in equation (A.89) gives: 

𝑏𝑃
𝑢 = −

1

2
(∆𝜂 𝛽11)(𝑝𝑒 − 𝑝𝑤) −

1

2
(∆𝜉 𝛽12)(𝑝𝑛 − 𝑝𝑠)  

      = −
1

2
[(∆𝜂 𝛽11)𝑃(𝑝𝐸 − 𝑝𝑊) + (∆𝜉 𝛽12)𝑃(𝑝𝑁 − 𝑝𝑆)]                  (A. 94)  

Identically, the source term of the v-momentum equation is expressed as 

follows: 
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𝑆𝑣  = 𝑆𝑑
𝑣 + 𝑏𝑣 + 𝑏𝑃

𝑣                                                                                    (A. 95)  

 In above equation, 𝑆𝑑
𝑣 = 𝑆𝑑

𝜙
 and hence the coefficient 𝑏𝑣 can be expressed 

as follows:   

𝑏𝑣 = ∬[
𝜕

𝜕𝜉
[
Γ𝑣

𝐽
(𝛽21

2 𝜕𝑣

𝜕𝜉
+ 𝛽21𝛽22

𝜕𝑣

𝜕𝜂
)] +

𝜕

𝜕𝜂
[
Γ𝑣

𝐽
(𝛽22𝛽21

𝜕𝑣

𝜕𝜉
+ 𝛽21

2 𝜕𝑣

𝜕𝜂
)]  

      +
𝜕

𝜕𝜉
[
Γ𝑣

𝐽
(𝛽11𝛽21

𝜕𝑢

𝜕𝜉
+ 𝛽11𝛽22

𝜕𝑢

𝜕𝜂
)] +

𝜕

𝜕𝜂
[
Γ𝑣

𝐽
(𝛽12𝛽21

𝜕𝑢

𝜕𝜉
+ 𝛽12𝛽22

𝜕𝑢

𝜕𝜂
)]  

      −
2

3
𝜌 (

𝜕

𝜕𝜉
(𝛽21𝑘) +

𝜕

𝜕𝜂
(𝛽22𝑘))]𝑑𝜉𝑑𝜂                                             (A. 96)  

𝑏𝑣 = [
Γ𝑣∆𝜂

𝐽
(𝛽21

2 𝜕𝑣

𝜕𝜉
+ 𝛽21𝛽22

𝜕𝑣

𝜕𝜂
)]
𝑒
. 𝑤
𝑤
+ [

Γ𝑣∆𝜉

𝐽
(𝛽22𝛽21

𝜕𝑣

𝜕𝜉
+ 𝛽22

2 𝜕𝑣

𝜕𝜂
)]
𝑛
.𝑤
𝑠

  

      + [
Γ𝑣∆𝜂

𝐽
(𝛽11𝛽21

𝜕𝑢

𝜕𝜉
+ 𝛽11𝛽22

𝜕𝑢

𝜕𝜂
)]
𝑒
. 𝑤
𝑤
+ [

Γ𝑣∆𝜉

𝐽
(𝛽12𝛽21

𝜕𝑢

𝜕𝜉
+

       𝛽12𝛽22
𝜕𝑢

𝜕𝜂
)]
𝑛
.𝑤
𝑠
 −

2

3
𝜌[∆𝜂𝛽21𝑘]

𝑒
. 𝑤
𝑤
−
2

3
𝜌[∆𝜉𝛽22𝑘]

𝑛
.𝑤
𝑠
                (A. 97)   

 

𝑏𝑣 =     [
Γ𝑣

𝐽

∆𝜂

∆𝜉
𝛽21
2 ]

𝑒
(𝑣𝐸– 𝑣𝑃) − [

Γ𝑣

𝐽

∆𝜂

∆𝜉
𝛽21
2 ]

𝑤
(𝑣𝑃– 𝑣𝑊) +

    [
Γ𝑣

𝐽

∆𝜂

∆𝜂
𝛽21𝛽22]

𝑒
(𝑣𝑛𝑒– 𝑣𝑠𝑒)+ [

Γ𝑣

𝐽

∆𝜉

∆𝜂
𝛽22
2 ]

𝑛
(𝑣𝑁–𝑣𝑃) −

    [
Γ𝑣

𝐽

∆𝜉

∆𝜂
𝛽22
2 ]

𝑠
(𝑣𝑃– 𝑣𝑆) + [

Γ𝑣

𝐽

∆𝜂

∆𝜉
𝛽11𝛽21]

𝑒
(𝑢𝐸– 𝑢𝑃)  

− [
Γ𝑣

𝐽

∆𝜂

∆𝜉
𝛽11𝛽21]

𝑤
(𝑢𝑃–𝑢𝑊) + [

Γ𝑣

𝐽

∆𝜂

∆𝜂
𝛽11𝛽22]

𝑒
(𝑢𝑛𝑒–𝑢𝑠𝑒) −

    [
Γ𝑣

𝐽

∆𝜂

∆𝜂
𝛽11𝛽22]

𝑤
(𝑢𝑛𝑤– 𝑢𝑠𝑤)+ [

Γ𝑣

𝐽

∆𝜉

∆𝜉
𝛽12𝛽21]

𝑛
(𝑢𝑛𝑒–𝑢𝑛𝑤) −

    [
Γ𝑣

𝐽

∆𝜉

∆𝜉
𝛽12𝛽21]

𝑠
(𝑢𝑠𝑒–𝑢𝑠𝑤) + [

Γ𝑣

𝐽

∆𝜉

∆𝜂
𝛽12𝛽22]

𝑛
(𝑢𝑁–𝑢𝑃)  

 − [
Γ𝑣

𝐽

∆𝜉

∆𝜂
𝛽12𝛽22]

𝑠
(𝑢𝑃–𝑢𝑆) −

2

3
𝜌[∆𝜂𝛽21]𝑃 (𝑘𝑒–𝑘𝑤) −

    
2

3
𝜌[∆𝜉𝛽22]𝑃 (𝑘𝑛– 𝑘𝑠)                                                                             (A. 98)  
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Moreover, in the v-momentum equation, the pressure terms 𝑏𝑃
𝑣 can be 

assessed as follows: 

𝑏𝑃
𝑣 = −∬[(

𝜕

𝜕𝜉
(𝛽21𝑝) +

𝜕

𝜕𝜂
(𝛽22𝑝))] 𝑑𝜉𝑑𝜂    

      = −[∆𝜂 𝛽21 𝑝]𝑤
𝑒 − [∆𝜉 𝛽22 𝑝]𝑠

𝑛  

      = −(∆𝜂 𝛽21)(𝑝𝑒 − 𝑝𝑤) − (∆𝜉 𝛽22)(𝑝𝑛 − 𝑝𝑠)                               (A. 99)  

 

Substituting the values in equations (A.90 to A.93) in above equation 

gives: 

𝑏𝑃
𝑣 = −

1

2
(∆𝜂 𝛽21)(𝑝𝑒 − 𝑝𝑤) −

1

2
(∆𝜉 𝛽22)(𝑝𝑛 − 𝑝𝑠)  

      = −
1

2
[(∆𝜂 𝛽21)𝑃(𝑝𝐸 − 𝑝𝑊) + (∆𝜉 𝛽22)𝑃(𝑝𝑁 − 𝑝𝑆)]               (A. 100)  

In the energy equation, the coefficients value of (𝑏𝑇  and 𝑏𝑃
𝑇) equal to zero 

and therefore, the source terms can be written as follows:  

𝑆𝑇 = 𝑆𝑑
𝑇                                                                                                      (A. 101)  

In the k-equation, the source term is given by: 

𝑆𝑘 = 𝑆𝑑
𝑘 + 𝑏𝑘 + 𝑏𝑃

𝑘                                                                                  (A. 102)  

