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Abstract
Particle swarm optimization (PSO) is one of the most popular and successful optimization algorithms used for solving

single objective and multi-objective optimization problems. It is found that the Multi objective particle swarm optimization

(MOPSO) has ability to find the optimal solution quickly and more efficient than other optimization algorithms. In this

paper, a discrete (binary) MOPSO with chaos methods is developed and applied to pavement maintenance management.

The main objective of this research is to find optimal maintenance and rehabilitation plan for flexible pavement with

minimum maintenance cost and maximum pavement performance. This research is the first attempt to combine the

crossover operation with velocity and position with multi objective PSO algorithm. The results show that the improvements

in pavement performance and cost objectives are 94.65 and 54.01% respectively, while the improvement in execution time

is 99.9%. In addition, it is found that the developed algorithm is able to converge to the optimal solution quickly,

comparing with another PSO algorithm.

Keywords Particle swarm optimization � Pavement maintenance � Multi-objective optimization � Chaotic mapping �
Binary PSO

1 Introduction

Roads are one of the most important capital resources for

cities, hence it is necessary to be perfect to provide com-

fortability and safety for the road users. The pavement

conditions depend on design, excavation control, con-

struction, Maintenance and Rehabilitation (M&R) [1]. The

functional and structural conditions of pavement are usu-

ally deteriorating with time due to various factors such as

repeated adverse weather conditions, heavier loads,

changing temperatures, traffic passage and poor reinstate-

ment following excavation by public utility companies,

these factors may be lead to potholes, cracking, and texture

loss. In addition, all these factors lead to decrease the

quality of pavement and cause serious problems. There-

fore, the earlier maintenance will cause the less damage

[2].

There are several researches used different computa-

tional intelligence methods for pavement maintenance

decisions. In those researches, single and multi-objective

problems were formulated and solved by different evolu-

tionary algorithms such as Genetic Algorithm (GA) [3],

K-Nearest Neighbor (K-NN) [4], Particle Swarm Opti-

mization (PSO) and Ant Colony (AC) [5]. Fwa et al. [6]

used GA to find optimal pavement maintenance activities

at the network level. Elhadidy et al. [7] developed multi

objective model using GA for programming maintenance

actions. This model was implemented on expressway in

Egypt by considering maximum Pavement Condition Index

(PCI) and minimum maintenance costs. In recent years,

researchers were started to use particle swarm optimization

for pavement maintenance. Chou and Le [8] formulated
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MOPSO algorithm to find overlay layer thickness and the

timing of maintenance labor. The maintenance cost and

performance reliability of the pavement were considered

simultaneously in the algorithm development as multi-ob-

jective problem. Mahmood [9] developed novel barebones

particle swarm optimization for discrete optimization

problems. This algorithm was applied to find optimal

maintenance decisions for flexible pavement. Yi Shen et al.

[10] proposed and applied chaos particle swarm opti-

mization (CPSO) as single objective continuous problem to

program pavement maintenance actions of expressway. It

was found that CPSO has ability to find all optimal solu-

tions than original PSO and Non-dominated Sorting

Genetic Algorithm-II (NSGA-II). Moreira et al. [11] used

two optimization algorithms for pavement maintenance

decisions. The first algorithm was a genetic algorithm to

optimize a single-objective problem, whereas the second

algorithm was NSGA-II for solving a multi-objective

problem. Santos et al. [12] combined GA with Local

Search (LS) methods to develop a novel Adaptive Hybrid

Genetic Algorithm (AHGA) to find the optimal pavement

maintenance strategy. The pavement maintenance

scheduling problem is complex combinatorial optimization

problem consisting of a large number of pavement seg-

ments and the associated treatment decision variables

covering multiple time periods. The majority of previous

researches could not consider all the optimization objec-

tives for finding pavement maintenance plan. In addition,

since the pavement maintenance scheduling problem is

high dimensional optimization problem, the number of

researchers has tried to applied different algorithms to

address this problem with less time of execution and also

avoid fall in local optima. In this paper, a novel discrete

(binary) chaos is developed with multi objective PSO to

solve the pavement maintenance scheduling problem. It has

ability to address high dimensional pavement maintenance

scheduling problem efficiently and converge to optimal

solutions quickly with less execution time. In addition, it is

the first attempt to combine the crossover operation with

velocity and position in CPSO algorithm. This can improve

the performance of the algorithm and then avoid it to fall in

local optima hence leading to a significant improvement in

results and execution time.

