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This paper introduces a study to Blue Monkey (BM) algorithm, which 

is a new metaheuristic algorithm optimization based on the 

performance of blue monkey swarms in nature. The BM algorithm 

identifies how many males in one group. Normally, outside the season 

of the breeding, the groups of blue monkeys have only one adult male 

like other forest guenons. In addition to related patas monkeys 

(Erythrocebus patas).  

Forty-three of well-known test functions, which used in the area of 

optimization are used as benchmark to check BM algorithm, in 

addition, BM verified by a comparative performance check with 

Artificial-Bee-Colony (ABC), Gravitational Search Algorithm (GSA), 

Biogeography-Based Optimizer (BBO), and Particle Swarm 

Optimization (PSO). The obtained results demonstrated that BM 

algorithm is competitive compared with the selected metaheuristic 

algorithms; also, BM is able to converge towards the global optimal 

through optimization problems. Further, this algorithm is very efficient 

in field of dissolving real problems with restrictions and unidentified 

search space. It should be mentioned that the BM algorithm has some 

variables and it can obtain better results. in many test functions 

comparing with other algorithms.  
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1. Introduction 

 

In the past decades, the techniques of meta-heuristic optimization become very common. Moreover, some of 

these techniques are popular among scientists from various areas and not restricted to the computer scientists. 

For example, Particle Swarm Optimization (PSO), Genetic Algorithms (GAs) [1], and Ant Colony 

Optimization (ACO) [2]. Furthermore, beside the big number of theoretical studies, there are many 

applications to the optimization techniques in different fields. Here, we discuss why meta-heuristics is popular 

approach [3]. There are four primary reasons can explain this matter: flexibility, simplicity, local optima 
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avoidance and derivation-free mechanism. They have been generally based on very simple concepts [4]. 

Usually, there is a relationship between the inspiration and physical phenomena, the behavior of animals, or 

evolutionary concepts. Several natural concepts can be simulated by computers. The simplicity makes this 

possible, in addition to suggest new metaheuristics, hybridize two or more metaheuristics, or enhancing the 

current meta-heuristics. Furthermore, the simplicity makes the process of learning meta-heuristics fast and 

easy to the other scientists and can be applied to their problems. The PSO seeking the inputs to find the best 

ones, which have the best fitness value over the course of iteration in order to enhance the rest of solutions. 

Because of gradient-free approach, low probability of local optima stagnation, and high flexibility [5], there 

are many meta-heuristics applications used in various science and industry areas [6]. Unlike single- objective 

optimization, it's not possible to have one solution in case of several objectives as the goal of the optimization 

process. In this instance, the asset of solution which state various trade-offs between the aims, involves 

optimal solutions of a multi-objective problem [7]. EAs is characterized by many benefits in contrast to 

conventional optimization techniques, like derivative-free approach and flexibility. Those two benefits are due 

to the stochastic nature of EAs that helps them in case of an optimization problem like a black box and 

optimizing it without gradient information about its search space. Because of the extraction of gradient 

information of real problems is not trifling or sometimes not possible [8]. The techniques of derivative free 

enhancement are of higher relevance. Furthermore, random operators can stop EAs from easily stagnating in 

local optima in comparison with traditional gradient-based optimization approaches [9]. There are many 

suggested algorithms in this field, but the big question is that is there a need for more optimization 

approaches. The answer is related to a theorem called No Free Lunch (NFL) [10]. Based on this theorem, 

there is no one can suggest an algorithm to solve all the optimization related problems. So, if an algorithm 

succeeds to solve a particular set of tasks, doesn’t mean it can solve the rest problems which have different 

type and nature. Furthermore, this is the motivation of this study, where a simple yet efficient optimization 

technique is suggested in order to deal with real optimization problem with not known search spaces [11]. 

This work introduces a study about designing optimization algorithms using a simple mathematical function 

in the meta-heuristic field.  