Here, 

𝑏𝑃
𝑘 = 0                                                                                                        (A. 103) 

𝑏𝑘 = ∬[𝑃𝑘(𝜉, 𝜂) − 𝜌(𝜀𝑤(𝜉, 𝜂) + 𝜀)] 𝐽 𝑑𝜉𝑑𝜂                                    (A. 104)  

In the ɛ-equation, the source term is expressed as: 

𝑆𝜀 = 𝑆𝑑
𝜀 + 𝑏𝜀 + 𝑏𝑃

𝜀                                                                                   (A. 105)  
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Here, 

𝑏𝑃
𝜀 = 0                                                                                                        (A. 106)  

𝑏𝜀 = ∬[𝑐1𝑓1𝑃𝑘(𝜉, 𝜂)
𝜀

𝑘
− 𝜌𝑐2𝑓2

𝜀2

𝑘
+ 𝜙𝜀]  𝐽 𝑑𝜉𝑑𝜂                             (A. 107)  

 

The integrating (𝑏𝑘) and (𝑏𝜀) in equations A.104 and A.107, respectively, 

over the control volume are given by: 

𝑏𝑘 = 2𝜇𝑡 (
∆𝜉∆𝜂

𝐽
)
𝑃
[(
𝛽11

∆𝜉
)
𝑒
𝑢𝑒 − (

𝛽11

∆𝜉
)
𝑤
𝑢𝑤 + (

𝛽12

∆𝜂
)
𝑛
𝑢𝑛 − (

𝛽12

∆𝜂
)
𝑠
𝑢𝑠]

2

  

      +2𝜇𝑡 (
∆𝜉∆𝜂

𝐽
)
𝑃
[(
𝛽21

∆𝜉
)
𝑒
𝑣𝑒 − (

𝛽21

∆𝜉
)
𝑤
𝑣𝑤 + (

𝛽22

∆𝜂
)
𝑛
𝑣𝑛 − (

𝛽22

∆𝜂
)
𝑠
𝑣𝑠]

2

    

      +2𝜇𝑡 (
∆𝜉∆𝜂

𝐽
)
𝑃
[(
𝛽21

∆𝜉
)
𝑒
𝑢𝑒 − (

𝛽21

∆𝜉
)
𝑤
𝑢𝑤 + (

𝛽22

∆𝜂
)
𝑛
𝑢𝑛 − (

𝛽22

∆𝜂
)
𝑠
𝑢𝑠]

2

   

      +2𝜇𝑡 (
∆𝜉∆𝜂

𝐽
)
𝑃
[(
𝛽11

∆𝜉
)
𝑒
𝑣𝑒 − (

𝛽11

∆𝜉
)
𝑤
𝑣𝑤 + (

𝛽12

∆𝜂
)
𝑛
𝑣𝑛 − (

𝛽12

∆𝜂
)
𝑠
𝑣𝑠]

2

    

      −
2

3
𝜌(∆𝜉∆𝜂)𝑃𝑘𝑃 [(

𝛽11

∆𝜉
)
𝑒
𝑢𝑒 − (

𝛽11

∆𝜉
)
𝑤
𝑢𝑤 + (

𝛽12

∆𝜂
)
𝑛
𝑢𝑛 − (

𝛽12

∆𝜂
)
𝑠
𝑢𝑠]    

      −
2

3
𝜌(∆𝜉∆𝜂)𝑃𝑘𝑃 [(

𝛽21

∆𝜉
)
𝑒
𝑣𝑒 − (

𝛽21

∆𝜉
)
𝑤
𝑣𝑤 + (

𝛽22

∆𝜂
)
𝑛
𝑣𝑛 − (

𝛽22

∆𝜂
)
𝑠
𝑣𝑠]   

      −2𝜇 (
∆𝜉∆𝜂

𝐽
)
𝑃
[(
𝛽11

∆𝜉
)
𝑒
√𝑘𝑒 − (

𝛽11

∆𝜉
)
𝑤
√𝑘𝑤 + (

𝛽12

∆𝜂
)
𝑛
√𝑘𝑛 −

         (
𝛽12

∆𝜂
)
𝑠
√𝑘𝑠]

2

 − 2𝜇 (
∆𝜉∆𝜂

𝐽
)
𝑃
[(
𝛽21

∆𝜉
)
𝑒
√𝑘𝑒 − (

𝛽21

∆𝜉
)
𝑤
√𝑘𝑤 +

        (
𝛽22

∆𝜂
)
𝑛
√𝑘𝑛 − (

𝛽22

∆𝜂
)
𝑠
√𝑘𝑠]

2

 −𝜌𝜀𝑃(𝐽∆𝜉∆𝜂)𝑃                                   (A. 108) 

 

𝑏𝜀 = 𝑐1𝑓1 (2𝜇𝑡
∆𝜉∆𝜂

𝐽
)
𝑃
{[(

𝛽11

∆𝜉
)
𝑒
𝑢𝑒 − (

𝛽11

∆𝜉
)
𝑤
𝑢𝑤 + (

𝛽12

∆𝜂
)
𝑛
𝑢𝑛 −

(
𝛽12

∆𝜂
)
𝑠
𝑢𝑠]

2

 + [(
𝛽21

∆𝜉
)
𝑒
𝑣𝑒 − (

𝛽21

∆𝜉
)
𝑤
𝑣𝑤 + (

𝛽22

∆𝜂
)
𝑛
𝑣𝑛 − (

𝛽22

∆𝜂
)
𝑠
𝑣𝑠]

2
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+[(
𝛽21

∆𝜉
)
𝑒
𝑢𝑒 − (

𝛽21

∆𝜉
)
𝑤
𝑢𝑤 + (

𝛽22

∆𝜂
)
𝑛
𝑢𝑛 − (

𝛽22

∆𝜂
)
𝑠
𝑢𝑠]

2

  

+[(
𝛽11

∆𝜉
)
𝑒
𝑣𝑒 − (

𝛽11

∆𝜉
)
𝑤
𝑣𝑤 + (

𝛽12

∆𝜂
)
𝑛
𝑣𝑛 − (

𝛽12

∆𝜂
)
𝑠
𝑣𝑠]

2

} (
𝜀𝑃

𝑘𝑃
)   

  −𝜌𝑐2𝑓2(∆𝜉∆𝜂)𝑃 (
𝜀𝑃
2

𝑘𝑃
) + 2(𝜇𝑡)𝑃 (

𝜇

𝜌
) (𝐺𝑢11 + 𝐺𝑢12 + 𝐺𝑢22 + 𝐺𝑣11 +

    𝐺𝑣12 + 𝐺𝑣22)                                                                                         (A. 109)  

 

So, the terms (𝐺𝑢11,  𝐺𝑢12,  𝐺𝑢22,  𝐺𝑣11,  𝐺𝑣12, and 𝐺𝑣22) can be evaluated 

as follows: 

𝐺𝜙11 = (
∆𝜉∆𝜂

𝐽
)
𝑃
[(
1

𝐽

𝛽11𝛽11

∆𝜉∆𝜉
)
𝑒
(𝜙𝐸–𝜙𝑃) − (

1

𝐽

𝛽11𝛽11

∆𝜉∆𝜉
)
𝑤
(𝜙𝑃–𝜙𝑤)  

          + (
1

𝐽

𝛽11𝛽12

∆𝜉∆𝜂
)
𝑒
(𝜙𝑛𝑒–𝜙𝑠𝑒)−(

1

𝐽

𝛽11𝛽12

∆𝜉∆𝜂
)
𝑤
(𝜙𝑛𝑤–𝜙𝑠𝑤)                

