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ABSTRACT 
 

 

In the present study, nonlinear static stability analysis of orthotropic 

simply–supported laminated plates under uniaxial and biaxial compression 

loads is analytically investigated. The used laminated composite plates are 

made of unidirectional reinforced fiber (graphite) and matrix (epoxy), which 

are utilized in many advanced engineering structures.  

 

The equations of motion for the laminated plates are derived using 

the first-order shear deformation plate theory (FSDT) with Von-Karman-

type nonlinearity formulations and the minimum total potential energy 

principle. Thereafter, by displaying a two-step perturbation technique, the 

achieved nonlinear differential equations are solved. Then, the critical 

buckling loads and post-buckling equilibrium paths of the symmetrically 

laminated composites solved by Matlab software code.  

 

Results are shown in the form of plots presenting the variation in 

dimensionless buckling load parameters with dimensionless maximum 

deflection. The validation of the proposed research was gained by comparing 

some numerical results with the other published researcher, in which offered 

a very good agreement with the presented results.  

  

Furthermore, the effect of several parameters such as different biaxial 

loads, and aspect ratio (a/h) on the critical buckling loads and post-buckling 

equilibrium paths of graphite/epoxy orthotropic laminated plates are studied 

and detailed perceptibly. From the results, the maximum critical buckling 

loads are 217.9, and 111.6 under unequal biaxial compression loads, and 

under uniaxial load at (a/h) = 25, respectively. Also, the maximum post 

buckling strength of structure at unequal biaxial compression loads, and 

under uniaxial load at (a/h) = 25, respectively. 
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CHAPTER ONE 

      INTRODUCTION 

1.1 INTRODUCTION 

Composite materials are a combination of two or more materials. Most of 

the composites are made of two materials, where the reinforcement material 

is called ”Fiber”, and the base material is termed “Matrix”. The composite 

materials have many advantages like high stiffness, high strength, light 

weight, long fatigue life, plus excellent corrosion resistance (UnuthuReddy, 

2003) [1]. 

 

As a result, the utilization of composite structures increases 

gradually for instance in aerospace, biomedicine, sport equipments, cars, 

medical instruments, building industry, ships, chemical industry, and other 

modern types of equipments, as shown in Figure 1-1(Pastuszak and Muc, 

2013) [2].  

 

 

Figure 1-1: Some applications of laminated composite materials (Rana, Parveen and 

Fangueiro, 2017) [3]. 
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   Composite materials are commonly modeled in three types (Ye, 

2002) [4], (Suliman, 2018) [5]. 

 : 

 

 Particulate composite, reinforcement particles in a matrix such as 

concrete, particles, in contrast to fibers, do not have a preferred 

orientation and can be either metallic or non-metallic as shown in 

Figure 1-2 (a). 

 

 Fibrous composite, fibers in a matrix, the combination of fibers and a 

matrix can have high stiffness and strength, fibers can be long 

(continuous fiber) or short (usually randomly orientated fibers) or in 

many forms (unidirectional, woven, and bidirectional) as shown in 

Figure 1-2 (b and c).  

 

 Laminated composite is a collection of laminae or plies that are 

bonded together and stacked to obtain the desired stiffness and 

thickness, with different orientations θ (-90ο ≤ θ ≤ 90ο) as shown in 

Figure 1-2 (b). In this kind of composite the fiber orientation, and the 

thickness in each lamina function are key role of the mechanical 

properties of the composite. The sequence of different orientations of 

the plies in the laminated composite is called the stacking sequence as 

shown in Figure 1-3. The majority of laminated composite structures 

consist of unidirectional or woven fiber in the polymer matrix            
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  (a)                                       (b)                                                (c) 

 

Figure 1-2: Categories of composite materials (a) Particulate composites (b) 

Continuous fiber-reinforced composites (c) Short random fiber reinforced 

composites. (Suliman, 2018) [5]. 

 

 

 

Figure 1-3: Composite laminate structure (Suliman, 2018) [5]. 
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Laminates are categorized into cross-ply (θ = 0ο and 90ο) and angle 

ply (θ and –θ) where (0ο ≤ θ ≤ 90ο). These types may be symmetric, anti-

symmetric, or un-symmetric (asymmetric). A laminate is called symmetric 

if the material, thickness, and angle of laminae are the same above and below 

the mid plane as shown in Figures (1-4) and (1-5). The materials of laminates 

(both fiber and matrix) can be isotropic, anisotropic, and orthotropic. The 

orthotropic materials are interesting and of great importance in the fields of 

modern industrial applications because of their features such as hardness, 

superelasticity, and lightness. Orthotropic materials are anisotropic materials 

with an structural inhomogeneous. These materials have two or three 

orthogonal axes so that their mechanical properties are different along each 

axis (Daniel et al., 2006) [6], (Moubayed et al., 2014) [7].  

 

 

 

Figure 1-4: (a) symmetric cross-ply laminate and (b)  un-symmetric cross-ply 

laminate (Turnock et al., 2009) [8]. 
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Figure1-5: Symmetric and anti-symmetric angle-ply laminates(Zhang, Zhang and 

Zhu, 2011) [9]. 

 

1.2  REINFORCEMENTS AND MATRICES 

The fibers-reinforcement lamina consists of several fibers embedded in the 

matrix. Fibers are much stronger and stiffer than the matrix in the laminated 

form and consider the members of major load-carrying. The matrix protects 

the fibers, transfers loads between fibers, and keeps fiber in the proper 

position and orientation. A matrix can be in many forms polymer, metal, 

ceramic. Polymer matrices such as polyester, epoxy, polysulfone, etc., these 

resins are reinforced with carbon /graphite, glass, boron, or aramid fibers 

(Ye, 2002) [4].  

 

Graphite materials are widely utilized in many fields such as energy 

conversion, petroleum refining, and chemical industry due to their excellent 

corrosion resistance, conductivity, thermal shock resistance, and thermal 

conductivity.  
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Epoxy matrix has high specific strength, bond behavior, and excellent 

corrosion resistance. The graphite/epoxy composite has a higher tensile 

strength and higher modulus. The graphite/epoxy composite is simple in 

mass production and molding, which can decrease the production cost of 

materials (Yao et al., 2020) [10]. 

 

1.3 CHARACTERIZATION OF THE  

UNIDIRECTIONALLY LAMINATED PLATE 

 

The unidirectional fiber is treated as an orthotropic material in which 

material symmetrical planes are parallel and transverse to the direction of the 

fiber. The material coordinate axes (X and Y) are taken to be parallel and 

transverse to the direction of the fiber, respectively in the plane of the lamina. 

The engineering constants of the unidirectional fiber-reinforced lamina can 

be determined by using the micromechanics approach based on the following 

assumptions (UnuthuReddy, 2003) [1]: 

 The bonding between fibers and matrix is perfect. 

 Fibers are parallel, and they are uniformly distributed throughout 

materials. 

 The applied loadings are either parallel or perpendicular to the 

direction of the fiber. 

 Both fibers and matrices obey Hook’s law and they are isotropic. 

 A matrix is free of microcracks.  
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1.4 BUCKLING AND POST-BUCKLING PHENOMENA  

 

 Composite structures are subjected to compressive load, during their 

operating, this load may exceed a safety value and this may accrue buckling 

which may lead to failure. The transition of the composite material from the 

stable state of equilibrium to unstable state is referred to structural instability 

or buckling. Buckling is an onset of instability. Buckling failure takes place 

in plates, shells, columns, and other engineering structures. Buckling 

behavior is an excellent indicator of safe operating conditions and effective 

designs for these structures. If the compressive loads are small, the structure 

will deform but it remains flat. The equilibrium of the structure is stable and 

this behavior is expressed in terms of equilibrium paths. With increasing the 

load just enough to keep flat or slightly bent, this form is termed as the 

critical load. The critical load is called buckling load which is the smallest 

value of the load that can produce buckling. The stable state of the structure 

is confused and it seeks an alternative equilibrium configuration attended by 

a change in the load-deflection behavior. Without severe changes in 

deformation and the changing equilibrium configuration at the same load, 

this phenomenon is called bifurcation. The bifurcation point defines the point 

where buckling load is reached. The load-displacement curve can be divided 

into two steps, one pre-bifurcation point, and the other post-bifurcation point. 

When the compressive load is applied to the composite structure, the primary 

equilibrium path is obtained and it is stable until the bifurcation point has 

arrived. The primary equilibrium path of the structure becomes unstable after 

the bifurcation point.  
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The structure tries to find a secondary equilibrium path. In this stage, the 

secondary equilibrium path either can be post-buckling strength or post-

buckling collapse as shown in Figure 1-6. A non-linear approach with large 

displacement is utilized to analyze the post-buckling behavior. 

(UnuthuReddy, 2003) [1], (Haugen, 2012) [11]. 

 

 

Figure 1-6: Buckling path (Ngamkhanong, Wey and Kaewunruen, 2020) 

[12]. 
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1.5 DEVELOPMENTS IN THE THEORIES OF  

      LAMINATED PLATES 

Different plate theories have been developed by researchers as 

Classical Laminated Plate Theory (CLPT), First-order Shear Deformation 

Theory (FSDT), and higher-order Shear Deformation Theory (HSDT). A 

sound theoretical foundation is established by Von Karman for an isotropic 

rectangular thin plate that may be subject to finite deflection. This theory 

was later extended to the cases of nonlinear analysis of composite laminated 

thin plates. Many works deals with post-buckling, large deflection, and 

nonlinear analysis of composite laminated thin structures. In the classical 

plate theory (CPT) based on the Kirchhoff assumptions, the effect of 

transverse shear deformation is neglected. Recently, developments in the 

analysis of laminated composite plates offer that thickness of the plate has 

more pronounced effects on the influence of laminates composite than on the 

isotropic plates. When the rotary inertia and transverse shear effects are 

neglecting, that leads to incorrect results. To treat the influence of transverse 

shear deformation in plates is proposed a first-order shear deformation 

theory. This theory is then expanded to the cases of anisotropic plates. After 

the plate is deformed, the FSDT assumes that the mid-plane normal of the 

structure remains straight. This theory can represent constant transverse 

shear strains only through the thickness of the plate, violates the situations 

of vanishing of transverse shear stress at the bottom and top surfaces of the 

plates.  
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To compensate this requires the shear correction factor. Two types of higher-

order shear deformation theory (HSDT) are proposed, to calculate the effect 

of the transverse normal strain. This theory satisfies the situations of 

vanishing of transverse share stress at the bottom and top surface of the plate. 

In HSDT, it is not required a shear correction factor (Vaikunthbhai, 2014) 

[13]. 

 

 

Figure 1-7: Deformation of a transverse normal according to the classical, first-

order, and third-order plate theories (Vaikunthbhai, 2014) [13]. 
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1.6 FIRST-ORDER SHEAR DEFORMATION   

The first-order shear deformation theory has been used by many researchers 

due to its many advantages.  It was established by Reissner and Mindlin.  The 

assumptions of the first-order shear deformation plate theory can be divided 

into three parts. In the first part, after deformation, the transverse normal do 

not stay perpendicular to the mid surface but are inclined with an arbitrary 

angle in this way, transverse shear strains in direction (x_z) and (y_z) are 

included in the theory. This accounts for including transverse shear strain in 

the FSDT. In the second part, during deformation, the transverse normal is 

inextensible. In the last part, before and after deformation, displacement in 

direction (z) is constant in the thickness coordinate as shown in Figure 1-7. 

The FSDT requires shear correction factors to correct the discrepancy 

between the real stress state and the constant stress state considered by first-

order shear deformation. The shear correction factor is used to modify the 

stiffness of laminated plate transverse shear. The shear correction factor 

depends on the geometric parameters, boundary conditions, lamination, and 

loading condition. For the homogeneous orthotropic plates, the shear 

correction factor Ks is considered as 5/6, (UnuthuReddy, 2003) [1], (Vrabie, 

Chiriac and Băetu, 2017) [14].  

 

1.7 TWO-STEP PERTURBATION TECHNIQUE 

This method is one of the most appropriate technique which can be used to 

solve different boundary-value problems in the elastic structures. It provides 

an advantageous of approximate analytical tool to solve a big class of 

nonlinear equations. 
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In the perturbation technique, the solution of the original equation is looked 

at as the sum of the solution of perturbation equations of each order and the 

sequence of terms as the increasing power of the small perturbation 

parameter with their coefficients. A two-step perturbation technique was 

firstly proposed by Zhang and Shen for post-buckling analyzes of isotropic 

plates. Later, this method was extended to analyse rectangular isotropic 

plates under uniaxial compressive load combined with lateral pressure. Then, 

the two-step perturbation method was used to analyze the post-buckling for 

orthotropic plates resting on a two-parameter elastic foundation. This method 

gives parametric analytical expressions of the changes in the post-buckling 

field and has been generalized to other plate post-buckling conditions. Shen 

derived the set of Von Karman- type equations which contain thermal effect, 

adopted on Reddy’s higher-order shear deformation plate theory. This 

approach is successfully utilized for solving several post-buckling problems 

of composite laminated plates under the combined action of thermal, 

mechanical, and electric loads, with help of Von Karman-type equations. 

The advantage of this perturbation approach is that it provides solutions to 

accept both boundary conditions and governing equations carefully in the 

asymptotic sense. This method provides the behavior of all parameters and 

can be assessed easily on the solution. Galerkin and Ritz methods depend on 

the chosen admissible function that does not satisfy all the motion equations, 

natural boundary conditions, and geometrical parameters. 
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The two-step perturbation method is interesting because it can be utilized for 

structural nonlinear analysis in different fields such as nonlinear post-

buckling, bending, and large amplitude vibration of the plate, shell, and beam 

structures. The successful application of the two-step method depends on the 

selection of the small perturbation parameter. The nondimensional deflection 

or the nondimensional load or both of these parameters are chosen as the 

perturbation parameter in this method (Shen, 2013) [15]. 

 

  1.8 SCOPE OF THE WORK 

The current study offers an analytical solution to investigate the buckling and 

post-buckling of the laminated composite plates (LCP) by using numerical 

analyses. The structure is under mechanical loading (uniaxial load and 

biaxial load). The theoretical formulations are derived by employing the 

first-order shear deformation theory plate. Then, the governing equations of 

motion are obtained based on the Two-Step perturbation technique method 

to give critical buckling loads and post-buckling equilibrium paths of perfect 

plate simply supported on all edges. The results are obtained numerically by 

using Matlab software. The laminated composite plate is consists of graphite 

fiber and thermoset epoxy.  
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  1.9 AIM And OBJECTIVES 

The present study aims to examine the buckling and post-buckling behaviors 

of an orthotropic laminated composite perfect plate under uniaxial and 

biaxial compressive loads. The designed structures are based on the first-

order shear deformation theory to include transverse shear deformation 

effects with Von-Karman-type nonlinearity formulations, which are applied 

to develop the fundamental differential equations of the motion. The 

parametric investigation of the structure has been achieved by using the 

Two-Step perturbation technique analysis by using Matlab software.   