2 Pavement maintenance decision problem

2.1 Problem parameters

There are data and decision criteria used to perform

maintenance and rehabilitation analysis. Those data and

decision criteria are existing condition of the pavement

based on distresses, minimum acceptable level of service,

study period, maintenance cost and the budget. To estimate

the maintenance needs, the highway network is divided

into a number of pavement sections which have equal

length [13].

Agency cost of highway network is the intervention

required to design, build and invest a highway network. It

comprises of the cost of maintenance, rehabilitation and

reconstruction. Rehabilitation is required for highway

network at least once in its lifetime to maintain it above the

minimum acceptable service and safety level. The cost of

any specific rehabilitation action comes from: primary

engineering, materials and construction management. If a

rehabilitation activity is to be implemented in subsequent

years, then its cost can be deducted to the present value as

the following:

Present Cost ¼ Future Cost � PWF ð1Þ

where, PWF is the present worth factor, given by:

PWF ¼ 1

1þ DRð Þti
ð2Þ

where DR is discount rates and the typical range of it

recommended by federal highway administration is 3–5%

[14], ti is the time at which the money is spent (specified in

years).

Depending on the condition, highway authorities have

the option to select rehabilitation action from an activities

list of. Such list, which is also adopted in this research, is

shown in Table 1. Furthermore, it is necessary to determine

the trigger level for each maintenance activity. The trigger

level is defined as the minimum level of pavement service

ability, such that the maintenance must be implemented

when the pavement section reaches it. The highway

authority usually specifies the total length of the study

period. Moreover, the length of the unit analysis period,

that are commonly 1 year, is chosen based on the

requirements of the highway agency [15].

Table 1 Pavement maintenance and rehabilitation strategies

No M&R strategy

1 Do nothing

2 AC overlay 1 in (25 mm)

3 AC overlay 2 in (50 mm)

4 ACoverlay 4 in (100 mm)

5 AC overlay 6 in (150 mm)

AC asphalt concrete
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2.2 Objective functions

Pavement maintenance systems have common objectives

as defined by road authorities include: to minimize user

costs by selecting and scheduling treatment procedures to

minimize delay and traffic disruption, to minimize the

present worth of overall treatment costs over the analysis

period, and maintaining the pavement performance over

the minimum acceptable level with resources available

[16]. To make optimal investment decisions in the main-

tenance field, it is important to improve the M&R decision

in view of multiple objectives such as maximum perfor-

mance, minimum cost, etc. Therefore, the particle swarm

optimization technique with multi-objective are used for

scheduling pavement maintenance activities. Multi-objec-

tive programming for pavement maintenance and rehabil-

itation can be formulated mathematically as follows [9]:

Minimize the total pavement maintenance cost

f1 xð Þ ¼
XD

d¼1

XN

p¼1

XM

m¼1

xm;p;dCmLpWpð1þ DRÞ�d ð3Þ

Minimize the sum of all residual PCI values

f2 xð Þ ¼
XD

d¼1

XN

p¼1

XM

m¼1

xm;p;d PCImax � PCIp;d
� �

LpWpAADTp;d
� �

ð4Þ

where,

xm;p;d ¼
1; if treatment m fo section p at time d is selected

0; otherwise

�

where d is any time in the analysis period, and D is the total

analysis period (both are usually specified in years); N is

the total number of pavement sections; m is the treatment

type; M stands for the total number of treatment types; p is

the pavement section number under consideration; Lp is the

length of pavement section p; C is the unit cost of treatment

type m; DR is the discount rate; W stands for the width of

section p; PCI is the maximum PCI level (100%); PCI, d is

the PCI for section p at time d; AADT, d is the annual

average daily traffic for section p at time d.

