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Abstract Recent approaches toward solving the regression

problems which are characterized by dynamic and nonlinear

pattern such as machine learning modeling (including arti-

ficial intelligence (AI) approaches) have proven to be useful

and successful tools for prediction. Approaches that inte-

grate predictive model with optimization algorithm such as

hybrid soft computing have resulted in the enhancement of

the accuracy and preciseness of models during problem

predictions. In this research, the implementation of hybrid

evolutionary model based on integrated support vector

regression (SVR) with firefly algorithm (FFA) was investi-

gated for water quality indicator prediction. The monthly

water quality indicator (WQI) that was used to test the hybrid

model over a period of 10 years belongs to the Euphrates

River, Iraq. The use of the WQI as an application for this

researchwas stimulated based on the fact thatWQI is usually

calculated using a manual formulation which takes much

time, efforts and occasionally may be associated with errors

that were not intended during the subindex calculations. The

parameters considered during the formulation of the pre-

diction model were water quality parameters as input and

WQI as output. The SVR model was used to verify the

accuracy of the inspected SVR–FFA model. Different sta-

tistical metrics such as best fit of goodness and absolute error

measures were used to evaluate the model. The performance

of the hybrid model in recognizing the dynamic and non-

linear pattern characteristics was high and remarkable

compared to the pure model. The SVR–FFAmodel was also

demonstrated to be a good and robust soft computing tech-

nique toward the prediction of WQI. The proposed model

enhanced the absolute error measurements (e.g., root mean

square error and mean absolute error) over the SVR-based

model by 42 and 58%, respectively.

Keywords Support vector regression � Firefly algorithm �
Regression problem � River water quality

1 Introduction

1.1 Background

Soft computing techniques such as the AI techniques

belong to the mathematical computational systems which

usually involves a mimic process. AI models are
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computational tools which analyze and understand the

complex problems of nature by mimicking the naturally

occurring nervous biological system of the human being

[1]. In addition to this, they are also capable of generating

optimal mathematical modeling in order to simulate the

stochasticity which exists within the input and output of a

systematical problem through the offering of a remarkable

machine learning process [2–4]. Several data-driven mod-

els such as the linear regression (LR) and the autoregres-

sive integrated moving average (ARIMA) have been used

for environmental and ecological applications [5–7]. In

fact, such models are linear and assumed the stationary

state of a data set. Hence in hydrological processes, these

typical models cannot efficiently handle the non-station-

arity and nonlinearity of the data set involved [8–10].

Therefore, efforts have been channeled by scholars on the

development and exploring of models which are intelligent

enough to handle modeling processes involving nonlinear

and non-stationary processes. The AI and its data-driven

methods have demonstrated to be promising in the mod-

eling and forecasting of the nonlinear environmental and

hydrological processes [11]. It has also shown great pro-

gress in handling the large dynamicity of data sets, as well

as data set noise concealing. These attributes make AI-

based models well suited for modeling problems in

hydrology [12, 13]. Numerous AI tools or techniques such

as mathematical optimization, search optimization, as well

as logics, statistical learning, classifications and probabil-

ity-based methods have been reportedly used in hydro-

logical studies [14].

In order to solve deficiencies of the NN methods, one

among several AI approaches called support vector

machine (SVM) was developed in 1995 by [15]. The

principle of empirical risk minimization (ERM) was used

to reduce errors during training the network of SVM.

Furthermore, in order to reduce the upper bound of a

generalization error, the SVM employed structural risk

minimization (SRM) algorithm which is purely based on

the principle that the boundaries of a generalization error

are dependent on the generalization of the empirical errors

and a confidence interval term. Avoiding the local opti-

mums and obtaining the global optimum are the major

objectives of the SVMs, and to realize this, the nonlinear

problems are solved linearly at a higher rate compared to

their initial dimensional feature space. The SVM has been

employed in many applications such as pattern recognition,

text categorization problems and nonlinear regression

estimation [16, 17]. The SVM model which was previously

proposed for clustering purposes has been expanded to

cover the nonlinear regression problems known as the

support vector regression (SVR) [18]. In a range of appli-

cations/prediction fields including atmospheric science

prediction [19, 20], financial applications [21], as well as

the hydrological and environmental applications [22–24],

the SVR models have shown efficiency in their perfor-

mances. The SVR model within a short period of time has

shown efficiency in the areas of science and engineering

where it has been reportedly applied [25].