The objectives that adopted to accomplish this study are:   

 Employ the Two-Step Perturbation Technique, which was fully 

established to examine the stability of the structure. 

 To study the effect of uniaxial loads on the critical buckling loads and 

Post-buckling equilibrium paths. 

 

 To study the effect of different biaxial loads on the critical buckling 

loads and Post-buckling equilibrium paths. 

  To explore the behavior of geometrical parameter length to thickness 

ratio (a/h) on the critical buckling loads and Post buckling equilibrium 

paths under uniaxial and equal biaxial loads. 
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1.10 THESIS OUTLINE  

In the first chapter, composite materials, buckling, and post-buckling 

phenomena, developments in the theories of laminated plates, and two-step 

perturbation techniques are introduced. 

 

In the second chapter, the studies which are related to buckling and 

post-buckling behaviors of composite laminates and various structures are 

reviewed. 

 

  In the third chapter, analytical solutions of buckling and post-

buckling of composite laminated plate’s model are investigated. 

Furthermore, first-order shear deformation theory includes transverse shear 

deformation effects with Von-Karman-type nonlinearity formulations are 

offered to derive the equation of motion. Then the two-step perturbation 

method is presented to obtain the critical buckling loads and post-buckling 

equilibrium paths in this chapter. 

 

In the fourth chapter, the laminated graphite/epoxy plate’s model was 

displayed and compared with previously published literature to verify the 

accuracy of the currently employed method with the obtained results. Then 

the results regarding the static buckling and post-buckling behavior is 

determined and analyzed under many parameters.   

 

In the fifth chapter, this chapter includes the conclusions of the 

results, and the suggestions for future work. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 INTRODUCTION  

Designers take into consideration the buckling test during modeling 

structures. The effect of buckling and post-buckling influences on the 

laminated composite plates are examined by many researchers, who adopted 

analytical and numerical methods. 

Laminated composite plates are designed based on different theories 

to investigate the stability of structures under mechanical loads. The major 

theories used to analysis the stability of laminated composite plates, include 

classical laminated plate theory, first-order shear deformation theory, and 

higher-order shear deformation theory.  

In this chapter, a literature review will be divided into three sections 

to obtain the stability behavior: the first part presents different theories and 

methods of the laminated composite plate. The second part review includes 

researchers who offered the (FSDT). The last part explains the Two-Step 

perturbation technique method. 
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2.2 LAMINATED COMPOSITE PLATES  

(Baba and Baltaci, 2007) [16] numerically and experimentally 

investigated the influence of buckling of Glass/Epoxy laminated composite 

plates under axial compressive loading. The study aimed to determine the 

effect of aspect ratio, boundary conditions, anti-symmetric configuration, 

and cutout on the buckling behavior of the structure. The present study 

examined two different laminates configurations ([90ο, 45ο, -45ο, 0ο]s and 

[90ο,45ο,-45ο,0ο]as), ratio ( L/t = 37.5 and 75) with three boundary conditions 

(Clamped-Clamped (CC), Pinned-Pinned (PP), and Clamped-Pinned (CP)). 

Firstly, the buckling loads of rectangular laminated eight-ply were 

experimentally examined. By ANSYS computer code of Finite Element 

(FE), the buckling loads of structure were calculated. It was shown with 

clamped boundary condition, the buckling loads are higher than the other. 

 (Kumar et al., 2009) [17] examined the buckling behavior of 

rectangular laminated composite plates, by using finite element  method. The 

structure under in-plane loads with Clamped-Free-Clamped-Free (CFCF) 

boundary conditions. The objective of the study was to understand the effect 

of the aspect ratio, fiber angle, length-to-thickness ratio, the cut-out shape on 

the buckling load for the Glass/Epoxy laminated composite plate. It was 

found that the composite plate with [45]8 layup had the lowest buckling load, 

while the plate with [0]8 layup had the highest buckling loads.  
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(Tu et al., 2020) [18] conducted the analytical approach to examine 

the nonlinear buckling and post-buckling behavior of the imperfect thin 

porous plate. The plate was subjected to in-plane compressive loading. The 

classical plate theory with taking into consideration the initial geometrical 

imperfection and Von-Karman nonlinearity used to derive the equations of 

motion. Galerkin’s method was adopted to obtain the closed-form expression 

of deflection-buckling load curves of a rectangular porous plate. There were 

two types of distribution porosity. The elastic moduli with porous material 

are assumed to change through the thickness of the rectangular plate 

according to the distribution kinds. The effect of aspect ratio, imperfection, 

boundary condition, porosity coefficient, changing porosity distribution on 

the post-buckling response of the structure was studied. The influenced post-

buckling of porous plates was significantly behaved by these parameters. 

From the numerical results, the post-buckling curve of asymmetric porosity 

distribution was lower than those for nonlinear symmetric porosity. 

 (Hu, Badir and Abatan, 2003)[19] studied the buckling response of a 

rectangular symmetric laminated composite plate. The plate was subjected 

to parabolic variation of axial loading. It was composed of AS4 graphite 

fibers and 3501-6 epoxy matrix, and it was assumed anisotropy about its 

mid-plane. Classical laminated plate theory with Rayleigh-Ritz was based to 

obtain the analytical solution of mode shape and buckling load. There were 

two conditions of loading on an axial load with parabolically varies of a plate 

in the longitudinal direction and transverse direction. The fiber orientation 

and aspect ratio of the structure have been examined. 
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As seen from the results, with increasing the aspect ratio, the buckling load 

of the plate subject uniaxial compression constant was converged to 

constant, while the buckling load under the varying axial load is decreased. 

 (Wankhade and Niyogi, 2020) [20] discovered the buckling behavior 

of isotropic laminated composite plates for three-layered (0ο, 90ο, 0ο). The 

simplified form of governing motion equations was used to examine 

buckling analysis of structure. The Laminated Composite Plate (LCP) was 

under compressive load. The effect of various parameters on the buckling 

loads was studied like aspect ratio, E1/E2 ratio, boundary conditions, stacking 

sequences with different modes of buckling. The results explained that with 

the aspect ratio of the structure obtains doubled, the buckling forces lower 

down about 36% for the thin plates to moderately thick plates. The higher 

modes present the greater value of buckling loads.  

 (Fernandes and Mirje, 2018) [21] displayed the finite element 

numerical method to study the buckling behavior for the cross-ply symmetric 

laminated composite plate. The structure was subjected to mechanical 

compressive loading. The effects of a different parameter on critical buckling 

loads were examined such as aspect ratio, aspect ratio, number of layers, the 

orthotropic ratio (E1/E2), boundary conditions (SSSS), (CCSS), (CSCS), and 

(CCCC), fiber angle orientation, and stacking sequence. The results showed 

that for different aspect ratios and all boundary collections of boundary 

conditions, the orthotropic ratio increased lead to the critical buckling loads 

increase. 
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  (Kulkarni and Dhurvey, 2014) [22] investigated the post-buckling 

behavior of symmetric angle-ply and cross-ply square laminated composite 

plates. They were based on the finite element ABAQUS to analyze the 

structure under uniaxial compressive load. Three materials were examined 

in the analysis Boron/Epoxy, Carbon/Epoxy, Graphite/Epoxy. The plate was 

under uniaxial loading in the longitudinal direction. Effects of various 

parameters were studied in the number of layers, fiber orientation angle, and 

the (E1/E2) ratio. The results indicated the modeling of the laminated 

composite plates. It was noticed, in the same central displacement, the 

buckling loads of a cross-ply were lower than that of an angle-ply.                                

(Sreehari and Maiti, 2015)[23] employed the Inverse Hyperbolic 

Shear Deformation Theory (IHSDT) to analyze the buckling and post-

buckling behavior of laminated composite plates. This theory supplied the 

non-linear transfer shear stress distribution. Also, at the top and bottom 

surface of the structure, the (IHSDT) contented zero transverse shear stress 

conditions. They were based on the finite element method for handling 

instability structure under mechanic and hygrothermal loads. The geometric 

nonlinearity was taken into account in the Von-Karman sense. In the 

MATLAB environment, the programming and mathematical formulation 

have been done. The aspect ratio, and modulus ratioE1/E2, were examined to 

understand the buckling behavior under the various parameters. The main 

result was offered, the buckling load in biaxial cases was less than similar 

uniaxial cases and any modulus ratio was analyzed.        
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 (Majeed and Tayeh, 2015) [24] studied free vibration and buckling 

analysis of rectangular laminated composite plate under uniform and non-

uniform compressive loading. Classical laminated composite plate theory 

(CLPT) with Hamilton’s principle was based on the derivation equation of 

motion. Ritz method was adopted to solve these equations as an Eigen-value 

problem to obtain buckling load. The buckling load of the laminated plate 

with various combinations of boundary conditions was examined and obtain. 

Analytical results were presented to bring out the effect of lamination angle, 

loading type, boundary condition, a spect ratio on the critical buckling load.  

The important result was noticed, natural frequency and critical buckling 

load were high at the clamped edge plates.  

 (Lengvarský, Bocko and Hagara, 2016) [25] adopted the finite 

element method (FEM) to examine the buckling analysis of rectangular 

laminated composite plates as four various orientations of layers. The 

laminated plate was loaded with shear load, compression load, and collection 

of both loads. Calculated critical buckling loads were compared for all 

orientation layers. The results offer the inappropriate orientations of layers 

were obtained for different loads. The boundary conditions with x and y 

directions on the parallel edges were applied. The computed critical buckling 

load showed for all configurations.  The influences of the number of layers, 

angle of the fiber, and thickness of layers on the buckling behavior were 

studied. From the results, it was noticed with increasing the thickness of 

composite structure as well as numbers of layers, the critical buckling load 

increase. 
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(Torabizadeh, 2015) [26] used classical laminated plate theory 

(CLPT) and first-order shear deformation theory (FSDT) to solve the 

laminated composite plates subjected to mechanical loads. The Navier-type 

method was applied to analyze rectangular cross-ply and angle-ply simply 

supported laminated plate. Also, finite element ANSYS and verification 

methods were developed. Effects of the laminated scheme, number of layers, 

modulus ratio, lamination angle, plate aspect ratio, and axial load direction 

on the critical buckling loads of structure were also investigated. Some of 

the important conclusions were shown: for square angle-ply anti-symmetric 

laminated the bending-extension coupling severely decreases the buckling 

load under uniaxial and biaxial load.  

(Osman and Suleiman, 2017) [27] investigated the Buckling analysis 

of symmetric cross-ply rectangular laminates plate under uniaxial and biaxial 

compression. Based on the classical laminate theory, they used finite element 

analysis to obtain the numerical solution of the equations of motion. The 

effect of elastic modulus ratio, aspect ratio (𝑎/𝑏), and boundary condition on 

buckling load was explained. It is found that as the laminated plate becomes 

more restrained its resistance when the buckling increases. The critical 

buckling load decreases with the modulus ratio increases and for higher 

values of the elastic modular ratio, the critical buckling load becomes almost 

constant.   
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2.3 FIRST-ORDER SHEAR DEFORMATION THEORY 

 (Ferreira et al., 2011) [28] utilized a first-order shear deformation 

theory plate to analyze a buckling of an isotropic and laminated composite 

plate. The structure was under partial in-plane edge loads. The wavelet 

collocation method was adopted to solve the buckling load. The results were 

compared with finite element schemes that find in a very good agreement. 

For a square isotropic plate under a uniaxial load of simply supported 

boundary conditions, the effect of shear deformation was significant and 

evident on the buckling parameter. The buckling of the cross-ply laminated 

plate under uniaxial was examined, results present the effect of the number 

of layers and degree of orthotropic of the layers individual on the critical 

buckling load. It is shown the current method produces highly exact critical 

load and modes. 

 (Shukla et al., 2005) [29] estimated the critical and buckling loads of 

rectangular cross-ply and angle-ply laminated composite plates. The 

structure was subject in-plane to uniaxial and biaxial loading. By using a 

first-order shear deformation theory plate with Von-Karman-type 

nonlinearity formulations the equations of motion were obtained. The 

linearization technique and spatial discretization schemes were described. 

The influence of aspect ratio, moduli ratio, and the number of layers, the 

orientation of fibers, boundary condition, symmetric-cross ply, and anti-

symmetric angle-ply on the buckling behavior was studied and obtained 

results. With biaxial loading, a maximum buckling load occurs at a fiber 

angle of 45ο. 
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 (El Bouhmidi and Rougui, 2018) [30] investigated the buckling 

behavior of E-Glass/Epoxy perforated symmetric and anti-symmetric 

composite laminated plates. The structure with the circular hole was 

subjected to uniaxial static loading. The first-order shear deformation theory 

plate and variational energy method were used in mathematical formulation 

to obtain the critical buckling load. The solutions were done with the finite 

element method. The buckling load depends on several factors such as 

different boundary conditions, aspect ratio, lay-up sequences, angle of ply 

orientation, and the diameter of the circular hole. The result offers in 

graphical form with different boundary conditions. Among these parameters 

boundary conditions of the plate obtained the strongest mark on the buckling 

load. The big hole under the loading causes the weakest plate. 

       (Shadmehri, Hoa and Hojjati, 2012) [31] employed the first-order 

shear deformation theory to derive the equations of motion. Ritz method is 

adopted to solve these equations, to obtain the linear buckling behavior of 

conical composite shells. The shell was subjected to axial compressive 

loading. Both axisymmetric and non-axisymmetric formulations are derived 

and solved for each laminated composite conical shell, the lowest buckling 

load was selected as a critical buckling load. The parameter is studied to find 

the effect on the critical buckling load like fiber orientation and cone angle. 

The derivation can be drawn from the different parameters examined 

presented in the numerical results. With the increased fiber orientation, the 

critical buckling load decrease at short conical shells and angle-ply thin 

shells. 
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 (DOĞAN, 2020) [32] studied the buckling behavior of thin and thick 

laminated composite plates by applied first-order shear deformation theory 

with Hamilton's principle to drive the equations of motion. The loading 

condition of a simply supported symmetric rectangular plate was uniaxial 

and biaxial compressive loads. The solution was groped by applying the 

Navier solution technique. In this study, the effect of anisotropy and edge 

ratios on the buckling analysis of structure, aspect ratio, (E1/E2) ratio, and the 

number of layers were examined. The results of numerical studies for the 

buckling behavior of (LCP) are benchmarked and demonstrated with former 

papers in the literature and software ANSYS finite element method. It was 

found that, at (E1/E2) ratio change from 30 to 40, the non-dimensional 

buckling load increase. 

 

2.4 TWO-STEP PERTURBATION TECHNIQUE 

(The song et al., 2017) [33] studied the buckling and post-buckling 

attitude of functionally graded multilayer plates. The GPLRC was subjected 

to biaxial compressive loads. The two-step perturbation technique was used 

to examine the post-buckling solution both perfect and imperfect structure 

simply supported on edges. The equations of motion for plates were derived 

by utilizing a first-order shear deformation theory with taking into 

consideration both initial geometrical imperfection and geometrical 

nonlinearity in von Kármán sense. The effects of the total number of layers, 

as well as GPL weight fraction, geometry, and distribution pattern, on the 

buckling influence of structure, were determined in detail. The results have 

revealed that can significantly improve the attitude of buckling and post-

buckling of the plates by dispersing a small amount of GPLs into the matrix.  
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 (Shen, 2009) [34] employed the higher-order shear deformation 

theory plate to derive the motion equation. To determine a buckling load and 

post-buckling path a Two-Step perturbation technique is adopted. Shear 

deformable functionality graded (FGM) symmetric plate, simply supported 

as the piezoelectric fiber-reinforced composite (PFRC) actuator is examined. 