 

2. Literature review 

 

In case of optimization with single-objective, one solution is available only which is the global optimum. This 

is due to the unary objective in the problems with single-objective, and the presence of only single best 

solution. The process of comparing solutions becomes easy in case of existing one objective and is done by 

the relational operators: >, ≥, <, ≤, or=. The nature of these problems lies on optimization problems and 

comparing the nominated solutions then identify the best solution. In case of the problems with multi-

objective, the comparison of solutions must be with more than one objective (criterion) [12]. To find a 

solution to a multi-objective problem, we must use a set of solutions which is known as the Pareto optimal set, 

representing the best tradeoffs between objectives. In the past years, a considerable multi-objective algorithms 

were introduced. There are some of them which are well-known and have stochastic population-based: 

Strength Pareto Evolutionary Algorithm (SPEA) [8], Non-dominated sorting Genetic Algorithm version2 

(NSGA-II), Non dominated Sorting Genetic Algorithm [7], Multi-Objective Evolutionary Algorithm based on 

Decomposition (MOEA/D), Multi Objective Particle Swarm Optimization (MOPSO) [8], Pareto-frontier 

Differential Evolution (PDE), and Pareto Archived Evolution Strategy (PAES). Two primary ingredient when 

enhancing or optimizing an EA are test problems and performance measures [13]. Test problem used usually 

to benchmark the abilities of EAs, the efficiency of EAs is determined by performance metrics from different 

perspectives. Moreover, the designer used performance metrics for conducting quantitative comparative 

researches. The studies said that there is a significant number of performance measures in the area of 

evolutionary multi-objective optimization (EMOO) [14]. There are different performance metrics used for 

comparing algorithms in the area of EMOO. This is because the complication of the process of optimization 

and multi-objectivity, and the existence of several performance metrics gives an objective and fair 

comparison. The various sections of EMOO require certain or adapted measures for the quantification of the 

efficiency of algorithms in an effective manner as the literatures said [15], In spite of its big important, no 

performance measure in the area of robust multi-objective optimization (RMOO). Due to this, we suggested 3 

new measures of performance for robust multi-objective algorithms. There are several reasons make them not 

working well in many cases, like the complicated nature of optimization tasks, constant and linear time-

varying values for social and cognitive factors. The performance can be improved -in some cases- when 
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utilizing a nonlinear time-varying coefficient for PSO. Furthermore, using only one time-varying nonlinear 

strategy for all particles cannot cause a general sufficient optimizer [14].  

 

3. The blue monkey 

In this section, the motivation of the suggested approach and the mathematical model are discussed. 

3.1 The inspiration of the blue monkeys 

Cercopithecus mitis joins with Cercopithecus ascanius (red tailed monkey) for additional protection. 

“Cercopithecus mitis social system is mainly female because the males leave once, they are mature". The male 

Cercopithecus mitis have little or no interaction with the young. Cercopithecus mitis are quite regional, for 

this reason the young males should get out rapidly in order to help themselves to be more successful [15]. 

They challenge the dominant male of some other family. In the case where they defeat it, they dominate the 

leading of that family, this behavior will provide food, a place to live and socialize for young males [15]. 

Cercopithecus mitis are referred to as nomadic. The blue monkeys have a propensity to waste time in the 

forest habitats, this related to existence of the fruits resource and structural characteristics like larger fruit 

patches [16]. 

The blue monkeys are not like the other kinds of monkeys. Normally they live in female dominated social 

systems, which mean that the females are staying in their natal groups. On the other hand, the males leave 

their groups as soon as reaching the stage of maturity [17]. Most blue monkey groups having a lot of females 

and babies, but only one male. This matter makes inbreeding difficult. The males leave the group to another 

group when they reach maturity, but finding another group may take some time, so they may seem as solitary 

males. In the field of social relationships, the blue monkeys don't have very powerful instincts [18]. The time 

of social interactions is short, this happened normally during playing together and grooming one another. 

Also, there is an interaction between babies and their mothers and other adults in the group. This lead to those 

babies doesn’t usually go near their male counterparts. All operating is really handlers of the babies. The 

young females look after babies, carry them and keep them safe. This habit teaches babies to react with all 

monkeys in later life [19]. 

3.2 Mathematical model and algorithm 

The algorithm of BM together with its mathematical model are presented in this section. 

3.2.1 Group division 

The BM algorithmic program mimics behavior of the Blue Monkey. To model such interactions, every cluster 

of monkey’ area unit needed to maneuver over the search area. As mentioned earlier, the Monkeys when 

being divided into teams who begin to look for places of food at long distances area and stronger monkey not 

among the scope of traditional vision. The male Cercopithecus mitis have little to no interaction with the 

young ones. Because of the territorial nature of the cercopithecus mitis, the young males should go out as fast 

as possible in order to become more successful. They will enter a challange with the dominant male of another 

family. In the case where they success to defeat that male, they can be the leaders of this family, so they can 

offer food supplies, place to live and socialization for young males [20]. Normally, the groups of blue 

monkeys having one male and a big number of femals and babies [20]. 