2.3 Pavement condition prediction model

The Pavement Condition Index (PCI) is indicator to eval-

uate the overall conditions of pavement. It is based on

visual survey results that are determined by distress type,

quantity, and severity. Field verification of the inspection

approach has proved that PCI is a good indicator of

structural integrity and operational status. In addition, the

PCI is a valuable indicator to determine both the current

state and future performance under current traffic

conditions. A pavement deterioration model is an vital

stage when estimating maintenance needs, and when

determining road user costs and benefits of the mainte-

nance application [17]. Therefore, there is essential to

prediction models that capable to predict pavement dete-

rioration by considering distress, traffic loading, pavement

age, and maintenance effects. For arterial roads in the wet

freeze climatic region is used to estimate future pavement

condition:

PCI ¼ 97:744� 0:15X5� 0:064X4� 0:515X2
þ 3:748X3 ð5Þ

where PCI is the pavement condition index; X5 is the

cracking area (alligator, edge, and block); X2 is the pave-

ment age; X3 is the maintenance effect (inlay and overlay

thickness); X4 is the longitudinal and transverse cracking

length [9].

3 Particle swarm optimization (PSO)

The PSO algorithm is one of computational algorithms

inspired from animal such as birds or fish flocks and ant

colonies. PSO is a population based search algorithm that

was developed by Kennedy and Eberhart in 1995 [18]. The

swarm consists of particles, each one representing a

potential solution in optimization problem. These particles

have two main attributes: position and velocity. The posi-

tion of particle is updated according to its previous expe-

riences and that of its neighbor. The velocity is

adjustable to determine the direction that a particle need to

move therefore improves its current position. During iter-

ations, each particle i updates the velocity and position of

its jth dimension at iteration t ? 1 by using the following

equations:

Vi;j tþ 1ð Þ ¼ wVi;j tð Þ þ r1c1 Pbesti;j tð Þ � Xi;j tð Þ
� �

þ r2c2 Gbest tð Þ � Xi;j tð Þ
� �

ð6Þ

Xi;j tþ 1ð Þ ¼ Xi;j tð Þ þ Vi;j tþ 1ð Þ ð7Þ

where Vi, j(t) is a velocity of particle i at iteration t; Xi, j(t)

it is a position of i particle at iteration t and it depends on

previous position and previous velocity; w is the inertia

weight that is used to control the influence of the previous

velocities on the current velocity [19]; r1 and r2 are two

random number between (0,1); c1 and c2 are learning fac-

tors or acceleration factors that are fixed numbers;

Pbest i; j tð Þ is the local best particle i in all swarm that have

the smallest fitness value obtained so far in one iteration t;

Gbest(t) is the leader of the swarm or global best position

of all population, is the best one of the set of local best

position.
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The particle leader in each generation guides the parti-

cles to move towards the optimal positions. The perfor-

mance of each particle in the swarm is evaluated according

to objective function or the fitness function of the opti-

mization problem [20, 21].

4 Multi-objective optimization problems

After the considerable successes achieved by the single

objective problems, the researchers began to work on using

PSO in multi objectives problems [19]. In multi-objective

particle swarm optimization (MOPSO), there is no single

optimal solution but there are a set of non-dominated

solutions called Pareto-optimal solutions. A decent trade-

off between solutions that represent an equalization

between the objectives must be found. The Pareto opti-

mality definition is that ‘‘A decision vector x� e F, is Par-

eto-optimal if there does not exist a decision vector,

x = x* e F that dominates it, for a set of objective func-

tions f1; f2; . . .fkf g provided that the solution is possible x*

dominates another feasible solution x, then it is denoted by

F(x*)\ F(x) [15]. This function selects the non-dominated

solutions and ignore the others. The difficulty with

MOPSO algorithm is to find the leader for the swarm (the

best global particle). Therefore, the researchers proposed to

use archive to store all solution that found in the search

space and select the leader from archive according to some

sort of quality measure. The most common one is sigma

method which can obtain non-dominated solutions with a

very good diversity [22]. In this paper, the sigma method is

employed to find the leader [23].

5 Discrete (binary) particle swarm
optimization

The original PSO algorithm deals with continuous values.