The nonlinear compressive and thermal post-buckling behaviors of the 

structure have been presented. The plate was under to uniform temperature 

rise or uniaxial compression combined with a load of electricity. The initial 

geometric imperfection of the structure was considered. The material 

properties of both PFRC and FGM layers were supposed to be temperature-

dependent. The numerical illustrations concern the thermal and compressive 

post-buckling behavior of imperfect and perfect, symmetric FGM plates with 

embedded or fully covered PFRC actuators subjected to various sets of 

electric and thermal conditions. The negative voltage was used to decrease 

the deflection of post-buckling and increase the buckling load.  

 (Shen et al., 2017) [35] offered the Two-Step perturbation technique 

to examine the buckling load and post-buckling equilibrium paths of the 

functionally graded graphene-reinforced composite (FG-GRCS) laminated 

plate. The structure resting on an elastic foundation was subjected to uniaxial 

compressive loading in a thermal environment. The post-buckling attitude of 

functionally graded grapheme-reinforced composite (FG- GRCS) plate was 

designed by a Higher-Order Shear Deformation Plate Theory. The thermal 

effects and plate-foundation interaction were taken into consideration. The 

buckling behavior of imperfect and perfect, symmetric FG-GRC plates 

subjected to different conditions of the thermal environment was examined 

and obtain. The post-buckling strength of the GRC laminated structures was  
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significantly influenced by the transverse shear deformation, temperature 

rise, foundation stiffness, aspect ratio, and boundary conditions. A buckling 

load and post-buckling strength of the GRC laminated plate can be enhanced 

with the piece-wise FG distribution of graphene.  

 (Li, Liu and Yang, 2018) [36] displayed the Two-Step perturbation 

technique to examine the interaction buckling and post-buckling analysis for 

a thick moderately anisotropic laminated cylindrical shell. The structure 

under axial compression and external pressure, that extends the boundary 

layer theory of buckling shell. Equations of equilibrium derived by higher-

order shear deformation shell theory with kinematic nonlinearity of Von-

Karman Donnell. The initial imperfection and pre-buckling nonlinear 

deformation of the shell were considered. The internal physical mechanism 

of the structure's geometric different parameters on the buckling behavior 

and post-buckling strength was obtained. The numerical illustrations concern 

the post-buckling behavior of imperfect and perfect, anisotropic laminated 

cylinder shells, moderately thick with various load-proportional parameters. 

The shape of the buckling interaction curve base on the stacking sequence of 

the laminated shell significantly, parameters geometric shell, the number of 

layers. The results showed a powerful and new technique to solve a buckling 

problem of the structure shell by the effects of different complex loads. 

(Shen and Xiang, 2018) [37] adopted a Two-Step perturbation technique to 

solve the equations of motion to obtain the buckling load and post-buckling 

strength for perfect and imperfect GRC laminated cylindrical shells. The 

structure was subjected to axial compressive loading in a thermal 

environment. The equation of motion derived by Reddy’s third-order shear 

deformation shell theory with Von-Karman kinematic nonlinear and effect  
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of temperature variation. The piece-wise of graphene-reinforced composite 

layers were formed in a functionally graded model along the thickness 

direction of the shells. The buckling load and post-buckling equilibrium path 

can be improved with the piece-wise FG distribution of graphene 

reinforcement. It was noticed: with axially-loaded graphene-reinforced 

composite laminated cylindrical shells have unstable equilibrium paths of 

post-buckling.  

 (Fan and Wang, 2016) [38] investigated the nonlinear vibration and thermal 

post-buckling of the post-buckled matrix cracked hybrid laminated plate 

with a Pasternak elastic foundation. The Tow-Step perturbation technique 

was based to get the governing equation. The interaction between the 

structure and elastic foundation was taken into consideration. The higher-

order shear deformation plate theory and kinematic nonlinearity of Von-

Karman were used to obtain the equations of motion. The structure was a 

composite of carbon nanotube-reinforced composite (CNTRC) layers and 

conventional fiber-reinforced composite (FRC) layers. The matrix cracks 

have an important effect on the linear frequencies and thermal post-buckling 

of the hybrid laminated composite plate. The effect of matrix crack was weak 

or maybe neglected for nonlinear vibration problems. The different 

parameter that examines was conducted to study the influence of FG 

distribution of CNT, matrix crack, foundation stiffness, and volume fraction 

of CNT on the thermal post-buckling of the cross-ply hybrid laminated plate. 

It was revealed, the width to thickness ratio made the effect more pronounced 

of matrix cracking on linear vibration of the plate with thermally post 

buckled. 
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(Shen and Li, 2004) [39] used the Two-Step perturbation technique 

to examine the post-buckling behavior of the shear deformable laminated 

plate. The structure was supported by a tensionless elastic foundation under 

compressive edge loading or the uniform temperature rise. The formulations 

were obtained by using higher-order shear deformation plate theory and the 

Von-Karman of kinematic nonlinear. The initial imperfection of the structure 

was taken into consideration. The thermal effects were also taken into 

account and the material properties are independent of temperature.  The 

advantage of an analytical-numerical method was that the solving is in 

explicit form. In simple to program in computing non-linear load end 

shortening and load-deflection curves without prior assumption for the 

contact region of the shape. The post-buckling behavior of perfect and 

imperfect, symmetric angle-ply, anti-symmetric angle-ply laminated resting 

on the tensionless Pasternak elastic foundation is obtained. The results 

showed that the unilateral constraint has an important influence on the post-

buckling behavior at the stiffness of the foundation is sufficiently large.  

(Shen and Xiang, 2019) [40] used the Two-Step perturbation approach to 

present the thermal post-buckling equilibrium paths of graphene-reinforced 

composite (GRC) laminated cylindrical shells. The structure was subjected 

to uniform temperature load with or without geometric imperfection. The 

governing equations of motion were derived by employing the Higher-Order 

Shear Deformation Shell Theory with Von-Karman type nonlinearity 

kinematic, a thermal effect also was included. The (GRC) layers were 

organized in (FG) graphene-reinforced arrangement with a different volume 

fraction of graphene in each (GRC) layer. The (GRC) shell can have snap or 

stability through the thermal equilibrium path of post-buckling under  
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a uniform field of temperature, depending on the shell geometric 

imperfection parameter and geometrical parameter. At the shell, under the 

uniform temperature field, the FG-X piece-wise FG graphene distribution 

can improve the capacity of a post-buckling of the shell. 

 

2.5 SUMMARY OF LITERATURE REVIEW 

Through the literature review, in the previous sections, many researchers 

focused on the study of buckling and post-buckling behavior under the 

influence of different mechanical subject to different boundary conditions.  

Researchers examined the effect of the different parameters of the 

laminated composite plate on buckling behavior. With using different 

theories and methods are obtained the solution of the equations of motion 

[16-27].  

In the second part of the literature review, researchers used different 

structures such as laminated plate, conical shell, and functionally graded 

plate. The equation motion is derived by used the FSDT and solved by 

employed several approaches like finite element (FEM), and the Ritz method 

as [28-32]. Then, in the last part of the literature review, other researchers 

investigated the behavior of stability for different structures by using the 

Two-Step perturbation technique with various theories to obtain the 

equilibrium equations [33-40].  

 In engineering applications, laminated composite plates are subjected 

to complex working conditions and severe types of static loads. Therefore 

these structures will be exposed for instability state that leads to buckling  
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phenomenon and failure. Thus, buckling and post-buckling research are 

important because it is one of the reasons for the failure of structures.  

When the laminated composite plates are exposed to high 

compressive loads, these structures will fail. Thus, buckling and post-

buckling research are important to avoid the instability of structures.  

So far, by reviewing the previous researchers, and to the best authors’ 

knowledge, there is no publication about non-linear static stability analyzed 

for the graphite/epoxy laminated composite plate under different mechanical 

loading (uniaxial load and biaxial load). Based on the first-order shear 

deformation theory plate with taking into consideration the geometrical 

nonlinearity in von Kármán sense, the equations of motion are determined. 

These equations are solved by applied the Two-Step perturbation technique 

method to obtain the critical buckling loads and post-buckling equilibrium 

paths.  
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CHAPTER THREE 

THEORETICAL FORMULATIONS AND 

MODELLING 

3.1 INTRODUCTION 

  The aim of the current research is to study the effects of various 

compressive loads, and different parameters on the behavior of buckling and 

post-buckling of the laminated composite plate. The present model is 

subjected to compressive loads (uniaxial and biaxial). This will be achieved 

by finding the value of the critical buckling load, post-buckling equilibrium 

paths, and represent them on the loads-deflection scheme to discuss them in 

the next chapter. 

  In this chapter, the basic equations of motion for the nonlinear static 

stability behavior of laminated plates are derived based on first-order shear 

deformation theory. The certain assumption or restrictions in formulating 

this theory are as following (UnuthuReddy, 2003) [1]:  

 The layers bonded together are perfect. 

 The material of all layers is behaving elastically and has two planes of 

symmetrical material i.e., orthotropic material. 

 The displacements and strains are as small compared with the   

      thickness of the plate.  
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 The transverse shear stresses of the laminated on the top and bottom 

surfaces are zero therefore used shear correction factor in this theory. 

 Each layer of the laminated plate is a uniform thickness. 

 

These equations are solved by the two-step perturbation technique. Figure 

3-1 illustrates the sequence of the analytical methods utilized to derive and 

solve the mathematical formulation for the current model. 
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Figure 3-1: The sequence of preparation and analysis processes of the laminated 

composite plate model 
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3.2 GEOMETRIC MODEL 

The geometry and coordinate of the composite plate model are shown in 

Figures 3-2 and 3-3, respectively, are unidirectional laminated plates of 

orthotropic materials. The symbols a, b, and h present the structure length, 

width, and thickness, respectively. The model is under uniformly distributed 

biaxial compression loads 𝑁𝑥 and 𝑁𝑦 along the edges 0 ≤ x ≤ a and 0 ≤y ≤ b, 

respectively. The symmetrically laminated plate was composed of  number 

of layers (N) with equal thickness h / N, where N=10. The displacement 

parallels to the Cartesian Coordinates as axes x_1, y_2, are considered. 

 

 

 

Figure 3-2: Geometry system of the laminated plate (Bhaskar and Thakur, 2019) 

 [41]. 
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Figure 3-3: Coordinate of orthotropic materials (Li and Kim, 2020) [42]. 

  

3.3  MATERIAL PROPERTY 

The lamina engineering constants, moduli, and Poisson’s ratio of the fiber-

reinforced material can be expressed as the follows (UnuthuReddy, 2003) 

[1]: 

 

 𝐸1 = 𝐸𝑓  𝑉𝑓 + 𝐸𝑚 𝑉𝑚    

 
𝐸2 =

𝐸𝑓𝐸𝑚

𝐸𝑓𝑉𝑚 + 𝐸𝑚𝑉𝑓
                                                                           

 

 𝑣12 = 𝑉𝑓𝑣𝑓 + 𝑉𝑚𝑣𝑚    

 
𝐺12 =

𝐺𝑓𝐺𝑚

𝐺𝑓𝑉𝑚 + 𝐺𝑚𝑉𝑓
                                                                         (3.1) 

 
𝑣21 = 

𝑣12 𝐸2
𝐸1

                                                                               
 

 𝐺23 = 𝐺13 = 𝐺12                                                                             
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where, 𝐸1  and 𝐸2  are the longitudinal and transverse modulus, 

respectively;  𝑣12  is the major Poisson’s ratio, 𝐺12  ,  𝐺13  , and 𝐺23 are the 

shear modulus which describes angular changes between the main directions 

respectively, x and y, x and z, y and z, respectively. Also: 

𝐸𝑓 = Modulus of a fiber;    𝐸𝑚 = Modulus of a matrix 

𝑣𝑓 = Poisson's ratio of a fiber;   𝑣𝑚 = Poisson's ratio of a matrix 

𝑉𝑓 = Volume fraction of a fiber;   𝑉𝑚 = Volume fraction of a matrix 

 

𝐺𝑓 =
𝐸𝑓

2(1 + 𝑣𝑓)
   ;    𝐺𝑚 =

𝐸𝑚
2(1 + 𝑣𝑚)

 

 

  

3.4 FORMULATION OF THE PROBLEM  

3.4.1 DISPLACEMENT FIELD AND STRAINS 

In this section, the equations of motion will be obtained by used the first-

order shear deformation theory. By Ref.(Alieldin, Alshorbagy, and Shaat, 

2011) [43], the displacement fields (𝑢, 𝑣, 𝜔) for laminated composite plates 

are assumed to be: 

 

 𝑢(𝑥, 𝑦, 𝑧)    = 𝑢0(𝑥, 𝑦) + 𝑧𝜙𝑥(𝑥, 𝑦)                                               

 𝑣(𝑥, 𝑦, 𝑧)    = 𝑣0(𝑥, 𝑦) + 𝑧𝜙𝑦(𝑥, 𝑦)                                              (3.2) 

 𝑤(𝑥, 𝑦, 𝑧)   = 𝑤0(𝑥, 𝑦)                                                                     
  

The ( 𝑢0, 𝑣0, 𝑤0 ) denotes the displacements of mid-plan at z=0. The 

(𝜙𝑥 𝑎𝑛𝑑𝜙𝑦 ) are the rotation of the transverse normal around the y_ and 

x_axes, respectively, as shown in Figure 3-4. 
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The quantities (𝑢0, 𝑣0, 𝑤0, 𝜙𝑥, 𝜙𝑦) are unknown functions to be calculated. 

Note that 𝜙𝑥 =
∂𝑢

∂𝑧
 , 𝜙𝑦 =

∂𝑣

∂𝑧
 as shown in Figure 3-4.  