          + (
1

𝐽

𝛽12𝛽11

∆𝜉∆𝜂
)
𝑛
(𝜙𝑛𝑒–𝜙𝑛𝑤) − (

1

𝐽

𝛽12𝛽11

∆𝜉∆𝜂
)
𝑠
(𝜙𝑠𝑒–𝜙𝑠𝑤)          

          + (
1

𝐽

𝛽12𝛽12

∆𝜂∆𝜂
)
𝑛
(𝜙𝑁–𝜙𝑃) −(

1

𝐽

𝛽12𝛽12

∆𝜂∆𝜂
)
𝑠
(𝜙𝑃–𝜙𝑆)]

2

                (A. 110) 

 

𝐺𝜙12 = (
∆𝜉∆𝜂

𝐽
)
𝑃
[(
1

𝐽

𝛽11𝛽21

∆𝜉∆𝜉
)
𝑒
(𝜙𝐸–𝜙𝑃) − (

1

𝐽

𝛽11𝛽21

∆𝜉∆𝜉
)
𝑤
(𝜙𝑃–𝜙𝑤)  

          + (
1

𝐽

𝛽11𝛽22

∆𝜉∆𝜂
)
𝑒
(𝜙𝑛𝑒–𝜙𝑠𝑒)−(

1

𝐽

𝛽11𝛽22

∆𝜉∆𝜂
)
𝑤
(𝜙𝑛𝑤–𝜙𝑠𝑤)  

          + (
1

𝐽

𝛽12𝛽21

∆𝜉∆𝜂
)
𝑛
(𝜙𝑛𝑒–𝜙𝑛𝑤)−(

1

𝐽

𝛽12𝛽21

∆𝜉∆𝜂
)
𝑠
(𝜙𝑠𝑒–𝜙𝑠𝑤)  

          + (
1

𝐽

𝛽12𝛽22

∆𝜂∆𝜂
)
𝑛
(𝜙𝑁–𝜙𝑃)−(

1

𝐽

𝛽12𝛽22

∆𝜂∆𝜂
)
𝑠
(𝜙𝑃–𝜙𝑆)]

2

                  (A. 111)           

 

𝐺𝜙22 = (
∆𝜉∆𝜂

𝐽
)
𝑃
[(
1

𝐽

𝛽21𝛽21

∆𝜉∆𝜉
)
𝑒
(𝜙𝐸–𝜙𝑃) − (

1

𝐽

𝛽21𝛽21

∆𝜉∆𝜉
)
𝑤
(𝜙𝑃–𝜙𝑤)  

          + (
1

𝐽

𝛽21𝛽22

∆𝜉∆𝜂
)
𝑒
(𝜙𝑛𝑒–𝜙𝑠𝑒)−(

1

𝐽

𝛽21𝛽22

∆𝜉∆𝜂
)
𝑤
(𝜙𝑛𝑤–𝜙𝑠𝑤)  
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          + (
1

𝐽

𝛽21𝛽22

∆𝜉∆𝜂
)
𝑛
(𝜙𝑛𝑒–𝜙𝑛𝑤)−(

1

𝐽

𝛽21𝛽22

∆𝜉∆𝜂
)
𝑠
(𝜙𝑠𝑒–𝜙𝑠𝑤)  

          + (
1

𝐽

𝛽22𝛽22

∆𝜂∆𝜂
)
𝑛
(𝜙𝑁–𝜙𝑃)−(

1

𝐽

𝛽22𝛽22

∆𝜂∆𝜂
)
𝑠
(𝜙𝑃–𝜙𝑆)]

2

                  (A. 112)  

 

Where, (𝜙) represents that the (𝑢 or 𝑣). Finally, the discretized equations 

(equation 3.49 in chapter three) are recursively solved employing Tri-

Diagonal Matrix Algorithm (TDMA). So, the specifics of the (TDMA) 

steps are not offered here, but it is given in specifics in [52]. The CFD 

code based on FORTRAN 90 has also been developed to carry out the 

current investigation numerical solution. In addition  to, through solving 

the equations 3.48 and 3.49 (in chapter three) can be calculated the 

components of velocity 𝑢∗ and 𝑣∗ as follows: 

𝑢𝑝
∗ =

1

𝐴𝑃
𝑢∑ 𝐴𝑛𝑏

𝑢
𝑛𝑏 𝑢𝑛𝑏

∗ + 𝑆𝑑
𝑢 + 𝑏𝑢 + 𝐵𝑃

𝑢(𝑝𝑒
∗ − 𝑝𝑤

∗ ) + 𝐶𝑃
𝑢(𝑝𝑛

∗ − 𝑝𝑠
∗)  

(A. 113) 

𝑣𝑝
∗ =

1

𝐴𝑃
𝑣 ∑ 𝐴𝑛𝑏

𝑣
𝑛𝑏 𝑣𝑛𝑏

∗ + 𝑆𝑑
𝑣 + 𝑏𝑣 + 𝐵𝑃

𝑣(𝑝𝑒
∗ − 𝑝𝑤

∗ ) + 𝐶𝑃
𝑣(𝑝𝑛

∗ − 𝑝𝑠
∗)    

(A. 114) 

               

In above equations, can be obtained the velocities  𝑢∗ and  𝑣∗ that will not 

content the continuity equation. So, the velocities corrections  𝑢’ and  𝑣 ’ 

and the pressure correction  𝑝’ is attached to  𝑢∗ , 𝑣∗ and  𝑝∗ respectively, 

are issued as follows:                    

𝑢 = 𝑢∗ + 𝑢’                                                                                               (A. 115) 

𝑣 = 𝑣∗ + 𝑣 ’                                                                                               (A. 116) 

𝑝 = 𝑝∗ + 𝑝’                                                                                               (A. 117)
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Both the continuity and momentum equations are satisfied by the 

components of correct velocity 𝑢 and  𝑣. By deducting equations A.113 

and A.114 from equations 3.48 and 3.49 (in chapter three), respectively, 

the velocity corrections  𝑢’ and  𝑣 ’ are coupled with pressure corrections 

 𝑝’ as given by: 

𝑢𝑝 − 𝑢𝑝
∗ =

1

𝐴𝑃
[∑ 𝐴𝑛𝑏

𝑢
𝑛𝑏 𝑢𝑛𝑏 + 𝑆𝑑

𝑢 + 𝑏𝑢]⏟                  
+ 𝐵𝑃

𝑢(𝑝𝑒 − 𝑝𝑤) + 𝐶𝑃
𝑢(𝑝𝑛 − 𝑝𝑠)  

                 −
1

𝐴𝑃
[∑ 𝐴𝑛𝑏

𝑢
𝑛𝑏 𝑢𝑛𝑏

∗ + 𝑆𝑑
𝑢 + 𝑏𝑢]⏟                  

− 𝐵𝑃
𝑢(𝑝𝑒

∗ − 𝑝𝑤
∗ ) − 𝐶𝑃

𝑢(𝑝𝑛
∗ − 𝑝𝑠

∗)   

(A. 118) 

 

 𝑣𝑝 − 𝑣𝑝
∗ =

1

𝐴𝑃
[∑ 𝐴𝑛𝑏

𝑣
𝑛𝑏 𝑣𝑛𝑏 + 𝑆𝑑

𝑣 + 𝑏𝑣]⏟                
+ 𝐵𝑃

𝑣(𝑝𝑒 − 𝑝𝑤) + 𝐶𝑃
𝑣(𝑝𝑛 − 𝑝𝑠) 

                 −
1

𝐴𝑃
[∑ 𝐴𝑛𝑏

𝑣
𝑛𝑏 𝑣𝑛𝑏

∗ + 𝑆𝑑
𝑣 + 𝑏𝑣]⏟                  

− 𝐵𝑃
𝑣(𝑝𝑒

∗ − 𝑝𝑤
∗ ) − 𝐶𝑃

𝑣(𝑝𝑛
∗ − 𝑝𝑠

∗)     