In 1997, Kennedy and Eberhart suggested a discrete (bi-

nary) model of PSO for solving discrete problems [24]. In

the binary PSO, the global best and personal best of par-

ticles are updated as in continuous model, but the velocity

and position are updated in different way. The position in

binary PSO should be either 0 or 1. these values depend on

velocity that will give a different value according to the

following equations [25] [26]:

Vi;j tð Þ ¼ sig Vi;j tð Þ
� �

ð8Þ

sig Vi;jðtÞ
� �

¼ 1

1þ e�Vi;j tð Þ ð9Þ

where sig is the sigmoid function.

The position equation is changed to make the positions

of all particles is only 0 or 1 according to the following

equation:

Xi;j tþ 1ð Þ ¼ 1 if rand\sig Vi;jðtþ 1Þ
� �

0 otherwise

�
ð10Þ

where rand is a quasi-random number between (0, 1). This

equation converts the representation of position form

continuous to binary mode.

6 Chaotic sequences for inertia weight

The inertia weight (w) is the main element affecting the

convergence to the best solutions. It also controls the bal-

ance between local search ability and the global explo-

ration. The global search is facilitated with a large inertia

weight, while with a small inertia weight, the local search

is facilitated. The binary particle swarm optimization

(BPSO) could be trapped in a local optimum which leads to

results in premature convergence. To overcome this prob-

lem, chaotic map is used to change the value of inertia

weight in each generation [27]. The logistic map is one of

the most popular types of chaotic sequences. The logistic

map equation is defined as following:

Znþ1 ¼ lZnð1� ZnÞ n ¼ 1; 2; 3. . . ð11Þ

where l is the control parameter = 4; Z1, Z2, Z3,…,Zn are

chaotic series generated by iteration and used to be the

value of w in PSO [28].

7 Crowding distance computation

Crowding Distance Computation (CDC) is to estimate the

density of the solutions surrounding a specific point in the

generation. The CDC mechanism is used in this research to

determine the deletion of non-dominated solutions from

external archive when the archive is full. In addition, CDC

maintains the diversity of non-dominated solutions in the

external archive and also tries to balance between two

objectives to select the optimal solutions. The CDC is

estimated as following [29, 30]:

1. From the archive, obtain the number of non-dominated

solutions

2. Initialize array of distance D for all particles (initialize

with zero).

3. The solutions which have the highest and lowest fitness

function values for each objective EO specified as

infinite crowding distance values.

Cluster Computing

123

Author's personal copy



Set the D 1; EOð Þ ¼ D end; EOð Þ
¼ infinity value:

4. Compute the CDC of each solution, the values of non-

dominated solution in each objective are sorted in

ascending order SV. Then, for each particle, the

distance between the upper and the lower particles

from this particle is calculated, as shown in Fig. 1. The

CDC of particle i represents the sum of distances of

particles i with add the sorted values SV(i - 1) and

SV(i ? 1) divided on the subtraction between the

maximum and minimum value of each objective.

5. Sort the array of D in descending order. The particles

which have the highest CDC will be chosen.

D ið Þ ¼ D ið Þ þ SV iþ 1ð Þ�SVði� 1Þ= max�minð Þ

8 Crossover operation

Crossover is applied as a try to prevent falling in local

optima. One-point crossover operation at which the cross-

over point is the middle of the solution is adopted in this

research. This is the first time that the crossover is applied

into the velocity and position of PSO.

9 Chaotic particle swarm optimization
for discrete problem

For the purpose of investigating our hypothesis, Chaos

Multi-Objective Discrete Particle Swarm Optimization

(CMODPSO) is proposed and implemented. The following

steps represent the proposed algorithm:

1. Initialize a random population of 100 particles (100

positions and 100 velocities). Each particle consists

of the number of dimensions which are 50 dimen-

sions and 5 types of maintenance (as shown in

Table 1).

2. Convert the representation of positions form contin-

uous to binary.

3. Initialize the local best position only before starting

the generations. Knowing that the array of local best

equals to the array of positions.

4. Evaluate the solutions using the objective function

(fitness function) consisting of two-dimension

arrays. The first one is for cost (using Eqs. 1, 2, 3)

and the second one is for PCI value (using Eqs. 4

and 5).

5. Choose the best solutions by based on Pareto front as

shown in (multi-objective optimization problems)

and save the solutions in the external archive A.

6. Check the external archive A if it is full or not. If A is

full then the crowding distance computation (CDC)

algorithm is used. In this paper, the capacity of

archive is just 20 solutions.