Theoretically, there are three parameters which are

(C; d and e) the trade-off between the training error and the

regression function flatness, kernel function and the con-

stant value which determines the width of the loss function

in the SVR characterize SVR models. These parameters

have a high influence on the forecasting accuracy, and the

proper identification of these three parameters formulates

serious issues with the SVR models. No proper guide or

rule regarding the setting of the SVR model parameters

exists even though many studies have suggested various

approaches for setting them up [26, 27]. Having discussed

the challenges of the SVR model within their tuning

parameters, the aim of this study is to propose a novel,

robust and accurate model based on the SVR model. Up to

date, enough evidence to support the existence of an

accurate and powerful tool for setting up these criteria

(internal parameters for SVR model) is still limited [28]. In

addition, the effect of the interaction of the parameters has

not been sufficiently justified by the existing methods. The

result of the aforementioned is an increased tendency in the

utilization of evolutionary algorithms for the adjustment of

the SVR parameters. In this paper, a novel optimization

approach based on evolutionary facts called firefly algo-

rithm (FFA) is adopted in this study for the optimization

processes of the internal parameters SVR model. The result

of the proposed algorithm was verified by comparing with

those of the SVR-based model.

1.2 Related work

Machine learning is the application that imitating human

brain features in solving natural problems [29]. These

machine learning methods such as the neuro-fuzzy, artifi-

cial neural network, evolutionary computing and support

vector machines possess the ability to respond to stimulus

from input and generate the corresponding response [8].

This is achieved through recalling the memory of previous

experiences in order to reproduce/generalize the data.

Within the last two decades, various studies have been

carried out in the field of AI and its implementation,

especially in environmental studies [30–33], with greater

attention to the surface water quality [12, 13, 34–36].

Being that AI can rapidly map a given input to generate the

desired output, this attribute over the conventional com-

puting paradigm has led to outcomes which can be

achieved in a few clock cycles. The overall benefit of this is

the enhancement of the efficiency of the analysis approach

when it is compared with the conventional processes.
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However, the methods of soft computing have been used to

replace other procedures in engineering applications which

are not time efficient. Furthermore, its simplicity and

reliability in the analysis of problems at a near-perfect

performance rating projected soft computing methods as a

handy tool for solving engineering problems.

The earliest research was conducted for water quality

determination using soft computing techniques by [37], in

2000. Gümrah et al. estimated the pollutant concentration

of ground water using the application of artificial neural

network. The same application has been utilized to predict

dissolved oxygen concentration for river based on daily

and monthly timescale historical data [38]. In 2004, Juahir

et al. [39] studied the water quality indicator of tropical

environment using ANN machine learning approaches. The

modeling was established based on the region water quality

parameters to construct the model. Another study was

conducted to estimate river water quality with integrating

other significant hydrological parameters like river flow

[40]. Several studies proved the capability of ANN

approach in river water quality modeling [34, 41–44]. On

the other hand, there was an attempt to predict water

quality COD and DO using least-square support vector

machine integrated with particle swarm optimization

(PSO) algorithm. The results showed an outperformance

for the prediction over the multiple linear perceptron [45].

On the same manner, several water quality indicators

including water temperature, plumbum and dissolved

oxygen estimated using hybrid SVR model with PSO

algorithm. The results indicated excellent performance of

the proposed model [46]. In 2011, Singh and his co-re-

searchers determined the biochemical oxygen demand

parameter using the application of support vector machine.

The SVR model internal parameters were optimized using

grid search algorithm [47]. In the last decade, the evolu-

tionary optimization algorithm like firefly algorithm

showed a very creditable performance in optimizing SVR

model [48–51]. Thus, the current study investigates the

applicability of the hybrid SVR–FFA for environmental

application.