(A. 119) 

 

Depended on the approximation of the SIMPLE algorithm, the underlined 

terms on a right side from above equations are neglected. It is also possible 

to re-write the above equations as follows: 

 

𝑢𝑝 − 𝑢𝑝
∗ = 𝐵𝑃

𝑢(𝑝𝑒 − 𝑝𝑒
∗) − 𝐵𝑃

𝑢(𝑝𝑤 − 𝑝𝑤
∗ ) + 𝐶𝑃

𝑢(𝑝𝑛 − 𝑝𝑛
∗) − 𝐶𝑃

𝑢(𝑝𝑠 − 𝑝𝑠
∗)  

(A. 120) 

𝑣𝑝 − 𝑣𝑝
∗ = 𝐵𝑃

𝑣(𝑝𝑒 − 𝑝𝑒
∗) − 𝐵𝑃

𝑣(𝑝𝑤 − 𝑝𝑤
∗ ) + 𝐶𝑃

𝑣(𝑝𝑛 − 𝑝𝑛
∗) − 𝐶𝑃

𝑣(𝑝𝑠 − 𝑝𝑠
∗)     

(A. 121)        

Substituting equations A.115 to A.117 into equations A.120 and A.121 

gives as: 

𝑢𝑃
’ = 𝐵𝑃

𝑢𝑝𝑒
’ − 𝐵𝑃

𝑢𝑝𝑤
’ + 𝐶𝑃

𝑢𝑝𝑛
’ − 𝐶𝑃

𝑢𝑝𝑠
’                                                   (A. 122)                                                                  
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𝑣𝑃
’ = 𝐵𝑃

𝑣𝑝𝑒
’ − 𝐵𝑃

𝑣𝑝𝑤
’ + 𝐶𝑃

𝑣𝑝𝑛
’ − 𝐶𝑃

𝑣𝑝𝑠
’                                                    (A. 123) 

The components of correct velocity  𝑢  and  𝑣  can be calculated by 

substituting equations A.122 and A.123 into equations A.115 and A.116 

as follows: 

𝑢𝑃 = 𝑢𝑃
∗+𝐵𝑃

𝑢(𝑝𝑒
’ − 𝑝𝑤

’ ) + 𝐶𝑃
𝑢(𝑝𝑛

’ − 𝑝𝑠
’ )                                             (A. 124) 

  

𝑣𝑃 = 𝑣𝑃
∗+𝐵𝑃

𝑣(𝑝𝑒
’ − 𝑝𝑤

’ ) + 𝐶𝑃
𝑣(𝑝𝑛

’ − 𝑝𝑠
’ )                                              (A. 125)    

                                                       

The correction of contra-variant velocity components  𝑈𝑐  and  𝑉𝑐 can be 

determined by substituting equations A.124 and A.125 into equations 3.32 

and 3.33 (in chapter three) as follows: 

𝑈𝑐 = [𝑢𝑃
∗+𝐵𝑃

𝑢(𝑝𝑒
’ − 𝑝𝑤

’ ) + 𝐶𝑃
𝑢(𝑝𝑛

’ − 𝑝𝑠
’ )]𝑦𝜂 − [𝑣𝑃

∗+𝐵𝑃
𝑣(𝑝𝑒

’ − 𝑝𝑤
’ ) +

           𝐶𝑃
𝑣(𝑝𝑛

’ − 𝑝𝑠
’ )]𝑥𝜂                                                                            (A. 126)  

 

𝑉𝑐 = [𝑢𝑃
∗+𝐵𝑃

𝑣(𝑝𝑒
’ − 𝑝𝑤

’ ) + 𝐶𝑃
𝑣(𝑝𝑛

’ − 𝑝𝑠
’ )]𝑦𝜉 − [𝑢𝑃

∗+𝐵𝑃
𝑢(𝑝𝑒

’ − 𝑝𝑤
’ ) +

           𝐶𝑃
𝑢(𝑝𝑛

’ − 𝑝𝑠
’ )]𝑦𝜉                                                                             (A. 127)   

Rearranging above equations obtains: 

𝑈𝑐 = 𝑈𝑐 ∗ + (𝐵𝑃
𝑢𝑦𝜂 − 𝐵𝑃

𝑣𝑥𝜂)(𝑝𝑒
’ − 𝑝𝑤

’ ) 

      + (𝐶𝑃
𝑢𝑦𝜂 − 𝐶𝑃

𝑣𝑥𝜂)(𝑝𝑛
’ − 𝑝𝑠

’ )⏟                                                                           (A. 128)            

𝑉𝑐 = 𝑉𝑐 ∗ + (𝐶𝑃
𝑣𝑥𝜉 − 𝐶𝑃

𝑢 𝑦𝜉)(𝑝𝑛
’ − 𝑝𝑠

’ ) 

      + (𝐵𝑃
𝑣𝑥𝜉 − 𝐵𝑃

𝑢 𝑦𝜉)(𝑝𝑛
’ − 𝑝𝑠

’ )⏟                                                                          (A. 129)               

It must be observed that, depended on the approximation of the SIMPLE 

algorithm [55]. The last two terms of Equations A.128 and A.129 are 
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neglected if the computational grid is almost orthogonal. These equations 

can thus be updated as: 

𝑈𝑐 = 𝑈𝑐 ∗ + 𝐵(𝑝𝑒
’ − 𝑝𝑤

’ )                                                                      (A. 130)  

𝑉𝑐 = 𝑉𝑐 ∗ + 𝐶(𝑝𝑛
’ − 𝑝𝑆

’ )                                                                        (A. 131)                                                                                    

 

Here; 

𝐵 = 𝐵𝑃
𝑢 𝑦𝜂 − 𝐵𝑃

𝑣 𝑥𝜂                                                                                  (A. 132)                                                                                        

𝐶 = 𝐶𝑃
𝑣𝑥𝜉 − 𝐶𝑃

𝑢 𝑦𝜉                                                                                   (A. 133)                                                                                             

 

The discretized of continuity equation can be expressed as: 

(𝜌 ∆𝜂 𝑈𝑐)𝑒 − (𝜌 ∆𝜂 𝑈
𝑐)𝑤 + (𝜌 ∆𝜉 𝑉

𝑐)𝑛 − (𝜌 ∆𝜉 𝑉
𝑐)𝑠 = 0         (A. 134)                            

Replacing the velocities of the correct face contra-variants over to the 

above equations affords: 

𝐴𝑃𝑃𝑃
’ = 𝐴𝐸𝑃𝐸

’ + 𝐴𝑊𝑃𝑊
’ + 𝐴𝑁𝑃𝑁

’ + 𝐴𝑆𝑃𝑆
’ + 𝑆𝑚                                (A. 135)                                                

Here; 

𝐴𝐸 = (𝜌 ∆𝜂 𝐵)𝑒                                                                                        (A. 136) 

𝐴𝑊 = (𝜌 ∆𝜂 𝐵)𝑤                                                                                     (A. 137)                                                                                              

𝐴𝑁 = (𝜌 ∆𝜉 𝐶)𝑛                                                                                       (A. 138) 

𝐴𝑆 = (𝜌 ∆𝜉 𝐶)𝑠                                                                                        (A. 139)                                                                                              

Where  𝑆𝑚  represents the mass imbalance on a control volume and thus it 

can be expressed by: 

𝑆𝑚 = (𝜌 ∆𝜂 𝑈
𝑐∗)𝑒 − (𝜌 ∆𝜂 𝑈

𝑐∗)𝑤 + (𝜌 ∆𝜉 𝑉
𝑐∗)𝑛 − (𝜌 ∆𝜉 𝑉

𝑐∗)𝑠 

(A. 140) 
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The momentum interpolation method (proposed by Rhie and Chow  [55]) 

is introduced in the present investigation for this purpose and to prevent 

unreal pressure oscillation. Therefore, at the nodes P and E, the discretized 

u-momentum equation can be updated as. 