 

 

Figure 3-4: Undeformed and deformed geometries of an edge of a 

the plate under the assumptions of the FSDT (Alieldin, Alshorbagy, and Shaat, 

2011) [43] 

 

The strain-displacement relations for moderate rotations and small strains 

take the form (Ovesy and Kharazi, 2011) [44]: 

 
𝜀𝑥 =

∂𝑢

∂𝑥
+
1

2
(
∂𝑤

∂𝑥
)
2

                                                                          
 

 
𝜀𝑦 =

∂𝑣

∂𝑦
+
1

2
(
∂𝑤

∂𝑦
)
2

                                                                          
 

 
𝜀𝑦𝑧 =

1

2
(
∂𝑣

∂𝑧
+
∂𝑤

∂𝑦
)                                                                           (3.3) 

 
𝜀𝑥𝑧 =

1

2
(
∂𝑢

∂𝑧
+
∂𝑤

∂𝑥
)                                                                          

 

 
𝜀𝑥𝑦 =

1

2
(
∂𝑢

∂𝑦
+
∂𝑣

∂𝑥
+
∂𝑤

∂𝑥

∂𝑤

∂𝑦
)                                                         

 

 
𝜀𝑧 =

∂𝑤

∂𝑧
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By substituting equation (3.2) in equation (3.3), the Von Karman type 

nonlinear strains can be obtained as follows: 

 
𝜀𝑥  =

∂𝑢0
∂𝑥

+
1

2
(
∂𝑤0
∂𝑥

)
2

+ 𝑧
∂𝜙𝑥
∂𝑥

                                                     
 

 
𝜀𝑦 =

∂𝑣0
∂𝑦

+
1

2
(
∂𝑤0
∂𝑦

)
2

+ 𝑧
∂𝜙𝑦

∂𝑦
                                                      

 

 
𝛾𝑦𝑧 =

∂𝑤0
∂𝑦

+ 𝜙𝑦   ,     𝛾𝑥𝑧 =
∂𝑤0
∂𝑥

+ 𝜙𝑥                                          (3.4) 

 
𝛾𝑥𝑦  = (

∂𝑢0
∂𝑦

+
∂𝑣0
∂𝑥

+
∂𝑤0
∂𝑥

∂𝑤0
∂𝑦

) + 𝑧 (
∂𝜙𝑥
∂𝑦

+
∂𝜙𝑦

∂𝑥
)                 

 

 𝜀𝑧 = 0                                                                                                  

Where (𝛾𝑦𝑧 , 𝛾𝑥𝑧, 𝛾𝑥𝑦) represent the transverse shear strains components in 

the planes (yz, xz, xy). The strains in equation (3.4) can be re-arranged in 

the form: 

 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}
 
 

 
 

=

{
  
 

  
 𝜀𝑥

(0)

𝜀𝑦
(0)

𝛾𝑦𝑧
(0)

𝛾𝑥𝑧
(0)

𝛾𝑥𝑦
(0)
}
  
 

  
 

+ 𝑧

{
  
 

  
 𝜀𝑥

(1)

𝜀𝑦
(1)

𝛾𝑦𝑧
(1)

𝛾𝑥𝑧
(1)

𝛾𝑥𝑦
(1)
}
  
 

  
 

                                                         

= 

{
 
 
 
 

 
 
 
 

∂𝑢0

∂𝑥
+
1

2
(
∂𝑤0

∂𝑥
)
2

∂𝑣0

∂𝑦
+
1

2
(
∂𝑤0

∂𝑦
)
2

𝜙𝑦 +
∂𝑤0

∂𝑦
 

𝜙𝑥 +
∂𝑤0

∂𝑥
∂𝑢0

∂𝑦
+
∂𝑣0

∂𝑥
+
∂𝑤0

∂𝑥

∂𝑤0

∂𝑦

   

}
 
 
 
 

 
 
 
 

+  𝑧

{
  
 

  
 

∂𝜙𝑥

∂𝑥
∂𝜙𝑦

∂𝑦

0
0

∂𝜙𝑥

∂𝑦
+

∂𝜙𝑦

∂𝑥 }
  
 

  
 

 

(3.5) 

39 



CHAPTER THREE BASIC FORMULATIONS  

 

3.4.2 STRESS-STRAIN RELATIONSHIPS 

For a laminated composite plate, the nonlinear stress-strain relations can be 

written as follows (Roylance, 2000) [45]. 

 

  {

𝜎1
𝜎2
𝜏12
} = [

𝑐2 𝑠2 2𝑠𝑐
𝑠2 𝑐2 −2𝑠𝑐
−𝑠𝑐 𝑠𝑐 𝑐2 − 𝑠2

] {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}         (3.6) 

 

Where c = cosθ, s = sinθ, and θ is the lay-up angle of reinforcement. 

  

The equation (3.6) can be abbreviated as: 

 𝜎′ = 𝑇𝜎 (3.7) 

Where: T is the transformation matrix 

Using mathematical, it can be shown that the components of infinitesimal 

strain transform by nearly the same relations: 

 

{

𝜀1
𝜀2

1

2
𝛾12

} = T{

𝜀𝑥
𝜀𝑦

1

2
𝛾𝑥𝑦

}                                                                                           (3.8) 

The factor 1/2 on the shear components arises from the classical definition 

of shear strain is twice the tensorial shear strain. By introducing Reuter's 

matrix, some discomfiture into the transformation relations can be reduced. 

Reuter's matrix is defined as:  

 

[R] = [
1    0    0
0    1    0
0    0    2

]       OR       [R]−1 = [

1 0 0
0 1 0

0 0
1

2

]                                   (3.9) 
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{

𝜀1
𝜀2
𝛾12
} = R{

𝜀1
𝜀2
1

2
𝛾12

} = 𝑅𝑇 {

𝜀1
𝜀2
1

2
𝛾12

} = 𝑅𝑇R−1 {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} (3.10) 

OR 

 ε′ = RTR−1𝜀                                                                                       (3.11) 

Stress-strain relations of the orthotropic lamina are given below(Namdar and 

Darendeliler, 2017) [46]: 

 
[

𝜎1
𝜎2
𝜏12
] = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] [

𝜀1
𝜀2
𝛾12
]                                                                  (3.12) 

Coefficients of stiffness matrix can be obtained as: 

 
𝑄11 =

𝐸1
1 − 𝑣12𝑣21

  ;     𝑄22 =
𝐸2

1 − 𝑣12𝑣21
 

𝑄12 =
𝑣12𝐸2

1 − 𝑣12𝑣21
=

𝑣21𝐸1
1 − 𝑣12𝑣21

      ;         𝑄66  = 𝐺12 

(3.13) 

From substituting equation (3.12) in equation (3.6), it can be obtained: 

 

 
{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}   = T−1 [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] [

𝜀1
𝜀2
𝛾12
] (3.14) 

  

By substituting equation (3.10) in equation (3.14), this gives the following 

expressions: 

 

 {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}   = T−1 𝑄 RTR−1 {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} = 𝑄 {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} (3.15) 

Where, the term   𝑄 = T−1 𝑄 RTR−1, is transformed reduced stiffness. 
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Substituting equation (3.5) in equation (3.15) gives the global stress for the 

laminate as:  

 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} =[

𝑄̅11    𝑄̅12    0

𝑄̅12    𝑄̅22    0

0    0    𝑄̅66

]

𝑘

{

𝜀𝑥
(0)
+ 𝑧𝜀𝑥

(1)

𝜀𝑦
(0)
+ 𝑧𝜀𝑦

(1)

𝜀𝑥𝑦
(0)
+ 𝑧𝜀𝑥𝑦

(1)

} (3.16) 

Where: 

 𝑄̅11 = 𝑄11𝑐
4 + 2(𝑄12 + 2𝑄66) 𝑠

2 𝑐2 + 𝑄22𝑠
4    

𝑄̅12 = (𝑄11 + 𝑄22 − 4𝑄66)𝑠
2𝑐2 + 𝑄12(𝑠

4 + 𝑐4)  

𝑄̅22 = 𝑄11𝑠
4    + 2(𝑄12 + 2𝑄66) 𝑠

2 𝑐2 + 𝑄22𝑐
4  

𝑄̅66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66) 𝑠
2 𝑐2 + 𝑄66(𝑠

4 + 𝑐4)                  

(3.17) 

                      

3.4.3 LAMINATE FORCE AND MOMENT RESULTANTS 

 

     Forces and moments that are applied onto a laminate can be obtained by 

integration of the stresses on each layer of the laminate plate through the 

thickness. The force and moments resultants for the kth layer of a laminated 

can be found as (Domfang, 2013) [47]: 

 
𝑁𝑥 =∑  

𝑁𝐿

𝑘=1

∫  
𝑍𝑘+1

𝑍𝑘

𝜎𝑥𝑑𝑧 

𝑁𝑦 =∑  

𝑁𝐿

𝑘=1

∫  
𝑍𝑘+1

𝑍𝑘

𝜎𝑦𝑑𝑧 

𝑁𝑥𝑦 =∑  

𝑁𝐿

𝑘=1

∫  
𝑍𝑘+1

𝑍𝑘

𝜎𝑥𝑦𝑑𝑧 

 

(3.18) 

Where 𝑁𝑥 and 𝑁𝑦  were the normal force resultants, 𝑁𝑥𝑦 was the tangential 

force, 𝑁𝐿 was the number of layers. 
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𝑀𝑥 =∑  

𝑁𝐿

𝑘=1

∫  
𝑍𝑘+1

𝑍𝑘

𝑧𝜎𝑥𝑑𝑧         

𝑀𝑦 =∑  

𝑁𝐿

𝑘=1

∫  
𝑍𝑘+1

𝑍𝑘

𝑧𝜎𝑦𝑑𝑧                                       

𝑀𝑥𝑦 =∑  

𝑁𝐿

𝑘=1

∫  
𝑍𝑘+1

𝑍𝑘

𝑧𝜎𝑥𝑦𝑑𝑧                                              

 

(3.19) 

   
Where 𝑀𝑥 and 𝑀𝑦 were the moment resultants, and 𝑀𝑥𝑦 was the twisting 

moment. 

 

By substituting equation (3.16) in equations (3.18) and (3.19), it can obtain 

the expressions: 

 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} =∑  

𝑁𝐿

𝑘=1

∫  
𝑍𝑘+1

𝑍𝑘

[

𝑄̅11    𝑄̅12    0

𝑄̅21    𝑄̅22    0

0    0    𝑄̅66

]

𝑘

{

𝜀𝑥
(0)
+ 𝑧𝜀𝑥

(1)

𝜀𝑦
(0)
+ 𝑧𝜀𝑦

(1)

𝜀𝑥𝑦
(0)
+ 𝑧𝜀𝑥𝑦

(1)

}𝑑𝑧   (3.20) 

 

 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} =∑  

𝑁𝐿

𝑘=1

∫  
𝑍𝑘+1

𝑍𝑘

𝑍 [

𝑄̅11    𝑄̅12    0

𝑄̅21    𝑄̅22    0

0    0    𝑄̅66

]

𝑘

{

𝜀𝑥
(0)
+ 𝑧𝜀𝑥

(1)

𝜀𝑦
(0)
+ 𝑧𝜀𝑦

(1)

𝜀𝑥𝑦
(0)
+ 𝑧𝜀𝑥𝑦

(1)

}𝑑𝑧 (3.21) 

Where, 𝑄̅𝑖𝑗   are the lamina stiffness coefficients.  
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After integration equations (3.20) and (3.21), laminate constitutive 

equations are obtained as follows: 

 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} =  [

𝐴11    𝐴12    0
𝐴12    𝐴22    0
0    0       𝐴66

] {

𝜀𝑥
(0)

𝜀𝑦
(0)

𝜀𝑥𝑦
(0)

} 

+  [

𝐵11    𝐵12     0
𝐵12    𝐵22     0
0            0      𝐵66  

] {

𝜀𝑥
(1)

𝜀𝑦
(1)

𝜀𝑥𝑦
(1)

} 

(3.22) 

  

 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = [

𝐵11    𝐵12    0
𝐵12    𝐵22    0
0    0    𝐵66

] {

𝜀𝑥
(0)

𝜀𝑦
(0)

𝜀𝑥𝑦
(0)

} 

+  [

𝐷11    𝐷12    0
𝐷12    𝐷22    0
0    0    𝐷66

 ] {

𝜀𝑥
(1)

𝜀𝑦
(1)

𝜀𝑥𝑦
(1)

} 

(3.23) 

Where 𝐴𝑖𝑗 the extensional stiffness components, 𝐵𝑖𝑗 coupling stiffness 

components, and 𝐷𝑖𝑗 the bending stiffness components are defined as: 

 
[𝐴𝑖𝑗] = ∫  

ℎ
2

−
ℎ
2

[𝑄̅𝑖𝑗]𝑘
 

𝑑𝑧 =∑  

𝑁𝐿

𝑘=1

 ∫ [𝑄̅𝑖𝑗]𝑘
𝑑𝑧 

𝑍𝑘+1

𝑍𝑘

  

               =  ∑  

𝑁𝐿

𝑘=1

[𝑄̅𝑖𝑗]𝑘
(𝑧𝑘+1 − 𝑧𝑘) 

(3.24) 

 

 
[𝐵𝑖𝑗] =

1

2
∑  

𝑁𝐿

𝑘=1

[𝑄̅𝑖𝑗]𝑘
(𝑧𝑘+1
2 − 𝑧𝑘

2)                  (3.25) 

 

 
[𝐷𝑖𝑗] =

1

3
∑  

𝑁𝐿

𝑘=1

[𝑄̅𝑖𝑗]𝑘
(𝑧𝑘+1
3 − 𝑧𝑘

3)                 (3.26) 
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By using a compact form, Equations (3.22) and (3.23) can be written as 

below: 

 
{
{𝑁}

{𝑀}
} = [

[𝐴]    [𝐵]

[𝐵]    [𝐷]
] {
{𝜀 
(0)}

{𝜀 
(1)}

}                          (3.27) 

Where, {𝜀 
(0)} and {𝜀 

(1)} are defined in equation (3.5). 

 

Equation (3.27) can be presented in partial reverse forms with: 

 { 𝜀
(0)

𝑀
} = [

A∗ B∗

−B∗ D∗
] {

N
𝜀(1)

}                                                                            (3.28) 

Where, A∗ = A−1, B∗ = −A−1𝐵, and D∗ =  𝐷 − A−1𝐵.  

 

For the cross-ply symmetric laminate composite plate the [B∗] should be 

zero. 