1.3 Research objectives

The objectives of this research are as follows:

1. A novel approach based on hybrid SVR–FFA was

inspected for water quality indicator prediction.

2. Exploring an intelligent predictive model that is

characterized by a high capability of capturing the

high dynamic and stochastic pattern of the river water

quality.

3. Validate the hybrid SVR–FFA model against the SVR-

based model in terms of prediction accuracy.

The article is structured as follows: Sect. 2 summaries

the methods and material including the predictive, opti-

mization algorithm, case study and the performance skills

evaluators. Section 3 discusses the application and analy-

sis. Finally, Sect. 4 outlines the conclusions and remarks of

the study.

2 Theoretical overview

2.1 Support vector regression

The SVR as a soft computing learning algorithm recently

has been used in so many fields such as environmental

researches, soft computing and engineering application

[52–54]. Compared to other statistical methods such as the

neural network, it has been proved to show better perfor-

mance accuracies in terms of prediction and forecasting

[55]. The theory and process of the development of the

SVR as developed by Vapnik have been documented in the

literature [56].

The development of the SVR was based on the statistical

machine learning development and also on structural risk

minimization. This is aimed at reducing the error at the

upper bound when compared to the local training error that

is one of the commonly used technique machine learning

methodologies. Based on the surveyed state-of-the-art,

SVR has reported several improvements compared to other

soft computing learning algorithms: (1) The implementa-

tion of a high-dimensional spaced set of kernel equations

which specifically involve nonlinear transformations,

thereby having no room for assumption in the functional

transformation that makes data to be linearly separable and

indispensable and (2) the second benefit of the method is

the uniqueness of its solution because of the convex nature

of the optimal problem.

Mathematically, the approximation function of SVR can

be donated based on the theory stated by Vapnik’s as

follows:

f xð Þ ¼ w:u xð Þ þ b ð1Þ

C ¼ 0:5 wk k2þC
1

n

Xn

i¼1

L xi; dið Þ ð2Þ

Let us assume we are given a range of data set

R ¼ xi; digf n
i . In formula (1), the term u xð Þ represents the

high-dimensional space that deals with the input candi-

dates, whereas w and b are the normal vector and scalar.

Equation (2) contains the following terms 0:5 wk k2 and

C 1
n

Pn
i¼1 L xi; dið Þ which indicate the stands error and reg-

ularization term, respectively. Formula (1) parameters

including w and b are computed via the minimization

function [57]:
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Min RSVR w; n �ð Þ
� �

¼ 0:5 wk k2þC
1

n

Xn

i¼1

ni; n
�
i

� �
ð3Þ

Subject to
di � w:u xið Þ þ bi � eþ ni
w:u xið Þ þ bi � di � eþ n�i

�

ni; n
�
i � 0; i ¼ 1; . . .; l

ð4Þ

where ni and n�i are the positive slack variables that denote the
upper and lower excess deviation. C refers to the error penalty

used to control the trade-off between empirical error and reg-

ularization term. Finally, the e defines the loss function con-

nected to the approximation accuracies of the training data set.

By recalling formula (1), the constrains and the

Lagrange can optimally be solved via the generic function

[49] and best described as follows:

f x; ai; a
�
i

� �
¼

Xn

i¼1

ai � a�i
� �

K x; xið Þ þ b ð5Þ

where K x; xið Þ represents the kernel function. Here, the

determination of the data correlation using nonlinear

mapping methodology is the main goal of the SVR. Non-

linear learning machine can be generated using the defined

kernel function represented as K, which is a straightforward

computation technique. The inner product in a feature

space that serves as a function to original input points was

calculated using this method. The suitability of the SVR to

kernel functions is important since it can subtly alter the

information and transform the same into a higher-dimen-

sional feature space. The outcome of the lower-dimen-

sional original input space can be typified in the obtained

results in such a space.