𝑢𝑝 =
1

(𝐴𝑃
𝑢)
𝑃

[∑ 𝐴𝑛𝑏
𝑢

𝑛𝑏 𝑢𝑛𝑏 + 𝑆𝑑
𝑢 + 𝑏𝑢]𝑃 −

1

(𝐴𝑃
𝑢)
𝑃

[(∆𝜂𝛽11)𝑝(𝑝𝑒 − 𝑝𝑤)  

 
       +(∆𝜉𝛽12)𝑝

(𝑝𝑛 − 𝑝𝑠)]
𝑃
                                                                  (A. 141)  

 

𝑢𝐸 =
1

(𝐴𝑃
𝑢)
𝐸

[∑ 𝐴𝑛𝑏
𝑢

𝑛𝑏 𝑢𝑛𝑏 + 𝑆𝑑
𝑢 + 𝑏𝑢]𝐸 −

1

(𝐴𝑃
𝑢)
𝐸

[(∆𝜂𝛽11)𝑝(𝑝𝑒 − 𝑝𝑤)  

 
       +(∆𝜉𝛽12)𝑝

(𝑝𝑛 − 𝑝𝑠)]
𝐸
                                                                  (A. 142)  

 

The velocity on the east face can in a similar way be expressed as: 

𝑢𝑒 =
1

(𝐴𝑃
𝑢)
𝑒

[∑ 𝐴𝑛𝑏
𝑢

𝑛𝑏 𝑢𝑛𝑏 + 𝑆𝑑
𝑢 + 𝑏𝑢]𝑒

⏟                    
−

1

(𝐴𝑃
𝑢)
𝑒⏟
[(∆𝜂𝛽11)𝑒(𝑝𝐸 − 𝑝𝑃)  

 
       +(∆𝜉𝛽12)𝑒

(𝑝𝑛𝑒 − 𝑝𝑠𝑒)]
𝑒
                                                               (A. 143)  

The underline-terms in the above equation are interpolated linearly as 

shown below:  

1

(𝐴𝑃
𝑢)
𝑒

(∑ 𝐴𝑛𝑏
𝑢

𝑛𝑏 𝑢𝑛𝑏 + 𝑆𝑑
𝑢 + 𝑏𝑢)𝑒 = 𝑓𝑒

+ 1

(𝐴𝑃
𝑢)
𝐸

(∑ 𝐴𝑛𝑏
𝑢

𝑛𝑏 𝑢𝑛𝑏 + 𝑆𝑑
𝑢 + 𝑏𝑢)𝐸  

                                                    +(1 − 𝑓𝑒
+)

1

(𝐴𝑃
𝑢)
𝑃

(∑ 𝐴𝑛𝑏
𝑢

𝑛𝑏 𝑢𝑛𝑏 + 𝑆𝑑
𝑢 + 𝑏𝑢)𝑃  

                         (A. 144)  

 
1

(𝐴𝑃
𝑢)
𝑒

= 𝑓𝑒
+ 1

(𝐴𝑃
𝑢)
𝐸

+ (1 − 𝑓𝑒
+)

1

(𝐴𝑃
𝑢)
𝑃

                                                     (A. 145)                                                                      

Here, 𝑓𝑒
+ indicates that the linear interpolation factor and it is recognized 

as: 
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𝑓𝑒
+ =

∆𝜉𝑃

2 𝛿𝜉𝑒
                                                                                                 (A. 146)  

 

After all of the above, it is possible to re-arrange the equations A.141 and 

A.142 and thus can be obtained as: 

1

(𝐴𝑃
𝑢)
𝑃

[∑ 𝐴𝑛𝑏
𝑢

𝑛𝑏 𝑢𝑛𝑏 + 𝑆𝑑
𝑢 + 𝑏𝑢]𝑃 = 𝑢𝑝 +

1

(𝐴𝑃
𝑢)
𝑃

[(∆𝜂𝛽11)𝑝(𝑝𝑒 − 𝑝𝑤)  

 
                                                           +(∆𝜉𝛽12)𝑝

(𝑝𝑛 − 𝑝𝑠)]
𝑃
              (A. 147)                                                               

1

(𝐴𝑃
𝑢)
𝐸

[∑ 𝐴𝑛𝑏
𝑢

𝑛𝑏 𝑢𝑛𝑏 + 𝑆𝑑
𝑢 + 𝑏𝑢]𝐸 = 𝑢𝐸 +

1

(𝐴𝑃
𝑢)
𝐸

[(∆𝜂𝛽11)𝑝(𝑝𝑒 − 𝑝𝑤)  

 
                                                           +(∆𝜉𝛽12)𝑝

(𝑝𝑛 − 𝑝𝑠)]
𝐸
             (A. 148)                                                               

 

Replacing equations A.148 and A.147 into equation A.144, affords as: 

1

(𝐴𝑃
𝑢)
𝑒

(∑ 𝐴𝑛𝑏
𝑢

𝑛𝑏 𝑢𝑛𝑏 + 𝑏𝑢)𝑒 = 𝑓𝑒
+ [𝑢𝐸 +

1

(𝐴𝑃
𝑢)
𝐸

[(∆𝜂𝛽11)𝑝(𝑝𝑒 − 𝑝𝑤)   

 
         +(∆𝜉𝛽12)𝑝

(𝑝𝑛 − 𝑝𝑠)]
𝐸
] + (1 − 𝑓𝑒

+) [𝑢𝑝 +

      
1

(𝐴𝑃
𝑢)
𝑃

[(∆𝜂𝛽11)𝑝(𝑝𝑒 − 𝑝𝑤) 
 

+(∆𝜉𝛽12)𝑝
(𝑝𝑛 − 𝑝𝑠)]

𝑃
]  

(A. 149) 

Replacing equations A.149 in equation A.143, affords as: 

 

𝑢𝑒 = 𝑓𝑒
+ [𝑢𝐸 +

1

(𝐴𝑃
𝑢)
𝐸

[(∆𝜂𝛽11)(𝑝𝑒 − 𝑝𝑤)+(∆𝜉𝛽12)(𝑝𝑛 − 𝑝𝑠)]𝐸]   

      +(1 − 𝑓𝑒
+) [𝑢𝑝 +

1

(𝐴𝑃
𝑢)
𝑃

[(∆𝜂𝛽11)(𝑝𝑒 − 𝑝𝑤)+(∆𝜉𝛽12)(𝑝𝑛 − 𝑝𝑠)]𝑃]   

     −
1

(𝐴𝑃
𝑢)
𝑒

[(∆𝜂𝛽11)(𝑝𝐸 − 𝑝𝑃)+(∆𝜉𝛽12)(𝑝𝑛 − 𝑝𝑠)]𝑒                        (A. 150)  

 

Re-arrangement of the above equation, affords: 
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𝑢𝑒 = [𝑓𝑒
+𝑢𝐸 + (1 − 𝑓𝑒

+)𝑢𝑝] [
1

(𝐴𝑃
𝑢)
𝑒

[(∆𝜂𝛽11)(𝑝𝐸 − 𝑝𝑃)+(∆𝜉𝛽12)(𝑝𝑛 −

         𝑝𝑠)]𝑒]   +𝑓𝑒
+ [

1

(𝐴𝑃
𝑢)
𝐸

[(∆𝜂𝛽11)(𝑝𝑒 − 𝑝𝑤)+(∆𝜉𝛽12)(𝑝𝑛 − 𝑝𝑠)]𝐸]    

      +(1 − 𝑓𝑒
+) [

1

(𝐴𝑃
𝑢)
𝑃

[(∆𝜂𝛽11)(𝑝𝑒 − 𝑝𝑤) + (∆𝜉𝛽12)(𝑝𝑛 − 𝑝𝑠)]𝑃]   

(A. 151) 

 

The same procedure is employed to determine  𝑢𝑤 , 𝑢𝑛  and  𝑢𝑠 at w, n, 

and s faces, respectively.  
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APPENDIX B:  

EXPERIMENTAL SET-UP  

 

 

 

 

Figure B.1: (a) Pressure taps, (b) Side view of test section, (c) Insulation of test 

section, (d) installation of thermocouples on target surface. 