The shear forces resultants 𝑄𝑥 and 𝑄𝑦 were expressed as: 

 
{
𝑄𝑦
𝑄𝑥
} = ∫     

ℎ
2

−
ℎ
2

{
𝜎𝑦𝑧
𝜎𝑥𝑧

} 𝑑𝑧                                                  (3.29) 

Augmented with: 

 
{
𝜎𝑦𝑧
𝜎𝑥𝑧

}
𝑘

= [
𝑄̅44  0

0    𝑄̅55
]

𝑘

{
𝛾𝑦𝑧
(0)

𝛾𝑥𝑧
(0)
} (3.30) 

 

Substituting equation (3.30) in (3.29) was given: 

 
{
𝑄𝑦
𝑄𝑥
} = 𝐾𝑠 [

𝐴44 0
0    𝐴55

] {
𝛾𝑦𝑧
(0)

𝛾𝑥𝑧
(0)
}                                                                    (3.31) 

Where 𝐾𝑠= 5/6, is the shear correction factor. 
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Also: 

 
(𝐴44, 𝐴55) = ∫  

𝑍𝑘+1

𝑍𝑘

(  𝑄̅44 
𝑘
, 𝑄̅55 

𝑘
)𝑑𝑧 

                   = ∑  

𝑁𝐿

𝑘=1

∫  
𝑍𝑘+1

𝑍𝑘

(  𝑄̅44 
𝑘
, 𝑄̅55 

𝑘
) 𝑑𝑧 

                   = ∑  

𝑁𝐿

𝑘=1

(  𝑄̅44 
𝑘
, 𝑄̅55 

𝑘
) (𝑧𝑘+1 − 𝑧𝑘) 

(3.32) 

  

Where 𝑄̅44 = 𝑄44 𝑐
2 + 𝑄55 𝑠

2,  𝑄̅55 = 𝑄55 𝑐
2 + 𝑄44 𝑠

2, and 𝑄44 = 𝐺23  ,    

           𝑄55 = 𝐺13   

                                                                                                                                                                                            

With substituting equation (3.5) in equation (3.30) was obtained:       

 {
𝑄𝑦
𝑄𝑥
} = 𝐾𝑠 [

𝐴44 0
0    𝐴55

]

{
 

 𝜙𝑦 +
∂𝑤0
∂𝑦

𝜙𝑥 +
∂𝑤0
∂𝑥 }

 

 

 (3.33) 

                                                                           

3.5 EQUATIONS OF MOTION 

 

The minimum total potential energy of the orthotropic plate subjected to 

compressive loads is defined as (Javaheri and Eslami, 2002) [48]: 

 

 
∏ = 𝑈 =

1

2
∫  (𝜎𝑥

 𝜀𝑥 + 𝜎𝑦
 𝜀𝑦 + 𝜎𝑥𝑦

 𝛾𝑥𝑦 + 𝜎𝑥𝑧
 𝛾𝑥𝑧

 

 

+ 𝜎𝑦𝑧
 𝛾𝑦𝑧)𝑑𝑉 

(3.34) 

Where, U is the strain energy of the plate based on first-order shear 

deformation theory.  
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The equilibrium equation of a structure can be obtained by the variational 

approach and can be written as: 

 
𝛿𝑈 = ∫  

𝑏

0

∫  
𝑎

0

∫  

ℎ
2

−
ℎ
2

 (𝜎𝑥
 𝛿𝜀𝑥 + 𝜎𝑦

 𝛿𝜀𝑦 + 𝜎𝑥𝑦
 𝛿𝛾𝑥𝑦                         

+ 𝜎𝑥𝑧
 𝛿𝛾𝑥𝑧                              

+ 𝜎𝑦𝑧
 𝛿𝛾𝑦𝑧) 𝑑𝑧𝑑𝑥𝑑𝑦  

(3.35) 

  

Taking the variation of equation (3.5) as follows: 

 

 
𝛿𝜀𝑥 =

∂𝛿𝑢0
∂𝑋

+
∂𝑤0
∂𝑋

∂𝛿𝑤0
∂𝑋

+ 𝑧
∂𝛿𝜙𝑥
∂𝑋

 

𝛿𝜀𝑦 =
∂𝛿𝑣0
∂𝑌

+
∂𝑤0
∂𝑌

∂𝛿𝑤0
∂𝑌

+ 𝑧
∂𝛿𝜙𝑦

∂𝑌
 

𝛿𝛾𝑥𝑦 =
∂𝛿𝑢0
∂𝑌

+
∂𝛿𝑣0
∂𝑋

+
∂𝑤0
∂X

∂𝛿𝑤0
∂𝑌

+
∂𝑤0
∂𝑌

∂𝛿𝑤0
∂𝑋

+ 𝑧
∂𝛿𝜙𝑥
∂𝑌

+ 𝑧
∂𝛿𝜙𝑦

∂𝑋
 

𝛿𝛾𝑥𝑧 =
∂𝛿𝑤0
∂𝑋

+ 𝛿𝜙𝑥 

𝛿𝛾𝑦𝑧 =
∂𝛿𝑤0
∂𝑌

+ 𝛿𝜙𝑦 

 

 

 

(3.36) 
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Substation equation (3.36) into equation (3.35) with taking into account the 

equations (3.18), (3.19), and (3.29). Then, integration that respects to (z) 

provides as: 

 
𝛿𝑈 = ∫  

𝑏

0

∫  
𝑎

0

[𝑁𝑥 (
∂𝛿𝑢0
∂𝑋

+
∂𝑤0
∂𝑋

∂𝛿𝑤0
∂𝑋

) + 𝑀𝑥

∂𝛿𝜙𝑥
∂𝑋

+ 

𝑀𝑦

∂𝛿𝜙𝑦

∂𝑌
+ 𝑁𝑥𝑦 (

∂𝛿𝑢0
∂𝑌

+
∂𝛿𝑣0
∂𝑋

+
∂𝑤0
∂𝑋

∂𝛿𝑤0
∂𝑌

+
∂𝑤0
∂𝑌

∂𝛿𝑤0
∂𝑋

) 

+𝑀𝑥𝑦 (
∂𝛿𝜙𝑥
∂𝑌

+
∂𝛿𝜙𝑦

∂𝑋
) + 𝑄𝑥 (

∂𝛿𝑤0
∂𝑋

+ 𝛿𝜙𝑥) 

+𝑄𝑦 (
∂𝛿𝑤0
∂𝑌

+ 𝛿𝜙𝑦)] 𝑑𝑥𝑑𝑦                                               

 

(3.37) 

  

Now, the nonlinear motion equations of laminated composite plates 

based on first-order shear deformation theory can be derived by employing 

the integration by-part procedure as follows: 

 

 
𝛿𝑢0:

∂𝑁𝑥
∂𝑋

+
∂𝑁𝑥𝑦

∂𝑌
= 0                                                                      (3.38) 

 
𝛿𝑣0:

∂𝑁𝑥𝑦

∂𝑋
+
∂𝑁𝑦

∂𝑌
= 0                                                                       (3.39) 

 
𝛿𝑤0:

∂𝑄𝑥
∂𝑋

+
∂𝑄𝑦

∂𝑌
+
∂

∂𝑋
[𝑁𝑥

∂𝑤0
∂𝑋

+ 𝑁𝑥𝑦
∂𝑤0
∂𝑌

]                               

  +
∂

∂𝑌
[𝑁𝑥𝑦

∂𝑤0
∂𝑋

+ 𝑁𝑦
∂𝑤0
∂𝑌

] = 0                                        

(3.40) 

 
𝛿𝜙𝑥:

∂𝑀𝑥

∂𝑋
+
∂𝑀𝑥𝑦

∂𝑌
− 𝑄𝑥 = 0                                                          (3.41) 

 
𝛿𝜙𝑦:

∂𝑀𝑥𝑦

∂𝑋
+
∂𝑀𝑦

∂𝑌
− 𝑄𝑦 = 0                                                          (3.42) 
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Inserting equations (3.5) and (3.28) into equations (3.38)-(3.42), and then 

take into account the conditions of deformation compatibility of a plate, 

one can get: 

 ∂2𝜀𝑥
(0)

∂𝑌2
+
∂2𝜀𝑦

(0)

∂𝑋2
−
∂2𝛾𝑥𝑦

(0)

∂𝑋 ∂𝑌
= (

∂2𝑤0
∂𝑋 ∂𝑌

)

2

−
∂2𝑤0
∂𝑋2

∂2𝑤0
∂𝑌2

          
(3.43) 

  

The first two equations (3.38) and (3.39) are done automatically by 

applying the stress function as follows: 

 

 
𝑁𝑥 =

∂2𝑓

∂𝑌2
  , 𝑁𝑦 =

∂2𝑓

∂𝑋2
 , 𝑁𝑥𝑦 = −

∂2𝑓

∂𝑋 ∂𝑌
                             (3.44) 

Substituting equations (3.33), and (3.44) into equation (3.40), the non-

linear stability equations are obtained as: 

 

 
𝐾𝑠 𝐴55

∂𝜙𝑥
∂𝑋

+ 𝐾𝑠 𝐴55
∂2𝑤0
∂𝑋2

+ 𝐾𝑠 𝐴44
∂𝜙𝑦

∂𝑌
+ 𝐾𝑠 𝐴44      

∂2𝑤0
∂𝑌2

+
∂2𝑓

∂𝑌2
∂2𝑤0
∂𝑋2

  − 2
∂2𝑓

∂𝑋 ∂𝑌

∂2𝑤0
∂𝑋 ∂𝑌

+
∂2𝑓

∂𝑋2
∂2𝑤0
∂𝑌2

= 0 

(3.45) 

 

Inserting equations 3.28 and 3.33 in equations (3.41) and (3.42) 

respectively, the non-linear stability equations are given as: 

 

 

𝐷11
∗
∂2𝜙𝑥
∂𝑋2

+ 𝐷12
∗
∂2𝜙𝑦

∂𝑋 ∂𝑌
+ 𝐷66

∗ (
∂2𝜙𝑥
∂𝑌2

+
∂2𝜙𝑦

∂𝑋 ∂𝑌
) –𝐾𝑠 𝐴55𝜙𝑥 

−𝐾𝑠 𝐴55
∂𝑤0
∂𝑋

= 0 

(3.46) 

                               

 

 

 

 

49 



CHAPTER THREE BASIC FORMULATIONS  

 

 
𝐷66
∗
∂2𝜙𝑥
∂𝑋 ∂𝑌

+ 𝐷66
∗
∂2𝜙𝑦

∂𝑋2
+ 𝐷12

∗
∂𝜙𝑥
∂𝑋 ∂𝑌

+ 𝐷11
∗
∂2𝜙𝑦

∂𝑌2
                   

− 𝐾𝑠 𝐴44𝜙𝑦 − 𝐾𝑠 𝐴44
∂𝑤0
∂𝑌

= 0 

(3.47) 

                          
          
By inserting equations (3.28) and (3.44) in equation (3.43) the non-linear 

compatibility equation can be accomplished as gives: 

 

 
𝐴11
∗
∂4𝑓

∂𝑌4
+ 𝐴11

∗
∂4𝑓

∂𝑋4
+ (𝐴66

∗ − 2𝐴12
∗ )

 ∂4𝑓      

∂𝑋2  ∂𝑌2  
                           

= (
∂2𝑤0
∂𝑋 ∂𝑌

)

2

−
∂2𝑤0
∂𝑋2

∂2𝑤0
∂𝑌2

                                

(3.48) 

  

3.6 GOVERNING EQUATIONS   

Introducing the following dimensionless quantities (Song et al., 2017) [33]: 

 

 
𝑥 = 𝜋

𝑋

𝑎
, 𝑦 = 𝜋

 𝑌

𝑏
, 𝛽 =

𝑎

𝑏
, Δ = (𝐷11

∗ 𝐷22
∗ 𝐴11

∗ 𝐴22
∗ )

1
4                    

𝑊0 =
𝑤0
Δ
, 𝐹 =

𝑓

(𝐷11
∗ 𝐷22

∗ )
1
2

 , (𝜙̅𝑥 , 𝜙̅𝑦) =
𝑎

𝜋

(𝜙𝑥 , 𝜙𝑦)

Δ
          

(𝜆𝑥,𝜆𝑦  ) =
(𝑁𝑥𝑏

 , 𝑁𝑦𝑎
   )

4𝜋2(𝐷11
∗ 𝐷22

∗ )
1
2

 

(3.49) 

Where 𝐴22
∗ = 𝐴11

∗ , 𝐷22
∗ = 𝐷11

∗ . 

By inserting equation (3.49) in (3.45) and dividing byΔ, 
 𝜋2 

𝑎2
, and 𝐷11

∗ , and 

then multiplying by 
 𝑎2 

𝜋2
 , leads:    

  

 
𝛾11

∂2𝑊0

∂𝑥2
+ 𝛾12

∂2𝑊0

∂𝑦2
+ 𝛾13

∂𝜙̅𝑥
∂𝑥

+ 𝛾14
∂𝜙̅𝑦

∂𝑦
+ 𝛽2𝐿(𝑊0, 𝐹)

=  0 

(3.50) 
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By inserting equation (3.49) in (3.46) and (3.47), then dividing by 𝐷11
∗  and 

 𝜋2 

𝑎2
, leads: 

 
𝛾15

∂𝑊0

∂𝑥
+
∂2𝜙̅𝑥
∂𝑥2

+ 𝛾16
∂2𝜙̅𝑥
∂𝑦2

 + 𝛾17𝜙̅𝑥 + 𝛾18
∂2𝜙̅𝑦

∂𝑥 ∂𝑦
= 0          (3.51) 

 
𝛾19

∂𝑊0

∂𝑦
+ 𝛾20

∂2𝜙̅𝑦

∂𝑥2
+ 𝛾21

∂2𝜙̅𝑦

∂𝑦2
+ 𝛾22𝜙̅𝑦 + 𝛾23

∂2𝜙̅𝑥
∂𝑥 ∂𝑦

= 0    (3.52) 

 

By inserting equation (3.49) in (3.48), then dividing by 𝐴11
∗ (𝐷11

∗ 𝐷22
∗ )

1

2 
 𝜋4 

𝑎4
 

leads: 

 
∂4𝐹

∂𝑥4
+ 𝛾24

 ∂4𝐹      

∂𝑥2  ∂𝑦2  
+ 𝛾25

∂4𝐹

∂𝑦4
= −

1

2
𝛽2𝐿(𝑊0,𝑊0) (3.53) 

  

Where 𝛾𝑖𝑗 are detailed in Appendix A, and a nonlinear partial differential  

operator 𝐿( ) =
∂2

∂𝑥2
∂2

∂𝑦2
 − 2

∂2

∂𝑥 ∂𝑦

∂2

∂𝑥 ∂𝑦
 +

∂2

∂𝑦2
∂2

∂𝑥2
 .                                   

The governing equations (3.50) - (3.53) respectively, can be written 

in terms of 𝑊0,𝜙̅𝑥, 𝜙̅𝑦 and F as follows: 

 𝐿01(𝑊0) + 𝐿02(𝜙̅𝑥) + 𝐿03(𝜙̅𝑦) + 𝛽
2𝐿(𝑊0, 𝐹) = 0                (3.54) 

 𝐿04(𝑊0) + 𝐿05(𝜙̅𝑥) + 𝐿06(𝜙̅𝑦) = 0                                           (3.55) 

 𝐿07(𝑊0) + 𝐿08(𝜙̅𝑥) + 𝐿09(𝜙̅𝑦) = 0                                           (3.56) 

 
𝐿10(𝐹) = −

1

2
𝛽2𝐿(𝑊0,𝑊0)                                                          (3.57) 

Where Lij is given in Appendix A and represents the linear partial differential 

operator. 
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3.7 BOUNDARY CONDITIONS 

The boundary conditions for the laminated composite plate simply supported 

on all edges are (Song et al.2017) [33]: 

 

 𝑥 = 0, 𝜋 :  

 𝜙̅𝑦 = 𝑊0 = 0                                                                                            (3.58) 

 
𝑀𝑥 =

∂2𝐹

∂𝑥 ∂𝑦
= 0                                                                                (3.59) 

 
4𝜆𝑥 +

1

𝜋
∫  
𝜋

0

∂2𝐹

∂𝑦2
d𝑦 = 0                                                                  (3.60) 

  

𝑦 = 0, 𝜋 : 
 

 𝜙̅𝑥 = 𝑊0 = 0                                                                                           (3.61) 

 
𝑀𝑦 =

∂2𝐹

∂𝑥 ∂𝑦
= 0                                                                                (3.62) 

 
4𝜆𝑦 +

1

𝜋
∫  
𝜋

0

∂2𝐹

∂𝑥2
d𝑥 = 0                                                                  (3.63) 
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3.8 ANALYTICAL APPROACH AND ASYMPTOTIC 

      SOLUTIONS  

The two-step perturbation method is employed to solve equations (3.50)-

(3.53) to examine the critical buckling loads and post-buckling equilibrium 

laminated composite plates. The solutions of equations (3.50)-(3.53) are 

supposed to take the form of (Shen, 2013) [15]: 

 𝑊0(𝑥, 𝑦, 𝜀) =∑  

𝑗=1

𝜀𝑗𝑤̅0𝑗 (𝑥, 𝑦), 𝐹(𝑥, 𝑦, 𝜀) =
∑  

𝑗=0

𝜀𝑗𝑓𝑗̅(𝑥, 𝑦)

𝜙̅𝑥(𝑥, 𝑦, 𝜀) =∑  

𝑗=1

𝜀𝑗𝜑𝑥𝑗(𝑥, 𝑦), 𝜙̅𝑦(𝑥, 𝑦, 𝜀) =∑  

𝑗=1

𝜀𝑗𝜑𝑦𝑗(𝑥, 𝑦)  
 (3.64) 

Where 𝜀 ∶ is the small perturbation parameter. 