7. Choose the global best position (the leader). In this

paper, the sigmoid method is employed to choose the

leader from the non-dominated solutions. The

sigmoid method can be estimated as the following:

r ¼ f 21 � f 22
f 21 þ f 12

ð12Þ

f1; f2 are fitness values for the first objective function

and the second objective function respectively. The

procedure of sigmoid method is given by the

following:

a. Calculate the r(j) for the members in A accord-

ing to Eq. (12).

b. Calculate r(i) for each particle using Euclidian

distance (Dist) between r(1) and r(i). Then,

calculate Euclidian distance between r(j) and

r(i) (tempDist).

c. Compare the (Dist) with all (tempDist), if

tempDist B Dist then Dist = tempDist. Other-

wise, Dist will not change. The number of

particles that have the lowest Dist represent the

number of particles which are the leader [23].

8. Update the velocity of particles according to Eq. (6).

To obtain the value of w, the logistic map as in

Eq. (11) is used where the initial value of this

equation z(0) is equal to 0.7 [31].

9. Apply one-point crossover operation for the velocity.

Then, a controlled mutation is used to keep the

velocity in the range (- 6, 6) as this range is

recommended by Kennedy and Eberhart for discrete

problems [18].

Fig. 1 Crowding distance computation
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10. Update the position of particles using Eqs. (8, 9, 10).

11. Apply one-point crossover operation for positions.

Then, mutation operator is applied to avoid falling in

local optimal. The mutation is done by changing the

position that has the value of 1, of some randomly

selected particles.

12. Evaluate the fitness value of the new particle. The

new solution is saved in order to compare it with the

previous solution.

13. Update the local best solution using the following

equation [32].

pbesti t þ 1ð Þ ¼ pbesti tð Þ; if F pbesti tð Þð Þ\Fðxi t þ 1ð ÞÞ
xi t þ 1ð Þ; otherwise

�

ð13Þ

14. Pareto front is used again to choose the best solution.

Then the new solutions and their positions are saved

in the external archive.

15. After saving the new solutions, the external archive

should be checked as in step 6.

16. Choose a new leader in the current iteration as in

step 7.

17. Repeat steps 8–16 until the maximum number of

iterations is reached. In this paper, the maximum

number of iteration is equal to 100.

10 Compromise solution

Decision makers might make inaccurate decisions in real

applications. Therefore, a fuzzy membership function is

adopted to identify the compromise solution from the

Pareto optimal set and also to improve the decision maker’s

preference. Considering a non-dominated solution Yk in the

archive, the satisfactory degree of Yk for the ith objective

function Fi is expressed by a membership function:

lki ¼
1; Fi Ykð Þ�Fmin

i

Fmax
i � FiðYkÞ
Fmax
i � Fmin

i

; Fmin
i \Fi Ykð Þ\Fmax

i

0; Fi Ykð Þ�Fmax
i

8
>><

>>:
ð14Þ

where Fi
min and Fi

max are the minimum and maximum of the

ith objective function Fi. Then, the normalized membership

function lk of Yk is calculated by:

lk ¼
PM

i¼1 l
k
iPjAj

k¼1

PM
i¼1 l

k
i

ð15Þ

Where M is the number of objective, |A| is the element

number of the archive. The compromise solution is the one

having the maximum of lk in the archive A [32].

11 Results

The proposed chaos multi-objective discrete particle

swarm optimization (CMODPSO) is implemented to find

the optimal maintenance plan for five pavement sections

over 10 years. The results as shown in Fig. 2 shows that

twenty non-dominated solutions are found after 100 gen-

erations. To simulate the agency preferences, the compro-

mise solution which have the maximum membership value

(l) in the archive is selected as the optimal pavement

maintenance. Table 2 shows the optimal maintenance of

compromise solution after 100 generations. The mainte-

nance cost of compromise solution is 183.58 while the sum

of all residual PCI values is 3.1403e?09. The execution

time is about two minutes, which is very short time com-

pared with that achieved before that the process took 34.5 h

[10] as show in Fig. 3. The results show significant

improvement in the maintenance cost and pavement per-

formance compared to the results obtained in the previous

work that applied for the same problem [7] (399.25 for

maintenance cost and 5.87e?10 for sum of all residual PCI

values). The convergence of the developed algorithm to

optimum solution could be achieved after 50 generations.