 

 

Figure B.2: CNC machine used to fabricate (a) target shapes, (b) acrylic surfaces. 

Inlet Pressure Tap 

Outlet Pressure Tap 

(a) (b) 

(a) 

(c) 

Insulation 

Thermocouples (d) Thermocouples 

(b) Slot 
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Figure B.3: (a) Calibration device, (b) Reference thermocouple, (c) Electrical heater. 

 

 
 

  

 

 

 

 

 

Figure B.4: (a) Schematic diagram of heater, (b) Electrical heater, (c) Hole depth of 

bottom view for target surface. 

(a) (b) 

(b) Thermocouples holes 

(a) 

(c) 

110 mm 6 mm 6 mm 

Hole depth of 4 mm & 

Hole diameter of 2 mm 
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Figure B.5: (a) AC power regulator (Variac AC), (b) Voltage stabilizer. 

 

 

Figure B.6: The parts of the storage and control system. 

 

 

Figure B.7: The parts of the cooling system (a) Radiator, (b) Fan. 

(a) (b) 

(a) (b) 
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Figure B.8: (a) Flowmeter, (b) Flow sensor, (c) Method of connecting the flow 

sensor to the Arduino and digital LCD screen. 

 

 

(a) 

(c) 

(b) Digital LCD 

Flow 

sensor 
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Figure B.9: (a) Tube Manometer, (b) Pressure sensor with LCD 

 

 
  

                    Figure B.10: (a) Data Logger, (b) Thermostat. 

 

 
 

 

Figure B.11: (a) Digital Multimeter, (b) Multimeter Calibration with reference 

multimeter. 

(a) (b) 

(b) 

(a) 

(a) (b) Digital LCD 

Sensors 
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 Figure B.12: Calibration of current multimeter. 

 

 Figure B.13: Calibration of voltage multimeter.
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APPENDIX C:  

CALCULATION OF MEASUREMENTS UNCERTAINTY  

 

C.1 Experimental Results for Wing Ribs 

The experimental results for different parameters (such as; the averages of 

inlet, outlet, and bulk fluid temperatures, heat received, heat transfer 

coefficient, Nusselt number, head, and pressure drop) for the case of the 

wing ribs shape at d=10 mm and a=2 mm for whole jet Reynolds number 

range. These results presented that in the Table C.1.  

 

 Table C.1: The experimental results for different parameters. 

        
Average 

      

Re Tin (K) To (K) Tb (K) Tw (K) Qf h Nu 

3000 298 298.355 298.178 309.545 120.021 3199.47 52.4933 

4000 298.125 298.471 298.298 309.545 155.961 4202.09 68.9432 

5000 298.25 298.589 298.419 310.22 190.831 4900.34 80.3994 

6000 298.1 298.385 298.243 309.545 192.793 5168.95 84.8064 

7000 298.325 298.61 298.468 309.55 224.867 6148.58 100.879 

8000 298.5 298.745 298.623 308.645 220.849 6677.37 109.555 

 Average (∆𝑝 = 𝜌ƒ . 𝑔 . 𝐻)  

Re Head (m) ∆𝑝 (pa) 

3000 0.0006 5.8691 

4000 0.001005 9.831 

5000 0.001475 14.4282 

6000 0.00195 19.0745 

7000 0.002575 25.1882 

8000 0.0033 32.28 
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C.2 Uncertainty of Key Parameters 

The uncertainties of key various parameters are presented in follow table. 

 Table C.2: The primary uncertainties for various parameters. 

NO. Variable Accuracy 

1 The length of channel, L ±1.0 mm 

2 The width of channel, Z ±0.1 mm 

3 The height of channel, H ±0.1 mm 

4 The width of slot jet, W ±0.1 mm 

5 Inlet bulk temperature,  𝑇𝑏,𝑖𝑛 ±1% 

6 outlet bulk temperature,  𝑇𝑏,𝑜 ±1% 

7 Wall temperature,  𝑇𝑤 ±1% 

8 Mass flow rate,  𝑚̇ ±5.0% 

9 Pressure drop,  ∆𝑝 3.25% 

 

 

 

C.3 Uncertainty of Hydraulic Diameter  

The hydraulic diameter was displayed in equation 4.5 (in chapter four) as 

follows: 

 𝐷ℎ = 𝑊                                                                                                          (C. 1)                                                                                        

The uncertainty of hydraulic diameter is expressed by: 

𝑈𝐷ℎ = ±√(
𝜕𝐷ℎ

𝜕𝑊
𝑈𝑊)

2
                                                                                   (C. 2)  

Where, 

𝜕𝐷ℎ

𝜕𝑊
= 1                                                                                                            (C. 3)  

Substitute this value in equation C.2 as follows: 
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𝑈𝐷ℎ = ±√(𝑈𝑊)
2                                                                                          (C. 4)  

Substitute the value of  𝑊  from Table C.2 in above equation expresses:  

𝑈𝐷ℎ = ±√(0.1)
2 = ±0.1 𝑚𝑚                                                                   (C. 5)  

Furthermore, the relative uncertainty is determined as follows:  

𝑈𝐷ℎ

𝐷ℎ
= ±

0.1

10
= ±1 %                                                                                     (C. 6)  

                                                                                   

C.4 Uncertainty of Cross - Sectional Area                                                                

The cross-sectional area was computed in equation 4.11 (in chapter four) 

as follows: 

𝐴𝑐 = 𝑊 .  𝑍                                                                                                    (C. 7)  

Also, the cross-sectional area uncertainty (𝐴𝑐) is computed as follows: 

𝑈𝐴𝑐 = ±√(
𝜕𝐴𝑐

𝜕𝑊
𝑈𝑊)

2
+ (

𝜕𝐴𝑐

𝜕𝑍
𝑈𝑍)

2
                                                           (C. 8)  

Where, 

𝜕𝐴𝑐

𝜕𝑊
= 𝑍                                                                                                            (C. 9) 

𝜕𝐴𝑐

𝜕𝑍
= 𝑊                                                                                                        (C. 10)  

                                                                                                      

Substitute the above terms in equation C.8 as follows: 

 

𝑈𝐴𝑐 = ±√(𝑍𝑈𝑊)
2 + (𝑊𝑈𝑍)

2                                                                 (C. 11)  

       = ±√(30 ∗ 0.1)2 + (10 ∗ 0.1)2 = ±3.1623 𝑚𝑚2                   (C. 12) 
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The relative uncertainty of  𝐴𝑐 is obtained as follows: 

𝑈𝐴𝑐

𝐴𝑐
= ±

3.1623

10∗30
= ±1.0541 %                                                                  (C. 13)  

                                                                                

C.5 Uncertainty of Surface Area  

The surface area of the impinging target surfaces is given as: 

𝐴𝑠 = 𝐿 .  𝑍                                                                                                    (C. 14)                                                                                                          

The relative uncertainty of  𝐴𝑆 is evaluated as follows: 

𝑈𝐴𝑠

𝐴𝑠
= ±

1

𝐴𝑆
√(

𝜕𝐴𝑠

𝜕𝐿
𝑈𝐿)

2
 + (

𝜕𝐴𝑠

𝜕𝑍
𝑈𝑍)