3.2.2 Update position 

The update position for each blue monkey in the group depends on the best blue monkey position in that 

group, this behavior is delineating by the following equations: 
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Ratei+1= (0.7*Ratei) +(Wleader-Wi) *rand*(Xbest-Xi)                                       (1) 

 

Xi+1=Xi+Ratei+1*rand                                                                                          (2) 

              
where Rate represents the monkey power rate, Wleader is the leader weight, Wi is the monkey weight at 

which all weights are random numbers between [4,6], X is the monkey position, Xbest is the leader position 

and rand is an arbitrary number between [0,1]. 

Also, in order to update the children of blue monkey, the following equations are used: 

Rate
ch

(i+1) = (0.7*Rate
ch

i) + (W
ch

leader-W
ch

i) * rand*(X
ch

best-X
ch

i)                             (3)                      

 

X
ch

(i+1) = X
ch

i+Rate
ch

(i+1) * rand                                                                                  (4)  

     

 where Ratech represents the child power rate, Wchleader is the leader child weight, Wchi is the child weight 

at which all weights are random numbers between [4,6], Xch is the child position, Xchbest is the leader child 

position and “rand” representing an arbitrary number between [0,1]. The position should be updated in each 

iteration. 

Algorithm1: BM optimization 

1- Initialize the blue monkey and children population bi (i=1…n). 

2- Initialize Power Rate Rate and Weight W. where (Rate ∊ [0, 1]), (W∊ [4,6]) 

3- Distribute the blue monkeys randomly into teams (T), while all children in one team. 

4- Calculate the fitness of children and all blue monkeys in each group.  

5- For each group, select the worst value and the best value of fitness and store it in Current Best. While 

children select the best fitness. 

6- t=1. 

7- While (t≤ maximum number of iterations) 

8. Swapping the worst fitness in each group by the best fitness in children group.   

9- Update Rate and X position of all blue monkeys in each group by Equations 1 and 2. 

10- Update Rate and X position of children by Equations 3 and 4. 

11- Update the fitness of all blue monkey and children. 

12- Update Current Best: 

if New Best is better than Current Best Then Current Best=New Best. 

13- t=t+1.  

14- End While. 

15- Return the optimal blue monkey. 

 

 

4. Results and discussion 

 

In this section, BM algorithm is tested and evaluated by using 43 benchmark functions. Some of those 

functions (the first 18) are simple and traditional functions that are used by many researchers (Storn and Price 

1997). Those functions are chosen for being able to compare our results with the results of some well-known 

metaheuristic algorithms. The selected 43 test functions are shown in table 1 and table 2 where D means the 

dimension of the function, Range is the search space limits of the function and Opt is the optimal value. 

In general, the utilized test functions are minimization functions that are either unimodal or multimodal 

benchmark functions. 

 

The suggested BM algorithm was performed 30 times for every one of the benchmark functions. The 

statistical results (average and standard deviation) are presented in tables 3 and 4. For proving the results, BM 

algorithm is compared to ABC [12], PSO [21], GSA [22], GWO and BBO [23]. 
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4.1 Exploitation analysis 

 

The results in table 3 show that BM outperforms the other selected algorithm in most of the in most of the 

selected 18 functions for the unimodal functions.  

 

The unimodal functions are appropriate for benchmarking exploitation according to the formally mentioned 

operators. Which is why, the obtained results demonstrate the superiority of BM in exploiting the optimal 

value; Figure 1 depicts the comparison of average value taken between BM, GWO, BBO, PSO and ABC for 

unimodal benchmark functions. 

 

4.2 Exploration analysis 
 

Many local optima can be found in multimodal functions with the number growing exponentially with 

dimension. Therefore, the multimodal functions are appropriate for testing the exploration strength of an 

algorithm. The results in table 4 demonstrated that BM outperforms ABC, GSA, PSO and GWO in most of 

the selected 25 functions for the multimodal functions.   