By substituting equation (3.64) into equations (3.54) - (3.57) respectively, 

yields: 

 𝐿01 (𝜀1𝑤̅01 + 𝜀
2𝑤̅02 + 𝜀3𝑤̅03 + 𝜀4𝑤̅04 ) + 𝐿02 (𝜀1𝜑𝑥1 +

 𝜀2𝜑𝑥2 +  𝜀3𝜑𝑥3 +  𝜀4𝜑𝑥4 ) +  𝐿03 ( 𝜀1𝜑𝑦1 + 𝜀
2𝜑𝑦2 + 

𝜀3𝜑𝑦3 
+  𝜀4𝜑𝑦4 

) + 𝛽2𝐿 ( 𝜀1𝑤̅01 + 𝜀
2𝑤̅02 +  𝜀3𝑤̅03 + 

𝜀4𝑤̅04 ) (𝜀
0𝑓0̅ + 𝜀

1𝑓1̅ + 𝜀2𝑓2̅ + 𝜀3𝑓3̅ + 𝜀
4𝑓4̅ ) = 0                                                                                            

(3.65) 

 𝐿04 (𝜀1𝑤̅01 + 𝜀
2𝑤̅02 +  𝜀3𝑤̅03 +  𝜀4𝑤̅04 )  +  𝐿05 (𝜀1𝜑𝑥1 +

 𝜀2𝜑𝑥2 +  𝜀3𝜑𝑥3 + 𝜀
4𝜑𝑥4 ) +  𝐿06 ( 𝜀1𝜑𝑦1 + 𝜀

2𝜑𝑦2 +

𝜀3𝜑𝑦3 + 𝜀
4𝜑𝑦4 ) = 0    

(3.66) 

  𝐿07 (𝜀1𝑤̅01 + 𝜀
2𝑤̅02 +  𝜀3𝑤̅03 +  𝜀4𝑤̅04 )  +  𝐿08 (𝜀1𝜑𝑥1 +

 𝜀2𝜑𝑥2 +  𝜀3𝜑𝑥3 + 𝜀
4𝜑𝑥4 ) + 𝐿09 ( 𝜀1𝜑𝑦1 + 𝜀

2𝜑𝑦2 +

𝜀3𝜑𝑦3 + 𝜀
4𝜑𝑦4 ) = 0     

(3.67) 
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 𝐿10  (𝜀
0𝑓0̅ + 𝜀

1𝑓1̅ + 𝜀2𝑓2̅ + 𝜀3𝑓3̅ + 𝜀
4𝑓4̅ ) = −

1

2
𝛽2𝐿 

(𝜀1𝑤̅01 + 𝜀
2𝑤̅02 + 𝜀3𝑤̅03 + 𝜀

4𝑤̅04 ) (𝜀
1𝑤̅01 + 𝜀

2𝑤̅02 + 

𝜀3𝑤̅03 + 𝜀4𝑤̅04 )   

(3.68) 

 

 

By determining the terms of equations (3.65) – (3.68) of the same order of 𝜀.  

𝑤̅0𝑗  , 𝜑𝑥𝑗  , 𝑓𝑗̅  and 𝜑𝑦𝑗  are independent of 𝜀 , which can be setting the 

coefficient of each power of perturbation parameter (𝜀) equal to zero, this 

yields to the following set of equations: 

 Order 𝜀0 :                                                                                             

 𝐿10(𝑓0̅) = 0                                                                                        (3.69) 

The solution of equation (3.65) is easy to be expressed by: 

 𝑓𝑜̅ = −𝐵00
(0) 𝑦2

2
− 𝑏00

(0) 𝑥2

2
                                                                            (3.70) 

 

 Order 𝜀1 :   

 𝐿01(𝑤̅01) + 𝐿02(𝜑𝑥1) + 𝐿03(𝜑𝑦1) + 𝛽
2𝐿(𝑤̅01, 𝑓0̅) = 0   (3.71) 

 𝐿04(𝑤̅01) + 𝐿05(𝜑𝑥1) + 𝐿06(𝜑𝑦1) = 0                                                  (3.72) 

 𝐿07(𝑤̅01) + 𝐿08(𝜑𝑥1) + 𝐿09(𝜑𝑦1) = 0                                              (3.73) 

 𝐿10(𝑓1̅) = 0                                                                                (3.74) 
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It is assumed that the solutions of equations (3.71) - (3.74) satisfying the 

simply supported boundary conditions have the form: 

 

 𝑤̅01(𝑥, 𝑦) = 𝐴11
(1)sin𝑚𝑥 sin𝑛𝑦                                                              (3.75) 

 𝜑𝑥1 = 𝜀𝐶11
(1) cos𝑚𝑥 sin 𝑛𝑦                                                                   (3.76) 

 𝜙𝑦1 = 𝜀𝐷11
(1)
sin𝑚𝑥 cos 𝑛𝑦                                                                            (3.77) 

 𝑓1̅= 0                                                                                                      (3.78) 

  

Substituting equation (3.70), (3.75), (3.76), (3.77), and (3.78) into 

equations (3.71) – (3.74) yields: 

 

 𝛽2𝐴11
(1)(𝑏00

(0)𝑛2 + 𝐵00
(0)𝑚2) = (𝛾11𝑚

2 + 𝛾12𝑛
2)𝐴11

(1)                  

+𝑚𝛾13𝐶11
(1)
+ 𝑛𝛾14𝐷11

(1)
 

(3.79) 

Where: 

 
 𝐶11
(1)  =

𝑟11
𝐶

𝑟11
𝐴11
(1), 𝐷11

(1) =
𝑟11
𝐷

𝑟11
𝐴11
(1)

 (3.80) 

 

In which, the coefficients in equations (3.80) are given in Appendix B.  

 Order 𝜀2:  

 𝐿01(𝑤̅02) + 𝐿02(𝜑𝑥2) + 𝐿03(𝜑𝑦2) + 𝛽
2𝐿(𝑤02, 𝑓0)                  

+𝛽2𝐿(𝑤̅01, 𝑓1̅) = 0                                                                                       

(3.81) 

 𝐿04(𝑤̅02) + 𝐿05(𝜑𝑥2) + 𝐿06(𝜑𝑦2) = 0                                                (3.82) 

 𝐿07(𝑤̅02) + 𝐿08(𝜑𝑥2) + 𝐿09(𝜑𝑦2) = 0                                                 (3.83) 

 𝐿10(𝑓2̅) = −
1

2
𝛽2𝐿(𝑤̅01, 𝑤̅01)                                                                (3.84) 
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It is assumed that the solutions of equations (3.81) - (3.84) satisfying the 

simply supported boundary conditions have the form: 

 

 𝑤̅02= 0                                                                                                    (3.85) 

 𝜑𝑥2 = 0                                                                                                  (3.86) 

 𝜑𝑦2 = 0                                                                                                 (3.87) 

 𝑓2̅ = −𝑏00
(2) 𝑥2

2
− 𝐵00

(2) 𝑦2

2
+ 𝐵20

(2)
cos 2𝑚𝑥 + 𝐵02

(2)
cos 2𝑛𝑦                      (3.88) 

 

The solution of equation (3.88) comes from the right-hand side of equation 

(3.84), and it is not necessary to guess it.  

 

By substituting equation (3.88) into equation (3.84), one has: 

 

 
𝐵20
(2) =

𝛽2𝑛2

32𝑚2
𝐴11
(1)2                                                                            

(3.89) 

  
𝐵02
(2)
=

𝛽2𝑚2

32𝑛2𝛾25
𝐴11
(1)2                                                                      

 

(3.90) 

 Order 𝜀3                                                                                                

 𝐿01(𝑤̅03) + 𝐿02(𝜑𝑥3) + 𝐿03(𝜑𝑦3) + 𝛽
2𝐿(𝑤̅03, 𝑓0̅)  

+ 𝛽2𝐿(𝑤̅02, 𝑓0̅) + 𝛽
2𝐿(𝑤̅01, 𝑓2̅) = 0     

(3.91) 

 𝐿04(𝑤̅03) + 𝐿05(𝜑𝑥3) + 𝐿06(𝜑𝑦3) = 0                                        (3.92) 

 𝐿07(𝑤̅03) + 𝐿08(𝜑𝑥3) + 𝐿09(𝜑𝑦3) = 0                                        (3.93) 

 
𝐿10(𝑓3̅) = −

1

2
𝛽2𝐿(𝑤̅01, 𝑤̅02) −

1

2
𝛽2𝐿(𝑤̅02, 𝑤̅01)                     

 

(3.94) 
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It is assumed that the solutions of equations (3.91) - (3.94) satisfying the 

simply supported boundary conditions have the form: 

 

 𝑤̅03 = 𝐴13
(3)
sin𝑚𝑥 sin3𝑛𝑦 + 𝐴31

(3)
sin3𝑚𝑥 sin𝑛𝑦                                        (3.95) 

 𝜑𝑥3 = 𝐶13
(3)
cos𝑚𝑥 sin 3𝑛𝑦 + 𝐶31

(3)
cos 3𝑚𝑥 sin 𝑛𝑦                  (3.96) 

 𝜑𝑦3 = 𝐷13
(3) sin𝑚𝑥 cos 3𝑛𝑦 + 𝐷31

(3) sin 3𝑚𝑥 cos 𝑛𝑦                                 (3.97) 

 𝑓3̅ = 0                                                                                                                  (3.98) 

  

Substituting equations (3.69), (3.75), (3.85), (3.88), (3.95), (3.96), (3.97), 

and (3.98) into equations (3.91) – (3.94) yields: 

 

 𝑚2𝐵00
(2)
+ 𝑛2𝑏00

(2)
= 2𝑚2𝑛2(𝐵02

(2)
+ 𝐵20

(2)
)                                     (3.99) 

  

 
𝐴13
(3) =

𝑟13
𝐴

𝑟13
𝐴11
(1)3                                                                                  (3.100) 

 
𝐶13
(3) =

𝑟13
𝐶

𝑟13
𝐴11
(1)3                                                                                  (3.101) 

 
𝐷13
(3) =

𝑟13
𝐷

𝑟13
𝐴11
(1)3                                                                                 (3.102) 

 
𝐴31
(3)
=
𝑟31
𝐴

𝑟31
𝐴11
(1)3

                                                                                  (3.103) 

 
𝐶31
(3) =

𝑟31
𝐶

𝑟31
𝐴11
(1)3                                                                                  (3.104) 

 
𝐷31
(3) =

𝑟31
𝐷

𝑟31
𝐴11
(1)3                                                                                 (3.105) 
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In which, Coefficients in Equations (3.100) – (3.105) are given in 

Appendix B.    

 Order 𝜀4  

 𝐿01(𝑤̅04) + 𝐿02(𝜑𝑥4) + 𝐿03(𝜑𝑦4) + 𝛽
2𝐿(𝑤04, 𝑓0) +

𝛽2𝐿(𝑤̅03, 𝑓1) + 𝛽
2𝐿(𝑤̅02, 𝑓2) + 𝛽

2𝐿(𝑤1, 𝑓3) = 0                                                        
(3.106) 

 𝐿04(𝑤4) + 𝐿05(𝜑𝑥4) + 𝐿06(𝜑𝑦4) = 0                                               (3.107) 

 𝐿07(𝑤4) + 𝐿08(𝜑𝑥4) + 𝐿09(𝜑𝑦4) = 0                                                (3.108) 

 
𝐿10(𝑓4̅) = −

1

2
𝛽2𝐿(𝑤̅01, 𝑤̅03) −

1

2
𝛽2𝐿(𝑤̅02, 𝑤̅02)

−
1

2
 𝛽2𝐿(𝑤̅03, 𝑤̅01) 

(3.109) 

It is assumed that the solutions of equations (3.106) - (3.109) satisfying the 

simply supported boundary conditions have the form: 

  

 𝑤̅04 = 0 (3.110) 

 𝜑𝑥4 = 0 (3.111) 

 𝜑𝑦4 = 0 (3.112) 

 𝑓4̅ = (−𝑏00
(4) 𝑥2

2
− 𝐵00

(4) 𝑦2

2
+ 𝐵20

(4) cos 2𝑚𝑥 + 𝐵02
(4) cos 2𝑛𝑦 + 

𝐵40
(4) cos 4𝑚𝑥 + 𝐵04

(4) cos 4𝑛𝑦 + 𝐵24
(4) cos 2𝑚𝑥 cos 4𝑛𝑦 + 

       𝐵42
(4) cos 4𝑚𝑥 cos 2𝑛𝑦) 

(3.113) 
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Substituting equations (3.113) into equations (3.109) yields: 

 

 (𝑚2𝐵00
(4)
+ 𝑛2𝑏00

(4)
)𝛽2𝐴11

(1)
= 2(𝐵02

(4)
+ 𝐵20

(4)
)𝑚2𝑛2𝛽2𝐴11

(1)
       

−2(𝐴13
(3)
𝐵02
(2)
+ 𝐴31

(3)
𝐵20
(2)
)𝑚2𝑛2𝛽2 

(3.114) 

 
𝐵20
(4) = −

𝑟31
𝐴

𝑟31

𝛽2𝑛2

16𝑚2
𝐴11
(1)4                                                                                              

 (3.115) 

 
𝐵02
(4)
= −

𝑟13
𝐴

𝑟13

𝛽2𝑚2

16𝛾25𝑛
2
𝐴11
(1)4

                                                             (3.116) 

 
𝐵22
(4)
=

𝛽2𝑚2𝑛2

4(𝑚4 + 𝛾24𝑚
2𝑛2 + 𝛾25𝑛

4)
(
𝑟13
𝐴

𝑟13
+
𝑟31
𝐴

𝑟31
)𝐴11

(1)4
              (3.117) 

 
𝐵42
(4)
= −

𝛽2𝑚2𝑛2

256𝑚4 + 64𝛾24𝑚
2𝑛2 + 16𝛾25𝑛

4

𝑟31
𝐴

𝑟31
𝐴11
(1)4

               (3.118) 

 
𝐵24
(4)
= −

𝛽2𝑚2𝑛2

16𝑚4 + 64𝛾24𝑚
2𝑛2 + 256𝛾25𝑛

4

𝑟13
𝐴

𝑟13
𝐴11
(1)4               (3.119) 

 
𝐵40
(4)
=
𝛽2𝑛2

64𝑚2

𝑟31
𝐴

𝑟31
𝐴11
(1)4

                                                                      (3.120) 

 
𝐵04
(4)
=
𝛽2𝑚2𝑛2

64𝛾25

𝑟13
𝐴

𝑟13
𝐴11
(1)4

                                                                 (3.121) 

 

In which, the coefficients in Equations (3.114) – (3.121) are given in 

Appendix B. 