2
                                                     (C. 15)  

                                                            

Here, 

𝜕𝐴𝑠

𝜕𝐿
=
𝐴𝑠

𝐿
                                                                                                        (C. 16)                                                                                                  

𝜕𝐴𝑠

𝜕𝑍
=
𝐴𝑠

𝑍
                                                                                                        (C. 17)  

                                                                                                         

Substituting the above terms in equation C.15 gives: 

     

 
𝑈𝐴𝑠

𝐴𝑠
= ±√(

𝑈𝐿

𝐿
)
2
 + (

𝑈𝑍

𝑍
)
2
                                                                        (C. 18) 

      = ±√(
1.0

110
)
2
+ (

0.1

30
)
2
= ±0.9683%                                               (C. 19)  
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C.6 Uncertainty of Jet Reynolds Number     

Jet Reynolds number can be expressed as follows: 

𝑅𝑒 =
𝑚̇𝐷ℎ

𝜇ƒ𝐴𝑐
                                                                                                     (C. 20)  

                                                                                                      

The jet Reynolds number uncertainty is presented as follows:                                                        

𝑈𝑅𝑒 = ±√(
𝜕𝑅𝑒

𝜕𝑚̇
𝑈𝑚̇)

2
+ (

𝜕𝑅𝑒

𝜕𝐷ℎ
𝑈𝐷ℎ)

2
+ (

𝜕𝑅𝑒

𝜕𝐴𝑐
𝑈𝐴𝑐)

2
                             (C. 21)  

Where, 

𝜕𝑅𝑒

𝜕𝑚̇
=

𝐷ℎ

𝜇ƒ𝐴𝑐
=
𝑅𝑒

𝑚̇
                                                                                           (C. 22)  

                                                                                       
𝜕𝑅𝑒

𝜕𝐷ℎ
=

𝑚̇

𝜇ƒ𝐴𝑐
=

𝑅𝑒

𝐷ℎ
                                                                                          (C. 23)  

                                                                                                
𝜕𝑅𝑒

𝜕𝐴𝑐
= −

𝑚̇𝐷ℎ

𝜇ƒ𝐴𝑐
2 = −

𝑅𝑒

𝐴𝑐
                                                                                 (C. 24)  

 

Substituting these terms in equation C.21, thus, the relative uncertainty of 

jet Reynolds number is presented as: 

𝑈𝑅𝑒

𝑅𝑒
= ±√(

𝑈𝑚̇

𝑚̇
)
2
+ (

𝑈𝐷ℎ

𝐷ℎ
)
2

+ (
−𝑈𝐴𝑐

𝐴𝑐
)
2
                                                   (C. 25)  

                                                     

      = ±√(
0.010785

0.2157
)
2
+ (

0.1

10
)
2
+ (

−3.1623

300
)
2
= ±5.207%                 (C. 26)  

 

C.7 Uncertainty of Friction Factor  

The friction factor was expressed in equation 4.8 (in chapter four) as 

follows: 

𝑓 =
2∆𝑝 𝜌ƒ 𝐴𝑐

2 

 𝑚̇2

 𝐷ℎ 

𝐿
                                                                                         (C. 27)  
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The friction factor uncertainty is as shown by: 

𝑈𝑓 = ±√
(
𝜕𝑓

𝜕∆𝑝
𝑈∆𝑝)

2
+ (

𝜕𝑓

𝜕𝑚̇
𝑈𝑚̇)

2

+ (
𝜕𝑓

𝜕𝐴𝑐
𝑈𝐴𝑐)

2
   

+ (
𝜕𝑓

𝜕𝐷ℎ
𝑈𝐷ℎ)

2
+ (

𝜕𝑓

𝜕𝐿
𝑈𝐿)

2
                            

                            (C. 28)  

    

Where, 

𝜕𝑓

𝜕∆𝑝
=   

2𝜌ƒ 𝐴𝑐
2

𝑚̇2
 
 𝐷ℎ

𝐿
=

 𝑓

∆𝑝
                                                                              (C. 29)  

𝜕𝑓

𝜕𝑚̇
=  

−4

𝑚̇
 
∆𝑝 𝜌ƒ 𝐴𝑐

2

𝑚̇2
 
 𝐷ℎ

𝐿
=
−2 

𝑚̇
𝑓                                                                    (C. 30)  

𝜕𝑓

𝜕𝐴𝑐
=   

4∆𝑝 𝜌ƒ 𝐴𝑐

𝑚̇2
 
 𝐷ℎ

𝐿
=
  𝑓 

𝐴𝑐
                                                                          (C. 31)  

𝜕𝑓

𝜕 𝐷ℎ
=   

2∆𝑝 𝜌ƒ 𝐴𝑐
2

𝑚̇2
 
 1

𝐿
=

  𝑓 

 𝐷ℎ
                                                                          (C. 32)  

𝜕𝑓

𝜕𝐿
=   

−2∆𝑝 𝜌ƒ 𝐴𝑐
2

𝑚̇2
 
  𝐷ℎ

𝐿
=
 −𝑓 

𝐿
                                                                       (C. 33)  

 

Substituting above terms in equation C.28, thus, the relative uncertainty 

of friction factor is expressed by: 

𝑈𝑓

𝑓
= ±√(

𝑈∆𝑝

∆𝑝
)
2
+ (

−2𝑈𝑚̇

𝑚̇
)
2
+ (

2𝑈𝐴𝑐

𝐴𝑐
)
2
+ (

𝑈𝐷ℎ

𝐷ℎ
)
2

+ (
−𝑈𝐿

𝐿
)
2
             (C. 34)  

𝑈𝑓

𝑓
 = ±√

(
1.0491

32.28
)
2
+ (

−2∗0.010785

0.2157
)
2
+ (

2∗3.1623

300
)
2

+(
0.1

10
)
2
+ (

1.0

110
)
2
                                          

          

      = ±10.80895%                                                                                   (C. 35)       
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C.8 Uncertainty of Heat Received (𝑸ƒ) 

The heat received by working fluid was displayed in equation 4.2 (in 

chapter four) can be given by: 

𝑄ƒ = 𝑚̇ 𝐶𝑝,ƒ (𝑇𝑏,𝑜 − 𝑇𝑏,𝑖𝑛)                                                                         (C. 36)  

                                                                    

The uncertainty of 𝑄ƒ is achieved by:      

𝑈𝑄ƒ = ±√(
𝜕𝑄ƒ

𝜕𝑚̇
𝑈𝑚̇)

2

+ (
𝜕𝑄ƒ

𝜕∆𝑇𝑏
𝑈∆𝑇𝑏)

2

                                                    (C. 37)  

                                                                

Where, 

𝜕𝑄ƒ

𝜕𝑚̇
= 𝐶𝑝,ƒ ∆𝑇𝑏 =

𝑄ƒ

𝑚̇
                                                                                    (C. 38)  

𝜕𝑄ƒ

𝜕∆𝑇𝑏
= 𝑚̇ 𝐶𝑝,ƒ =

𝑄ƒ

∆𝑇𝑏
                                                                                  (C. 39)       

                                                                    

From equations C.38 and C.39 and re-arranging equation C.37, hence the 

relative uncertainty of 𝑄ƒ is determined as:                                                       

𝑈𝑄ƒ

𝑄ƒ
= ±√(

𝑈𝑚̇

𝑚̇
)
2
+ (

𝑈∆𝑇𝑏

∆𝑇𝑏
)
2

                                                                      (C. 40)  

Here,    

𝑈∆𝑇𝑏

∆𝑇𝑏
= ±√(

𝑈𝑇𝑏,𝑖𝑛

𝑇𝑏,𝑖𝑛
)
2

+ (
𝑈𝑇𝑏,𝑜

𝑇𝑏,𝑜
)
2

                                                               (C. 41)  