Figures 4, 5, 6 and 7 shows the convergence pattern with

number of generations.

To study effect of crossover operation on the perfor-

mance of CMODPSO algorithm, the comparison between

the non-dominated solutions found by the algorithm with

and without using crossover operation is conducted. Fig-

ure 8 shows that some non-dominated solutions found by

the algorithm without crossover operation stay without

update during the iterations (between 80 and 100 genera-

tions). This means that it could be fallen in the local

optima, while this case is not found when the crossover is

considered as shown in Fig. 8. Table 3 shows the

Fig. 2 The non-dominated solutions after 100 generations
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comparison among twenty non-dominated solutions

obtained at 100 generations with and without crossover

operator. Based on Table 3, there is insignificant

improvement in pavement performance objective for the

most non-dominated solutions when the crossover operator

is applied. However, there is noteworthy improvement in

cost objective for the most non-dominated solutions found

by considering crossover operator.

12 Conclusions and future works

A novel CDPSO algorithm is developed by combining the

crossover operation with velocity and position with multi

objective PSO algorithm. The proposed algorithm is

implemented to find the optimal pavement maintenance

and rehabilitation scheduling considering two objectives:

the minimization of the sum of all residual PCI values and

the minimization of the total pavement rehabilitation cost.

Fig. 3 The execution time of two algorithms

Fig. 4 The non-dominated solutions at 20 generations

Fig. 5 The non-dominated solutions at 40 generations

Fig. 6 The non-dominated solutions at 60 generations

Fig. 7 The non-dominated solutions at 80 generations
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The developed algorithm has ability to address complex

combinatorial optimization problem efficiently and find

optimal solutions quickly. Therefore, the execution-time of

the developed algorithm is too short about two minutes

showing significant improvements in algorithm

performance.

This is the first attempt to combine the crossover oper-

ation with CDPSO algorithm. The using of crossover

operation in both velocity and position improves the per-

formance of the algorithm and then avoid it to fall in local

optima. Furthermore, using the ergodicity characteristics of

chaotic variables instead of fixed value makes the value of

Fig. 8 a Show the solutions in generation 80, b show the solutions in generation 100

Table 3 Comparison between Non-dominated solutions with and without crossover operator

Non-dominated

solution number

Solution in 100 generations with crossover Solution in 100 generations without crossover

Cost Sum of PCI Cost Sum of PCI

1 166.52 3.3157e?09 156.33 3.4631e?09

2 295.81 2.5927e?09 420.41 2.5517e?09

3 346.48 2.6783e?09 356.09 2.5619e?09

4 369.86 2.6408e?09 266 2.9915e?09

5 195.48 3.1852e?09 175.68 3.3983e?09

6 328.7 2.7373e?09 274.61 2.9271e?09

7 237.12 3.2697e?09 187.06 ‘3.1711e?09

8 265.2 2.8619e?09 305.13 2.6892e?09

9 280.16 2.7656e?09 196.07 3.3426e?09

10 318.7 2.6651e?09 217.35 3.2441e?09

11 183.58 3.1403e?09 206.07 3.2061e?09

12 214.53 3.1083e?09 327.61 2.7755e?09

13 283.09 3.0053e?09 323.06 2.8849e?09

14 257.65 2.8946e?09 339.49 2.5953e?09

15 212.95 3.0521e?09 222.16 3.2973e?09

16 238.7 2.9595e?09 239.08 3.0833e?09

17 244.44 2.9354e?09 247.24 2.7669e?09

18 203.77 3.2738e?09 240.52 3.0323e?09

19 207.52 3.1467e?09 246.39 3.1035e?09

20 300.49 2.8165e?09 349.68 2.7516e?09
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inertia weight w in the best mode. This is further

improvement in the developed algorithm performance.

For future work, for testing algorithm performance, the

algorithm will be applied to the pavement maintenance

scheduling problem along with another evolutionary algo-

rithm. Moreover, the CDPSO algorithm will be imple-

mented on constrained problems to examine the effects of

using another chaos types on the solutions and the execu-

tion time.
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