The asymptotic solutions of the displacement and stress function of 

the laminated plate are constructed as: 

 

𝑊0 = 𝜀𝐴11
(1)
sin 𝑚𝑥sin𝑛𝑦 + 𝜀3(𝐴13

(3)
sinmxsin 3𝑛𝑦          

+𝐴31
(3)
sin 3𝑚𝑥 sin 𝑛𝑦)     (3.122) 

 
𝜙̅𝑥 = 𝜀𝐶11

(1) cos𝑚𝑥 sin 𝑛𝑦+𝜀3(𝐶13
(3) cos𝑚𝑥 sin 3𝑛𝑦          

+ 𝐶31
(3)  cos 3𝑚𝑥 sin 𝑛𝑦)        

(3.123) 
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𝜙̅𝑦 = 𝜀𝐷11
(1)
sin𝑚𝑥 cos 𝑛𝑦 + 𝜀3( 𝐷13

(3)
sin𝑚𝑥 cos 3𝑛𝑦        

          + 𝐷31
(3) sin 3𝑚𝑥 cos 𝑛𝑦) 

(3.124) 

 

𝐹 = −𝑏00
(0) 𝑥

2

2
− 𝐵00

(0) 𝑦
2

2
+ 𝜀2(−𝑏00

(2) 𝑥
2

2
− 𝐵00

(2) 𝑦
2

2
 

+𝐵20
(2) cos 2𝑚𝑥 + 𝐵02

(2) cos 2𝑛𝑦) + 𝜀4(−𝑏00
(4) 𝑥

2

2
 

−𝐵00
(4) 𝑦

2

2
 + 𝐵20

(4) cos 2𝑚𝑥 +  𝐵02
(4) cos 2𝑛𝑦          

+ 𝐵22
(4) cos 2𝑚𝑥cos 2𝑛𝑦 + 𝐵40

(4) cos 4𝑚𝑥            

+ 𝐵04
(4) cos 4𝑛𝑦 + 𝐵24

(4) cos 2𝑚𝑥 cos 4𝑛𝑦              

+𝐵42
(4) cos 4𝑚𝑥 cos 2𝑛𝑦)                                          

(3.125) 

 

3.9 BUCKLING AND POSTBUCKLING 

The post-buckling equilibrium paths of the laminated plate under biaxial 

compressive loads can be obtained by substituting equations (3.125) into 

equations (3.60) and (3.63) as follows: 

 4𝜆𝑥 = 𝐵00
(0)
+ 𝜀2𝐵00

(2)
+ 𝜀4𝐵00

(4)
                                                       (3.126) 

 4𝜆𝑦 = 𝑏00
(0)
+ 𝜀2𝑏00

(2)
+ 𝜀4𝑏00

(4)
 (3.127) 
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By taking (x, y) = (π / 2m, π / 2n) at m=n=1,  𝑊0𝑚 the dimensionless 

maximum deflection can be obtained from equation (3.122): 

 𝑊0𝑚 = 𝜀𝐴11
(1)
− 𝜀3(𝐴13

(3)
+ 𝐴31

(3)
) (3.128) 

Inversely, one has: 

 
𝜀𝐴11

(1) = 𝑊0𝑚 + (
𝑟13
𝐴

𝑟13
+
𝑟31
𝐴

𝑟31
)𝑊0𝑚 

3 (3.129) 

Where 𝑟13, 𝑟31, 𝑟13,
𝐴  and 𝑟31

𝐴  are given in Appendix B, 𝜀𝐴11
(1)

   perturbation 

parameter, and 𝑊0𝑚 
3 = 𝜀3𝐴11

(3)
. 

 

With multiplying equation (3.126) and (3.127) by m2 and n2 

respectively, utilizing the relations in equations (3.79), (3.99), and (3.114) 

then replacing 𝜀𝐴11
(1)

 with 𝑊0𝑚 , that can be given: 

 

 
4𝜆𝑥𝑚

2 + 4𝜆𝑦𝑛
2 =

𝑟11𝛾11𝑚
2 + 𝑟11𝛾12𝑛

2

𝑟11𝛽
2

 

+
𝑚𝛾13𝑟11

𝐶 + 𝑛𝛾14𝑟11
𝐷

𝑟11𝛽
2

+ 𝛽2 (
𝑚4

16𝛾25
+
𝑛4

16
)𝑊0𝑚 

2 − 

[
 
 
 
 

(
𝑟31
𝐴

𝑟31

𝑛4

8
+
𝑟13
𝐴

𝑟13

𝑚4

8𝛾25
)𝛽2 +

(

 
 

𝑟13
𝐴

𝑟13

𝑚2

16𝑛2𝛾25

+
𝑟31
𝐴

𝑟31

𝑛2

16𝑚2
)

 
 

]
 
 
 
 

 𝑊0𝑚 
4 

(3.130) 

  

 By setting  𝑊0𝑚 = 0 in equation (3.130), it can be simplified as:  

 4𝑟11𝛽
2(𝜆𝑥𝑚

2 + 𝜆𝑦𝑛
2) = 𝑟11𝛾11𝑚

2 + 𝑟11𝛾12𝑛
2                        

+𝑚𝛾13𝑟11
𝐶 + 𝑛𝛾14𝑟11

𝐷  

 

(3.131) 

This formula is known as the analysis of linear buckling of a laminated 

plate under biaxial compressive loads. 
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Usually, px and py, the compressive load, vary proportionally, also 𝜎𝑦 =

𝛼𝜎𝑦 where α is a constant, hence: 

 
𝛼 =

𝜆𝑦
 

𝛽2 𝜆𝑥
 
                                                                                           (3.132) 

  

With substituting Equation (3.132) into Equation (3.130) can be 

obtained post-buckling equilibrium paths of the laminated composite plate  

in terms of a non-dimensional maximum deflection 𝑊0𝑚 as follows:                                                               

 𝜆𝑥
 = 𝜆𝑥

(0) + 𝜆𝑥
(2)𝑊0𝑚 

2 + 𝜆𝑥
(4)𝑊0𝑚 

4 (3.133) 

Where the post-buckling coefficients are given as: 

 

 𝜆𝑥
(0) =

𝑟11𝛾11𝑚
2 + 𝑟11𝛾12𝑛

2 +𝑚𝛾13𝑟11
𝐶 + 𝑛𝛾14𝑟11

𝐷

4𝑟11𝛽
2(𝑚2 + 𝛼𝛽2𝑛2)

                   (3.134) 

 𝜆𝑥
(2) =

𝛽2

𝑚2 + 𝛼𝛽2𝑛2
(
𝑚4

64𝛾25
+
𝑛4

64
)                                               (3.135) 

 𝜆𝑥
(4)
= −

1

𝑚2 + 𝛼𝛽2𝑛2

[
 
 
 
 (

𝑟31
𝐴

𝑟31

𝑛4

32
+
𝑟13
𝐴

𝑟13

𝑚4

32𝛾25
)𝛽2

 

+ (
𝑟13
𝐴

𝑟13

𝑚2

64𝑛2𝛾25
+
𝑟31
𝐴

𝑟31

𝑛2

64𝑚2
)
]
 
 
 
 

            (3.136) 

The coefficients 𝑏00
(0)

 and 𝐵00
(0)

 need to be calculated, from equation (3.132) 

the coefficients 𝐵00
𝑘  and 𝑏00

𝑘  in equations (3.126) and (3.127) have the 

relations: 

 𝑏00
𝑘 =  𝛼𝛽2𝐵00

𝑘     Where k= 0, 2, 4, 6, ..                                                
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By using equations (3.79) and (3.137) 𝑏00
𝑘  and 𝐵00

𝑘  can be calculated:      

  

𝑏00
(0)
=
𝛼(𝑟11𝛾11𝑚

2 + 𝑟11𝛾12𝑛
2 +𝑚𝛾13𝑟11

𝐶 + 𝑛𝛾14𝑟11
𝐷 )

𝑟11(𝑚
2 + 𝛼𝛽2𝑛2)  

(3.138) 

 
𝐵00
(0) =

𝑟11𝛾11𝑚
2 + 𝑟11𝛾12𝑛

2 +𝑚𝛾13𝑟11
𝐶 + 𝑛𝛾14𝑟11

𝐷

𝑟11𝛽
2(𝑚2 + 𝛼𝛽2𝑛2)

 (3.139) 

  

Equations (3.133)-(3.139) can be employed to process numerical 

examination to trace post-buckling equilibrium paths of a graphite-epoxy 

laminated plate under biaxial compression. It should be shown that equation 

(3.133) is valid for the post-buckling analysis of laminated structure under 

uniaxial compressive load by setting 𝛼  = 0.  

 

The dimensionless load parameter:  

 

 
 𝜆0 =

𝑁𝑥𝑏
 

(𝐸2ℎ
3)

 (3.140) 

Where 𝑁𝑥 is defined in an equation (3.49). 

 

It can be determined the critical buckling load from equation (3.133) at 

𝑊0𝑚=0 under uniaxial and biaxial compressive loads, that leads to: 

 𝜆𝑥
 = 𝜆𝑥

(0) = 𝜆cr (3.141) 

With equations (3.141) and (3.49), the dimensionless critical buckling loads 

of structure are: 

 
𝜆cr =

𝑁cr𝑏
 

[𝜋2(𝐷11
∗ 𝐷22

∗ )
1
2]

 
(3.142) 

  

  

63 



 

CHAPTER THREE BASIC FORMULATIONS  

 

The summary of this chapter is divided into two sections, in the first 

section the basic equations for the static buckling behavior are derived by 

utilizing (FSDT), then in a second section, these equations are solved by 

using a two-step perturbation method with the application the boundary 

conditions, at last, the nonlinear differential equation for the suggested 

models is obtained. The buckling mode in all cases is taken (m, n) = (1,1). 
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CHAPTER FOUR RESULTS AND DISCUSSION 

 

CHAPTER FOUR  

RESULTS AND DISCUSSION 

4.1 INTRODUCTION  

In this chapter, the buckling and post-buckling behaviors of graphite/epoxy 

laminated plates under the uniaxial and biaxial compressive loads are 

studied. To ensure the accuracy of the current formulation and solution 

procedure, a validation study will be offered. Thereafter, sundry tabular and 

graphical data will be showed to study the effects of different parameters on 

the buckling and post-buckling behaviors of a structure through a 

comprehensive parametric examination. The simply supported boundary 

conditions are employed for a laminated composite plate at all edges. Thus, 

the results are shown under this condition. 

 

4.2 NUMERICAL DATA VERIFICATIONS        

As far as it is known that there are no publications about buckling and post-

buckling for the graphite/epoxy laminated plates by adopting the two-step 

perturbation method. Simply supported functionally graded multilayer 

graphene nano platelet-reinforced polymer composite plate GPLRC under to 

different loading are taken as an example to validate this study. This section 

will present the dimensionless critical buckling load with theoretical results 

of (GPLRC), given by Ref. (Song et al., 2017) [33].  

 

 

 

65 



CHAPTER FOUR RESULTS AND DISCUSSION 

 

The following geometric parameters of (GPLRC) are:  

a= 0.45 m, b= a, h= 0.045 m, VM= 0.34, EM= 3.0 GPa, VGPL= 0.186, EGPL= 

1.01TPa,  𝑙GPL = 2.5 𝜇m , ℎGPL = 1.5nm , 𝑤GPL = 1.5 𝜇m , 

the weight fraction is 1.0%, epoxy is used to be the matrix material. 

 As shown in Tables (4-1) and (4-2), good agreements are obtained in 

these comparisons.  According to the comparisons in Tables (4-1) and (4-2), 

it is clear that the present approach shows an excellent agreement with the 

previously published study, and this is considered evidence for verifying the 

accuracy and reliability of the present study. 

Table 4-1: Comparison between the results of dimensionless critical buckling load 

for the GPLRC under uni-axial and equal bi-axial compressive loads and the 

present study. 

 

Type of 

loading 

 

 

 

α 

 

Dimensionless critical buckling loads (𝝀𝐜𝐫) 

 

Reference [33] 

 

Present model Difference (%) 

 

 

Uni-axial 

 

 

0 

 

19.465 

 

19.487 

 

0.11% 

 

Bi-axial 

 

 

1 

 

9.690 

 

9.743 

 

0.54% 
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Table 4-2: Comparison between the results of dimensionless critical buckling load 

under unequal biaxial loads with different α and the present study. 

 

Type of 

loading 

 

 

α 

 

Dimensionless critical buckling loads (𝝀𝐜𝐫) 

 

Reference [33 ] Present study Difference (%) 

 

 

 

 

 

 

Unequal  

bi-axial 

 

 

 

-0.4 

 

 

32.413 

 

32.138 

 

0.84% 

 

-0.2 

 

 

24.310 

 

24.358 

 

0.19% 

 

0.2 

 

 

16.379 

 

16.239 

 

0.85% 

 

0.4 

 

 

 

13.965 

 

13.920 

 

0.32% 
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4.3 NUMERICAL RESULTS FOR STABILITY 

4.3.1 INTRODUCTION 

In this section, the buckling and post-buckling behavior of the laminated 

composite plate subjected to different compressive loads are studied. 

Employing the Two-Step perturbation technique, the equations of motion are 

solved.  

 The orthotropic material properties are modeled a graphite/epoxy for 

the laminated composite plate as follows: E1= 141Gpa, E2= 13.1Gpa, G12= 

9.31, 𝑣12=0.28, G13= G23= G12, which are taken from Ref. (Singha at el.,  

2001) [49]. Asymmetric cross-ply (0/90/0/90/0/0/90/0/90/0) laminated 

composite plates are taken with geometric factors are selected as follows: 

h=0.045m, a= 0.45m, b=a. The number of layers (N) equal to 10, is used in 

all the numerical calculations. 