         = ±√(
0.252

25.2
)
2
+ (

0.25445

25.445
)
2
= ±1.4142%                                 (C. 42)  

Substitute the above equation in equation C.40 gives: 

𝑈𝑄ƒ

𝑄ƒ
= ±√(

0.010785

0.2157
)
2
+ (

0.003465

0.245
)
2
= ±5.1962%                             (C. 43)  
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C.9 Uncertainty of Nusselt Number 

The average Nusselt number can be expressed as: 

𝑁𝑢𝑎𝑣 =
𝑄ƒ 𝐷ℎ

𝑘ƒ𝐴𝑠(𝑇𝑤,𝑎𝑣−𝑇𝑏,𝑎𝑣)
                                                                            (C. 44)  

The uncertainty in Nusselt number is determined as:     

 𝑈𝑁𝑢𝑎𝑣 = ±√
(
𝜕𝑁𝑢𝑎𝑣

𝜕𝑄ƒ
𝑈𝑄ƒ)

2

+ (
𝜕𝑁𝑢𝑎𝑣

𝜕𝐷ℎ
𝑈𝐷ℎ)

2
+ (

𝜕𝑁𝑢𝑎𝑣

𝜕𝐴𝑐
𝑈𝐴𝑠)

2

+(
𝜕𝑁𝑢𝑎𝑣

𝜕𝑇𝑤
𝑈𝑇𝑤)

2
+ (

𝜕𝑁𝑢𝑎𝑣

𝜕𝑇𝑏,𝑎𝑣
𝑈𝑇𝑏,𝑎𝑣)

2

                    

             (C. 45)  

Where, 

𝜕𝑁𝑢𝑎𝑣

𝜕𝑄ƒ
=

𝐷ℎ

𝑘ƒ𝐴𝑠(𝑇𝑤−𝑇𝑏,𝑎𝑣)
=
𝑁𝑢𝑎𝑣

𝑄ƒ
                                                                  (C. 46)  

𝜕𝑁𝑢𝑎𝑣

𝜕𝐷ℎ
=

𝑄ƒ

𝑘ƒ𝐴𝑠(𝑇𝑤−𝑇𝑏,𝑎𝑣)
=
𝑁𝑢𝑎𝑣

𝐷ℎ
                                                                  (C. 47)  

𝜕𝑁𝑢𝑎𝑣

𝜕𝐴𝑠
=

−𝑄ƒ𝐷ℎ

𝑘ƒ𝐴𝑠
2(𝑇𝑤−𝑇𝑏,𝑎𝑣)

=
−𝑁𝑢𝑎𝑣

𝐴𝑠
                                                              (C. 48)                                                                 

𝜕𝑁𝑢𝑎𝑣

𝜕𝑇𝑤
=

−𝑄ƒ𝐷ℎ

𝑘ƒ𝐴𝑠(𝑇𝑤−𝑇𝑏,𝑎𝑣)
2 =

−𝑁𝑢𝑎𝑣

(𝑇𝑤−𝑇𝑏,𝑎𝑣)
                                                        (C. 49)  

𝜕𝑁𝑢𝑎𝑣

𝜕𝑇𝑏,𝑖𝑛
=

𝑄ƒ𝐷ℎ

𝑘ƒ𝐴𝑠(𝑇𝑤−𝑇𝑏,𝑎𝑣)
2 =

𝑁𝑢𝑎𝑣

(𝑇𝑤−𝑇𝑏,𝑎𝑣)
                                                        (C. 50)  

                                                                  

Re-arranging equation C.45, the relative uncertainty of Nusselt number is 

given as: 

𝑈𝑁𝑢𝑎𝑣

𝑁𝑢𝑎𝑣
= ±√

(
𝑈𝑄ƒ

𝑄ƒ
)
2

+ (
𝑈𝐷ℎ

𝐷ℎ
)
2

+ (
−𝑈𝐴𝑠

𝐴𝑠
)
2

+(
−𝑈𝑇𝑤

𝑇𝑤−𝑇𝑏,𝑎𝑣
)
2

 + (
−𝑈𝑇𝑏,𝑎𝑣

𝑇𝑤−𝑇𝑏,𝑎𝑣
)
2
                                              (C. 51)  
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Where, 

𝑈𝑇𝑏,𝑎𝑣

𝑇𝑏,𝑎𝑣
= ±√(

𝑈𝑇𝑏,𝑖𝑛

𝑇𝑏,𝑖𝑛
)
2

+ (
𝑈𝑇𝑏,𝑜

𝑇𝑏,𝑜
)
2

                                                                        

           = ±√(
0.252

25.2
)
2
+ (

0.25445

25.445
)
2
= ±1.4142%                                (C. 52) 

                                                      

Equation C.51 becomes as follows: 

𝑈𝑁𝑢𝑎𝑣

𝑁𝑢𝑎𝑣
= ±√

(
5.1962

72
)
2
+ (

0.1

10
)
2
+ (

−0.9683

3300
)
2
 

+ (
−0.35645

35.645−25.3225
)
2
+ (

−0.253225

35.645−25.3225
)
2
    
                      

           = ±8.42776%                                                                                 (C. 53) 

 

 

 



 الخلاصة 

حرارة العالي بشكل خاص،  اللتصادم النفاث أحد أفضل التقنيات لتحقيق تحسين نقل  ايعتبر تبريد  

وبالتالي يتم إستخدامه في العديد من التطبيقات الهندسية. يمكن إستخدام أشكال الأضلاع المختلفة  

 . لأسطح المستهدفة لتحقيق أداء حراري عاليالمثبته على ا

تم إجراء دراسة عددية وتجريبية لتدفق السائل و إنتقال الحرارة و توليد    ،مهفي الدراسة المقد 

مختلفة من الأضلاع   تم إستخدام ثلاث أشكال ي الفتحة المحصورة  ذ الإنتروبي لتصادم النفاث  

عرض   تم  الإصطدام.  هدف  لوحة  على  وتثبيتها  والمسطحة  والبيضوية  الجناح  أضلاع  مثل 

تأثيرات   الركود  ومناقشة  نقطة  بين  والتباعد  )النتوء(  الضلع  إرتفاع  مثل  المختلفة  المعاملات 

عمليات التحقق    إجراءتم    والضلع و رقم رينولدز النفاث على مجالات إنتقال الحرارة والجريان.

توافق جيد    لوحظ وجود و  المراجعات في    المتوفرةالسابقة    الدراسات من صحة النتائج العددية مع  

مقارنة النتائج العددية مع البيانات التجريبية وتم تحقيق التوافق    ت تم  ،من ناحية أخرى   .بين النتائج 

   الجيد.

يزداد   الكلي  نتروبي توليد الإ متوسط  و  نخفاض الضغطإونسلت    رقم النتائج إلى أن متوسط    أشارت 

موقع  الركود والتباعد بين نقطة  ونقصان    ,الضلعوزيادة إرتفاع    رقم رينولدز النفاث   زيادة   عند 

الأداء  بينما    .الضلع تقييم  لمتوسط  .  الضلع رتفاع  إمع زيادة    تزداد معايير  الذروة  قيم  أن  وجد 

والمسطحة    ويةوالبيض  ضلاع الجناحلأ٪   65.34  ,   ,90.0174.16حوالي    هي نسلت   رقم  تحسين

  ,3000  ,  4000  ,  4000  النفاث رينولدز  رقمو ملم  10الضلع   قعوموملم   2رتفاع الضلع  إ عند 

التوالي  إلى    . على  الأداء تصل  تقييم  أفضل معايير  أن  توفرها أضلاع    1.682في حين  والتي 

 . 3000  النفاث رينولدز  رقمملم و 2رتفاع الضلع  إملم و 10الجناح عند موقع الضلع  
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