 

BM is able to be of a comparable performance with BBO; and outperforms it in sometimes. The obtained 

results demonstrate that the BM algorithm superiority in terms of exploration; Figure 2 depicts the comparison 

of average value taken between BM, GWO, BBO, PSO and ABC for multimodal benchmark functions. The 

Unimodal Benchmark Functions has been tested in many studies [23-27]. 

 

Table1. Unimodal benchmark functions 

Equation 
Test 

Name 
D Range Opt 

       

 

   

  
  Sphere 30 100,-100 0 

       

 

   

      

 

   

     
Schwefel 

2.22 
2 100,-100 0 

                        
Schwefel 

2.21 
2 100,-100 0 

       

 

   

  

 

   

   

 

 Schwefel 1.2 2 100,-100 0 

                   
    

 Ackley 2 2 32,-32 -200 

        
    

                                     
     

Bohachevsky

n N.1 
2 100,-100 0 

     =(  +     )
2
+(2  +x

2 
-5)

2 Booth 2 10,-10 0 

       

 

   

  
    

 

   

       

 

   

 

   

       

 

 Zakharov 2 5.12,-5.12 0 

      =(x1 -1)
2 

+           
 -      

  Dixon-Price 2 10,-10 0 

      = -exp (-0.5         
 

 Exponential 30 1,-1 -1 

              
    

            Matyas 2 10,-10 0 

      =          
   

Schwefel 

2.23 
2 100,-100 0 

      =           | 
Schwefel 

2.20 
2 100,-100 0 

            
                    

                   
 Schaffer N2 2 36,-36 0 

http://www.sfu.ca/~ssurjano/dixonpr.html
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 Schaffer N3 2 100,-100 

0.0015

6 

           
       

    
  
 
    

           
    

    
 Schaffer N1 2 100,-100 0 

        

 
 

   

                
              

 

              
               

   

Powell 10 5,-4 0 

         
 
              

 ) -   ]
2 

Power Sum 4 4,0 0 

 

 

Table 2. Multi-modal benchmark functions 

Equation Test Name 
Typ

e 
D Range Opt 

                    

 

   

  
 

    

   

        
 

 
 

 

   

                      

Ackley N 2 10,-10 0 

        

 

   

       Step 1 N 30 100,-100 0 

        

 

   

   
              Quartic N 10 1.28,-1.28 0 

       = (4-2.1  
 +

  
 

 
)   

 +    +(-4+4  
 )  

  
Six-Hump 

Camel 
N 2 5,-5 -1.0316 

       = a (   -    
  +     – r )2 + s(1- t) cos(  ) + s Branin  2 15,-5 0.3979 

       = [1+(   +    +1)2 (19 -14   +    
 -14   + 6    +   

 )] *[30+(    

+3   )2(18 -32   +     
 -48   + 36    +    

 )] 

Goldstein 

Price 
N 2 2,-2 3 

          

 

   

         

 

   

           
 
  

Hartmann 

3-D 
F 3 1,0 -3.8628 

          

 

   

         

 

   

           
 
  

Hartmann 

6-D 
F 6 1,0 -3.3224 

                          sin (    | ) 
Schwefel 

2.26 
N 30 500,-500 -12569.5 

        
 

  
{ 10 sin2 (π  ) +                

  [1+10sin2   
   
  ] + 

      
 } +                     

Penalized 

1 
N 2 50,-50 0 

            {sin2 (3π  ) +                
  [1+sin2        

 ] + 

      
 } +                    

Penalized 

2 
N 2 50,-50 0 

          
        

   
  
 

 
        

  

Three-

Hump 

Camel 

N 2 5,-5 0 

              
           + 5  

                         
 Ackley 3  2 32,-32 -195.629 

         
     

                                      
Bohachevs

kyn N.2 
N 2 10,-10 0 

                                    
 
 +                             

 
 + 

       
Brid N 2 2pi,-2pi 

-

106.764

5 

http://www.sfu.ca/~ssurjano/camel6.html
http://www.sfu.ca/~ssurjano/camel6.html
http://www.sfu.ca/~ssurjano/goldpr.html
http://www.sfu.ca/~ssurjano/goldpr.html
http://www.sfu.ca/~ssurjano/hart3.html
http://www.sfu.ca/~ssurjano/hart3.html
http://www.sfu.ca/~ssurjano/hart6.html
http://www.sfu.ca/~ssurjano/hart6.html
http://www.sfu.ca/~ssurjano/camel3.html
http://www.sfu.ca/~ssurjano/camel3.html
http://www.sfu.ca/~ssurjano/camel3.html
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Cross in 