 

4.3.2 BUCKLING ANALYSIS 

The first stage is to carry out the linear buckling analysis to find critical 

buckling loads(𝜆cr). The non-dimensional critical buckling loads of  

laminated composite plates are: 

𝜆cr =
𝑁cr𝑏

 

[𝜋2(𝐷11
∗ 𝐷22

∗ )
1
2]
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4.3.3 EFFECT OF VARIOUS MECHANICAL LOADS  

         ON THE CRITICAL BUCKLING LOADS 

The critical buckling loads of graphite/epoxy laminated plates under 

different loadings are exhibited in a Table (4-3). It should be known that α< 

0, α= 0, agree to the plate compressed in the x-coordinate, at the plate 

subjected to uniaxial compressive load in the x-coordinate, respectively. 

Also, α > 0 and α= 1 mean the plate compressed in the y-direction, and the 

plate under equal biaxial compression in x and y directions, respectively.  

Compared with the uniaxially compressed plate (α= 0), the utilization 

of a bigger compressive load in the x-coordinate can considerably increase 

the critical buckling loads of the plate. The presence of the larger 

compressive load in the y-coordinate or equal compressive loads in two 

directions leads to significantly reduced critical buckling loads.  
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Table 4-3: Critical buckling loads of laminated composite plates under various 

compression loads 

 

Mechanical loads 

 

α 

 

Critical buckling loads (𝝀𝐜𝐫) 

 

Equal biaxial  

 

1 

 

54.47 

 

Unequal biaxial 

 

0.5 

 

72.63 

 

Uniaxial 

 

0 

 

108.9 

 

Unequal biaxial 

 

 

-0.5 

 

 

217.9 

 

 

4.3.4 EFFECT OF THE RATIO (a/h) ON CRITICAL    

         BUCKLING LOADS UNDER UNIAXIAL And  

         BIAXIAL LOADS 

Tables (4-4) and (4-5) show the influence of the length to thickness ratio 

(a/h) on the dimensionless critical buckling loads in uniaxial and biaxial 

loading conditions, respectively. Five values of length to thickness ratio are 

studied (a/h=5, a/h=10, a/h=15, a/h=20, a/h=25).  
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In both cases of loading, the results explained that the dimensionless 

critical buckling loads (𝜆cr) increase with increasing the length to thickness 

ratio (a/h), and above a/h =15, the change of critical buckling loads is very 

limited. Also, from the tables (4-4) and (4-5), it is found that the 

dimensionless critical buckling loads (𝜆cr) are higher for uniaxial loading.  

 

Table 4-4: Critical buckling loads of laminated composite plates under uniaxial 

compression loads  

 

α 

 

a/h 

 

Critical buckling loads (𝝀𝐜𝐫) 

 

 

 

 

 

0 

 

 

5 

 

100.4 

 

10 

 

108.9 

 

15 

 

110.7 

 

20 

 

111.3 

 

25 

 

111.6 
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Table 4-5: Critical buckling loads of laminated composite plates under equal 

biaxial compression loads 

 

α 

 

a/h 

 

Critical buckling loads (𝝀𝐜𝐫) 

 

 

 

 

 

1 

 

 

5 

 

50.18 

 

10 

 

54.47 

 

15 

 

55.34 

 

20 

 

55.66 

 

25 

 

55.8 
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4.4 POST-BUCKLING ANALYSIS 

In this section, a post-buckling analysis will be offered for the graphite/epoxy 

laminated plate. The dimensionless load parameter ( 𝜆0) against the 

dimensionless maximum deflection 𝑊0𝑚 results are presented.   

 

Where: 

 𝜆0 =
𝑁𝑥𝑏

 

(𝐸2ℎ
3)
                                                                                                                  

                                                                                                                          

4.4.1 EFFECT OF THE VARIOUS MECHANICAL LOADS  

         ON POST-BUCKLING EQUILIBRIUM PATHS 

Figure (4-1) presents the effect of different loadings on the post-buckling 

behavior of symmetric laminated composite plates. As can be seen, 

compared with the uniaxially compressed plate (α= 0), the resistance of the 

structure increases when the use of a compressive force in (α< 0). While the 

post-buckling resistance reduces of the structure under the equal 

compressive loads (α= 1) or the large compressive loads in the y-direction 

(α > 0). 
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Figure 4-1: Post buckling equilibrium paths of laminated composite plates under 

biaxial compression loads with different α 

 

4.4.2 EFFECT OF THE RATIO (a/h) ON POST-BUCKLING  

         EQUILIBRIUM PATHS UNDER UNIAXIAL And    

         BIAXIAL LOADS 

The effect in uniaxial and biaxial loading conditions, with length to thickness 

ratio a/h varying from 5 to 25 is investigated and the obtained results are 

shown in Figures (4-2) and (4-3).  
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It is found that the resistance of post-buckling is higher for uniaxial 

loading. For both cases of loading, the resistance of laminated composite 

plates increases with the ratio a/h increases. Also, it is shown above the ratio 

a/h equal to15, the variation of post-buckling equilibrium paths loads is very 

low. 

 

Figure 4-2: Post buckling equilibrium paths of laminated composite plates under 

uniaxial compression loads 
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Figure 4-3: Post buckling equilibrium paths of laminated composite plates under 

biaxial compression loads  
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CHAPTER FIVE  

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 INTRODUCTION 

In this research, buckling and post-buckling analyses for symmetric cross-

ply laminated composite plates subjected to mechanical loads are obtained 

based on lamination plate theory (FSDT). In this order, a two-step 

perturbation technique and simply supported boundary conditions for 

laminated plates were applied. Effects of various parameters on critical 

buckling loads and post-buckling equilibrium paths of laminated composite 

such as different mechanical loads, and length to thicknesses ratio (a/h).  

 

5.2 Conclusions 

The key conclusions from the presented results are summarized in the 

following points: 

 

 It is found that a two-step perturbation technique is in good agreement 

with the theoretical analysis results. 

 

 Compared with the uniaxial compressive load in the x-direction (α= 

0), the utilization of unequal biaxial compressive loads in the x-

direction (α = -0.5) increases the critical buckling loads and post-

buckling resistance of the plate. When the laminated plates are under 

unequal biaxial compressive load in the y-direction (α = 0.5), or the 

plate under equal biaxial compression (α= 1) leads to a decrease in the 

critical buckling loads and post-buckling resistance of the structure. 
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 For both uniaxial and biaxial compressive loading cases with the a/h 

ratio is increased, the dimensionless critical buckling loads and 

dimensionless load parameter increases. Also, the variation of critical 

buckling loads and post-buckling equilibrium paths are less above 

a/h=15. 

 

 

  In all cases, it is showed that uniaxial loading has higher critical 

buckling loads and post-buckling resistance than corresponding equal 

biaxial loading.  
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5.3 Recommendations and future work 

      
In this research, the first-order shear deformation theory was utilized to 

derive the motion equations for laminated composite plates. The research 

can be widened through the following suggestions: 

 

 Study the nonlinear stability of the structure by using anti-

symmetric-angle ply composite plates. 

 

 Investigate the stability of the laminated plates under thermal 

loading. 

 

 Examine the effect of initial geometric imperfection on the buckling 

and post-buckling behavior of the structure. 

 

 Study the effect of number of layers, the orientation of fibers, 

boundary conditions, on the stability behavior of the laminated 

composite plates. 
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Appendix A 

The differential operators in Equations (3.54)-(3.57) as the following: 

  

  𝐿01 = 𝛾11
∂2

∂𝑥2
+ 𝛾12

∂2

∂𝑦2
                                                                                    

 

 
𝐿02 = 𝛾13

∂

∂𝑥
                                                                                                          

 𝐿03 = 𝛾14
∂

∂𝑦
                                                                                                          

 

 
𝐿04 = 𝛾15

∂

∂𝑥
                                                                                                          

 𝐿05 =
∂2

∂𝑥2
+ 𝛾16

∂2

∂𝑦2
+ 𝛾17                                                                                                                    

 𝐿06 = 𝛾18
∂2

∂𝑥 ∂𝑦
                                                                                                     

 

 
𝐿07 = 𝛾19

∂

∂𝑦
                                                                                                          

 𝐿08 = 𝛾20
∂2

∂𝑥 ∂𝑦
                                                                                                    

 

 
𝐿09 = 𝛾21

∂2

∂𝑥2
+ 𝛾22

∂2

∂𝑦2
+ 𝛾23                                                                          

 

 

 

𝐿10 =
∂4

∂𝑥4
+ 𝛾24

∂4

∂𝑥2 ∂𝑦2
+ 𝛾25

∂4

∂𝑦4
                                                               

   

 

 

 

 

 

 

 

A-1 



In which: 

  

 
[𝛾11, 𝛾12] =

𝑘𝑆𝑎
2[𝐴55, 𝛽

2𝐴44]

(𝜋2𝐷11
∗ )

                                                                           

 
𝛾13 =

𝑘𝑆𝐴55𝑎
2

(𝜋2𝐷11
∗ )
                                                                                                       

 
𝛾14 =

𝑘𝑆𝛽𝐴44𝑎
2

(𝜋2𝐷11
∗ )

                                                                                                    

 
𝛾15 = −

𝑘𝑆𝐴55𝑎
2

(𝜋2𝐷11
∗ )
                                                                                                   

 
[𝛾16, 𝛾17] =

[𝜋2𝛽2𝐷66
∗ , −𝑘𝑆𝐴55𝑎

2] 

(𝜋2𝐷11
∗ )

                                                                  

 
𝛾18 =

𝛽(𝐷12
∗ + 𝐷66

∗ )

𝐷11 
∗                                                                                              

 
𝛾19 = −

𝑘𝑆𝛽𝑎
2𝐴44

(𝜋2𝐷11
∗ )

                                                                                                

 
𝛾20 =

𝛽(𝐷12
∗ + 𝐷66

∗ )

𝐷11
∗                                                                                              

 
[𝛾21, 𝛾22, 𝛾23] = [𝜋2𝐷66

∗ , 𝜋2𝛽2𝐷22
∗ , −𝑘𝑆𝐴44𝑎

2]/𝜋2𝐷11
∗                                 

  

[𝛾24, 𝛾25] =
𝛽2[2𝐴12

∗ + 𝐴66, 𝛽
2𝐴11

∗ ]

𝐴22
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APPENDIX B 

Excepting 𝑏00
(𝑘)

 and 𝑏00
(𝑘)

  , the Coefficients are offered in equations (3.114)-

(3.121) as following: 

 

 𝑟11
𝐶 = (𝑚𝛾15)(𝑚

2𝛾21 + 𝑛
2𝛾22 − 𝛾23) − (𝑚𝑛𝛾18)(𝑛𝛾19)  

 𝑟11
𝐷 = (𝑚2 + 𝑛2𝛾16 − 𝛾32)(𝑛𝛾19) − (𝑚𝛾15)(𝑚𝑛𝛾20)  

 𝑟11 = (𝑚2 + 𝑛2𝛾16 − 𝛾17) (𝑚
2𝛾21 + 𝑛

2𝛾22 − 𝛾23) −( 𝑚𝑛𝛾18) 

           ( 𝑚𝑛𝛾20) 

 
𝑟13
𝐴 = 

𝛽4𝑚4

16𝛾25
 [(𝑚2 + 9𝛾16𝑛

2 − 𝛾17)(𝑚
2 + 9𝛾22𝑛

2 − 𝛾23)

− (3𝑚𝑛𝛾18)(3𝑚𝑛𝛾20)] 
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9𝛾16𝑛
2−𝛾17)(𝛾21𝑚
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2 − 𝛾23) −  ( 3𝑚𝑛𝛾18)(3𝑚𝑛𝛾20)]]+ 

[(𝑚𝛾13) [(𝑚𝛾15)(𝛾21𝑚
2 + 9𝛾22𝑛

2 −  𝛾23) − ( 3𝑚𝑛𝛾18)(3𝑛𝛾19)]] 

+[( 3𝑛𝛾14)[( 3𝑛𝛾19)( 𝑚2 + 9𝛾16𝑛
2 −   𝛾17) –(3𝑚𝑛𝛾20)( 𝑚𝛾15)]] 
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𝐴 = 
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2+𝛾16𝑛

2 − 𝛾17) −

             (3𝑚𝛾15)(−3𝑚𝑛𝛾20)]] 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A-4 



لخلاصةا  

ا والتي خطي للصفائح الطبقيه المتعامدة تحليليالغير لحالي تم فحص الاستقرار الساكن في البحث ا

  تتعرض لاحمال ضغط احادية المحور وثنائيه المحور.

 (المقواة احادية الاتجاه )الكرافيتتم استخدام الصفائح الرقائقية المركبة المصنوعة من الالياف 

 التي تستخدم في الهياكل الهندسية المتقدمة. )الايبوكسي(ومادة 

غير مع الاخذ بنظر الاعتبار الصيغ  (FSDT)نظريه تشوه القص من الدرجه الاولى استنادا الى  

تم  (Minimum total potential energy)وبأستخدام مبدأ  (Von Karman)خطيه من نوع ال

الحصوووووووووووول على معادلاا التوار  والاسوووووووووووتقرار والتوافذ ل لواخ الطبقيه.  عد  ل  من خ ل عرض 

(Two Step Perturbation Technique) .تم حل المعادلاا 

دية مع بعالغير التباين في معام ا حمل الانبعاج تم عرض النتائج على شووووخل مخططاا تعرض 

ا ج الدراسووة الحالية بنتائج الدراسوواا السووا قة والتي قدمت توافقاقصووى انحراف ب  ا عاد تم مقارنة نتائ

 جيدا مع النتائج الحالية.

نسبة و تاثير العديد من المعام ا مثل الاحمال ثنائية المحور المختلفة,  دراسةاضافة الى  ل   تم  

الى السوووووم  على احمال الانبعاج الحرجة ومسووووواراا التوار   عد الانبعاج للصوووووفائح الطبقية  الطول 

 بدقة.

تحت أحمال ضووووووغط  ١١١,٦ و ٧١٢,٩كا  الحد الأقصووووووى لأحمال الأنبعاج الحرجة  ,من النتائج 

على , ٧٥=  )الطول/السوووووووووووم (تحت الحمل أحادي المحور عند و , ثنائية المحور غير متسووووووووووواوية 

عند نفس الحالاا التي يخو  فيها اقصوووى حمل  اقصوووى مقاومة ما عد الأنبعاج كانت كذل  التوالي.

 أنبعاج.

 



  والبحث العلميورارة التعليم العالي 

 جامعة الانبار 

 كلية الهندسة

 

 

 

الأنبعاج لصفيحة مركبة تحت الأحمال الأنضغاطية تحليل الأنبعاج ومابعد  

 

 رسالة مقدمة

نبارالى كلية الهندسة /جامعة الأ   

علوم ماجستير شهادةوهي جزء من متطلبات نيل   

في   

الهندسة الميكانيكية   

 

 من قبل

الدوسري سها هاشم محمد  

(٧٠٠٢ الهندسة الميكانيكية ) بكالوريوس علوم في  

 

 بأشراف 

 أ.م.د حمد محمد حسن

 

 

 

٣٤١٤                                                                                      بيع الأولر   

٧٢٧١                                                        ول                            لأتشرين ا  