The four main kernel functions which are obtainable with

the SVR model are the sigmoid, lineal, polynomial and the

radial basis functions [55]. The ideal function in this category

over the years has been the radial basis function (RBF) due to

its efficient, simple and reliable abilities as well as an adapt-

able computation which is for optimization, especially in

handling complex parameters [58, 59]. To train the RBF

kernel equation, only a set of linear functions are required

instead of the quadratic programming which is lengthy and

complicated. Accordingly, the radial basis equation (with

parameterr)was adopted and the nonlinear radial basis kernel
function defined as the accuracy of predictions using the RBF

kernel function which depends on the selection of its three

factors (c, e andC). The firefly algorithmwas used to establish

the optimal values of these factors in this study, and the flow

chart of the hybrid model is displayed in Fig. 1.

2.2 The hybrid support vector regression–firefly

algorithm

The metaheuristic optimization algorithms such as genetic

algorithm (GA), ant colony optimization (ACO), cuckoo

search (CS), FFA and particle swarm optimization (PSO)

which are biologically inspired have been applied over the

years for wide applications in optimization studies

[50, 60–63]. The FFA developed by Yang et al. (2010) is

one of the most recent approaches in metaheuristic opti-

mization algorithms that are biologically inspired, and it is

dependent on certain behavioral pattern, especially the

light flashing characteristic of fireflies [64]. A firefly is an

insect that attracts mates or prey through the principle of

bioluminescence. The luminance from a firefly helps other

fireflies to trace their paths in search of their prey. The

development of many optimization algorithms stemmed

from this firefly luminance production concept. The FFA

has shown to be interesting, promising, efficient and robust,

Fig. 1 The hybrid predictive model flowchart including support

vector regression processes and the firefly optimization algorithm
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when matched with the conventional metaheuristic algo-

rithms in achieving both local and global optimization [65].

For the development of the FFA, basic fundamental

rules are observed which stemmed from the following

attributes of the fireflies. Firstly, all fireflies are unisex,

thereby conferring with the ability to attract other fireflies

irrespective of the sex. Secondly, the luminous intensity of

a firefly determines the degree of its attractiveness; this

intensity tends to decrease as the distance between the

fireflies increases, prompting the ones with lesser luminous

intensity to be attracted to the ones with better intensity.

Thirdly, there is the fact that the nature of the cost function

which is encoded affects the luminosity of an individual

firefly. More technically, the brightness of the light from a

firefly is dependent on the value of the objective function

[66]. The formulation of the attractiveness, which is the

objective function, and the variation of the luminosity are

the major issues in the development of the FFA. For

instance, the fitness function ought to be relatively pro-

portional to the luminosity or the quantity of light emitted

by the firefly during the design of functions for an optimal

problem that involves the maximization of the objective

function. Therefore, a reduction in the luminosity due to

increasing distance between the fireflies will lead to

changes in the intensity which will reduce the degree of

attractiveness among them. The light intensity with the

varying can be expressed mathematically as follows:

I rð Þ ¼ Ioexp �cr2
� �

ð6Þ

here I indicates the light intensity at a distance of r from a

firefly, while the Io donates the initial light intensity. The c
parameter was taken as a constant value ranging between

0.1 and 10, and following Sudheer et al. (2014) study [50],

in the case of r it is equal to zero. The attractiveness term b
at a distance r from the firefly defined as:

b rð Þ ¼ bo exp �cr2
� �

ð7Þ

Cartesian distance between two fireflies i and j is indi-

cated in the following formula:

rij ¼ xi þ xj
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

k¼1
xi;k � xj;k
� �

r
ð8Þ

The attraction movement between two fireflies i and j

can be presented by:

Dxi ¼ bo exp �cr2
� �

� xi � xj
� �

þ aei ð9Þ

2.3 Modeling performance metrics

The modeling accuracy skills were validated using differ-

ent statistical performance metrics such as correlation of

coefficient (r2), degree of agreement (d), root mean square

error (RMSE), mean absolute error (MAE) and relative

error distribution [67–69].