Tiny 
N 2 10,-10 -2.06261 

                                                   Easom F 2 100,-100 -1 

         
                     

         
 Keane N 2 10,0 -0.6737 

          

 

   

      
    

 

   

       Trid F 6 36,36 -50 

       = -(   +47) sin (      
  

 
    )  -    sin (             ) Egg Holder N 2 512,-512 -959.641 

       
              

  
 + ( x – 1    

Gramacy & 

Lee 
F 1 2.5,0.5 -0.869 

                                
   

     
 

 
 | ) | Holder N 2 10,-10 -19.2085 

                          sin (    | ) Schwefel N 2 500,-500 0 

           
 
                sin2m  

   
 

 
  

Michalewi

cs 
N 2 2.21,1.57 -1.8013 

         
 
   

  
 

    
 -   

             
  
   +1 Griewank N 30 600,-600 0 

 

 

Table 3. Results of unimodal benchmark functions 

Function BM ABC PSO 

 Average Std Average Std Average Std 

F1 9.03693E-11 1.78213E-10 1.25E-03 8.11E-04 2.54E-08 7.98E-08 

      F2 3.61157E-47 9.04387E-47 1.66E-03 1.10E-03 2.03E-51 1.10E-50 

      F3 33.67989 
20.2171660

2 
1.71E+02 8.05E+01 75.79913 99.69846 

F4 1.10936E-45 3.30122E-45 5.62E-04 2.78E-04 9.14E-46 5.01E-45 

F5 8.8817E-16 2.97462E-31 3.46E-04 1.78E-04 1.95E-15 1.66E-15 

F6 4.20319E-10 6.61705E-10 5.42E-01 4.57E-01 1.19E-08 1.94E-08 

F7 -1.0316 2.22045E-16 -1.0316 6.78E-16 1.58E+01 9.15E+01 

F8 2.3558E-31 0 1.75E-07 1.67E-07 2.36E-31 4.45E-47 

F9 1.3498E-32 2.73691E-48 5.12E-07 6.48E-07 1.35E-32 5.57E-48 

F10 -195.629 5.75496E-14 -1.96E+02 5.78E-14 -1.96E+02 3.57E-05 

F11 -2.0626 0 -2.0626 1.36E-15 -2.06234 1.50E-03 

F12 -1 0 -1 0 -1 0 

F13 -0.6737 1.11022E-16 -0.67367 0 -0.6737 1.13E-16 
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F14 -50 0 -49.9974 7.23E-14 -50 0 

F15 -0.869 1.16441E-16 -2.8739 9.03E-16 -0.625 0 

F16 -19.2085 3.55271E-15 N/A N/A -15.1402 5.42E-15 

F17 -1.8013 0 -1.878847 7.84E-02 -1.80109 3.60E-04 

F18 0.00499278

8 

0.00416523

7 
0.8444203 0.1298731 6.81E-03 8.86E-03 

 

 

Table 4. Results of unimodal benchmark functions 

Functi

on 
BBO GSA GWO 

 Average Std Average Std Average Std 

F1 2.77E-03 6.89E-04 2.14E-17 5.64E-18 8.32E-62 2.01E-61 

F2 4.46E-07 6.06E-07 6.02E-11 2.99E-11 1.26E-189 0 

F3 2.89E+01 1.43E+01 2.61E+01 1.78E-01 2.67E+01 7.04E-01 

F4 1.70E-08 3.53E-08 1.52E-10 6.47E-11 3.21E-214 0 

F5 4.74E-09 1.64E-08 1.71E-10 1.07E-10 8.88E-01 4.01E-31 

F6 1.06361 2.07E-01 2.23E-17 5.39E-18 5.52E-01 3.23E-01 

F7 -1.0316 6.78E-16 -1.0316 6.78E-16 -1.03162 4.31E-09 

F8 1.91E-10 4.11E-10 3.16E-21 2.91E-21 1.45E-08 1.50E-08 

F9 3.41E-12 1.70E-11 1.84E-21 1.57E-21 1.48E-08 1.90E-08 

F10 -1.96E+02 5.78E-14 -195.629 5.78E-14 -195.629 2.85E-08 

F11 -2.0626 1.36E-15 -2.0626 1.36E-15 -2.06261 3.30E-09 

F12 -1 0 -1 0 -1 0 

F13 -5.19E-01 1.92E-01 -0.6709 4.17E-03 -6.74E-01 1.13E-16 

F14 -50 0 -50 0 -5.00E+01 8.03E-05 

F15 -7.70E-01 1.46E-01 -0.869 1.13E-16 -8.69E-01 1.13E-16 

F16 -1.89E+01 
1.77166

3 
-19.1796 4.25E-02 -1.92E+01 8.18E-06 

F17 -1.8013 6.78E-16 -1.8013 6.78E-16 -1.8013 6.78E-16 

F18 7.46E-01 1.24E-01 3.713554 1.8568 3.38E-03 7.16E-03 
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Fig.1. Unimodal benchmark function for BM with other algorithms 

 

Table 4. Results of multimodal benchmark functions 

Function BM ABC PSO 

 Average Std Average Std Average Std 

F19 6.69373E-47 1.59683E-46 2.54E-04 1.52E-04 1.05E-55 5.15E-55 

F20 -200 0 -199.9998 1.02E-04 -200 0 

F21 0 0 1.42E-05 1.41E-05 1.67E-16 5.89E-16 

F22 0 0 4.52E-07 5.79E-07 6.97E-30 2.48E-29 

F23 9.85874E-95 2.88074E-94 1.84E-09 1.70E-09 4.08E-104 2.08E-103 

F24 3.6978E-32 5.47382E-48 2.20E-06 2.14E-06 8.52E-02 4.08E-01 

F25 -1 0 -0.9999413 3.82E-05 -1 0 

F26 1.00289E-89 2.97672E-89 1.33E-07 1.36E-07 6.77E-66 3.71E-65 

F27 0 0 2.95E-31 9.24E-31 0 0 

F28 0 0 5.26E-09 7.66E-09 6.96E-16 2.23E-15 

F29 0.00156 2.1684E-19 1.72E-03 1.44E-04 1.51E-02 6.98E-02 

F30 0 0 1.06E-05 8.71E-06 1.33E-16 5.70E-16 

F31 7.10209E-05 4.18697E-05 1.36E-04 8.18E-05 2.66E-02 8.52E-02 

F32 0.002583809 0.002412803 2.04E-02 1.08E-02 1.86E+03 6.52E+03 

-100% 

-80% 

-60% 

-40% 

-20% 

0% 

20% 

40% 

60% 
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Function BM BM ABC ABC 

PSO PSO BBO BBO GSA 

GSA GWO GWO optimal 
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F33 0.014140107 0.00435564 8.93E-03 2.97E-03 6.95E-01 7.72E-01 

F34 0.3979 0 0.39789 1.69E-16 4.82E-01 4.63E-01 

F35 3 0 3 0 3 0 

F36 -3.8628 0 -3.8628 3.16E-15 -3.86278 1.36E-15 

F37 -3.3224 1.33965E-15 -3.3224 1.36E-15 -3.27048 5.99E-02 

F38 -6111.09 1029.511229 -1.20E+119 6.05E+119 -3.26E+03 3.25E+03 

F39 2.05416E-93 6.06452E-93 2.50E-09 2.06E-09 2.27E-100 8.67E-100 

F40 0 0 3.18E-05 2.96E-05 2.96E-17 5.78E-17 

F41 -106.7645 0 -106.7645 7.23E-14 -103.115 2.00E+01 

F42 0.000025455 0 -1.97E+113 1.03E+114 7.12E+02 4.47E+02 

F43 -952.477 7.007255 -6E+111 2.3E+112 -955.424 376.9031 

 

 

Table 4. Results of multimodal benchmark functions 
unction BBO GSA GWO 

 Average Std Average Std Average Std 

F19 5.84E-09 1.15E-08 9.31E-11 5.16E-11 8.74E-216 0 

F20 -200 0 -200 0 -200 0 

F21 3.02E-12 1.62E-11 0 0 0 0 

F22 8.95E-10 2.23E-09 1.85E-20 1.43E-20 1.54E-07 1.11E-07 

F23 7.83E-16 2.00E-15 3.11E-20 4.09E-20 0 0 

F24 9.32E-09 1.43E-08 7.21E-20 7.49E-20 3.46E-08 3.12E-08 

F25 -1.00E+00 1.21E-05 -1 0 -1 0 

F26 2.80E-08 5.51E-08 1.57E-21 1.19E-21 8.42E-204 0 

F27 2.26E-69 1.24E-68 1.72E-99 4.23E-99 0 0 

F28 1.66E-13 9.09E-13 5.33E-03 6.96E-03 0 0 

F29 1.89E-03 4.76E-04 3.42E-03 2.05E-03 1.57E-03 2.40E-07 

F30 4.39E-15 2.35E-14 2.02E-02 3.20E-02 0 0 

F31 1.99E-04 1.05E-04 7.38E-05 5.67E-05 4.95E-07 6.10E-07 

F32 1.80E-02 1.57E-02 2.84E-02 3.32E-02 1.07E-01 2.61E-01 

F33 1.44E-03 9.17E-04 4.47E-03 2.06E-03 9.72E-04 9.03E-04 

F34 3.98E-01 1.69E-16 0.3979 0 3.98E-01 5.98E-07 
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F35 3 0 3 0 3 9.28E-06 

F36 -3.8628 3.16E-15 -3.8628 1.83E-05 -3.86208 1.94E-03 

F37 -3.27472 5.94E-02 -3.3224 1.36E-15 -3.26425 9.99E-02 

F38 -8.20E+03 5.72E+02 -2.84E+03 4.00E+02 -6.10E+03 7.90E+02 

F39 3.98E-02 1.03E-01 6.25E-21 7.71E-21 0 0 

F40 6.55E-02 1.02E-01 0 0 0 0 

F41 -1.06E+02 3.551725 -106.765 7.23E-14 -1.06E+02 3.551734 

F42 4.67E+01 6.48E+01 206.868 8.14E+01 5.92E+01 7.46E+01 

F43 -791.281 147.3338 -727.028 123.868 -922.428 208.9099 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Multimodal benchmark function for BM with other algorithms 

 

According to the results in table 3, BM algorithm achieved the optimal value in eight test functions (F5, F6, 

F7, F10, F12, F14, F15 and F16), while it is converging to the optimum values in nine test functions (which 

are F1, F2, F3, F4, F8, F9, F11, F13 and F17); it is worth to mention that those values are better compared to 

the values of the other selected algorithms using the same test functions. Also in the remaining test function 

(F18); BM is able to be near the best values of the selected algorithms.  

The results BM show that it is very competitive and efficient compared to the algorithms mentioned above. 

BM was found to be superior to all other algorithms in most tests. Those results demonstrated the 

effectiveness, flexibility and accuracy of the presented algorithm.   

BM was tested on 25 multi-model test functions, at which BM is better and more efficient than the other 

algorithm; also, BM can control the exploitation better than other algorithms. 

Based on the results that have been listed in table 4, the BM algorithm achieved the optimal value in 14 test 

functions (F23, F24, F25, F26, F27, F32, F33, F34, F35, F36, F37, F38, F40, F41 and F42), while it is very 

close to the optimal values in 11 test functions (F19, F20, F29, F30, F31, F35 and F49); it is worth to mention 

that those values are better compared the values of the other selected algorithms using the same test functions. 

Also in the remaining four test functions (F21, F22, F28 and F43), BM is able to be near the best values of the 

selected algorithms.  

The obtained results show that BM algorithm achieved better results in finding optimal solution value in the 

multi- model function, compared to the results of the unimodal. This reflecting the superiority of BM in the 

exploration search. 
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5. Conclusion and future work 

The presented work introduced a novel algorithm of swarm optimization based on the social behaviour of 

Blue Monkey; BM was suggested as a substitute technique to solve problems of optimization. In the suggested 

BM algorithm, the solutions were necessary to upgrade their positions according to the position of the optimal 

solution that has been achieved so far. The position updating enables the solutions to move towards or 

outwards the destination point for guaranteeing the exploitation and exploration of the search space. Forty-

three test functions have been utilized for testing the power and efficiency of BM in terms of exploitation and 

exploration. The achieved results demonstrated that BM has the ability exceed ABC, GSA, PSO, GWO and 

BBO. The results that are obtained from the unimodal test functions showed the exploitation superiority of 

BM algorithm. After that, BM exploration ability was demonstrated by the results that are obtained from the 

multimodal benchmark functions. The next work is to build a multi-objective kind of the BM algorithm.  
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