3 Application description

In Iraq region, there is an abundance of renewable and non-

renewable water resources, but within the past three dec-

ades, there has been a shift where Iraq has moved from

being water secured to becoming a water-stressed country

[70]. Surface water, ground water, marshlands, lakes, rain,

snowfall, reservoirs and drainage water formed the water

resources in Iraq. One of the main two rivers in Iraq is

Euphrates River. The Euphrates River which has its origins

in Turkey flows through Syria and entered Iraq from the

western border before discharging into the Shatt al-Arab

that is one of the only two major rivers and flows through

Iraq region supplying several cities in its way. Before the

river flows into the Arab Gulf, it has traveled a distance of

about 2700 km and the water from the river can be used for

irrigation purposes, drinking, recreation and fishing. But

unfortunately, the irrigation requirements of the basin are

not favored by the seasonal distribution and availability of

water because they do not coincide. In this study, the data

set has been obtained from four sampling stations which

are used for monitoring the quality of the river flow in

Babylon governorate.

The Ministry of Environment, Department of Protect

and Improve the Environment in the Middle Euphrates

Region, provided the data which were used for the water

quality study. The data covered a period of 10 years for the

time period (2004–2013) and were accompanied by the

values for the monthly average results of 14 water quality

parameters. The main water quality parameters used in this

study to compute the WQI are similar to several other

regions such as Brazil [71], India [72], Portugal [73], Korea

[74], USA [75] and many other countries. The water

quality parameters are tabulated in Table 1 [76].

4 Analysis and discussion

In this study and for the first time, the implementation of

hybrid model called SVR–FFA for monthly WQI predic-

tion was inspected. The main modeling concept is to utilize

the efficiency of firefly optimization algorithm to tune the

main internal parameters of the kernel function of the SVR

model including (c, e and C). Figure 2 shows the perfor-

mance of the prediction models over the testing phase. The

figure displays the actual and predicted (2012–2013) values

for each single observation (24 months). The prediction

pattern was revolved around the actual values. On a closer
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look, the hybrid SVR–FFA model presented closer pre-

diction when compared with the standalone SVR model.

Figure 3a, b shows the scatter plots of the data

belonging to the actual and the predicted responses of WQI

for the testing data set covering the time period (2012–

2013), for SVR and SVR–FFA models, respectively.

According to those figures, it was observed that the two

models had a good correlation with the line of best fit based

on the correlation coefficient R [which is the root square of

the coefficient of determination (r2)] and the line of fit

formula (assumed to be given as y ¼ aoxþ a1) in the

scatter plots. However, it can be seen that SVR–FFA model

possessed more accuracy and relatively outperformed the

SVR model. In measurable terms, the r value (correlation

coefficient) of the SVR–FFA and SVR models for the

prediction of WQI was 0.94 and 0.90, respectively. Fur-

thermore, coefficients of the ao and a1 for the SVR–FFA

approach were closer to the 1 and 0, respectively, than the

one obtained for the SVR model. Also, the ability of the

hybrid support vector regression algorithm to capture the

nonlinearity which exists between the water quality pre-

dictors and the predicted (WQI) was clearly explained with

this observation.

Another excellent presentation for the modeling accu-

racies, the RE of both models (SVR–FFA and SVR) was

also calculated in order to assess the performances of the
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Fig. 2 Actual and predictive

models for the testing period

time series

Table 1 The water quality parameters standards for Iraq region [70]

Water quality parameters Unit Limitations

Total dissolved solids (TDS) (mg/l) 2500

Biological oxygen demand (BOD) (mg/l) 40

Chloride (Cl) (mg/l) 250

Potassium (K) (mg/l) 100

Dissolved oxygen (mg/l) 5

Electrical conductivity (EC) lS=cm 250

Sodium (Na) (mg/l) 250

Magnesium (Mg) (mg/l) 80

Alkalinity (mg/l) 200

pH – 4–8.5

Calcium (Ca) (mg/l) 450

Phosphate (PO4) (mg/l) 25

Nitrate (NO3) (mg/l) 50

Total hardness (TH) (mg/l) 300

Sulfate (SO4) (mg/l) 200

Fig. 3 Scatter plots between the actual and prediction models and the

correlation coefficients a SVR model and b SVR–FFA model

Neural Comput & Applic

123



two models. The RE (%) distribution is shown in Fig. 4.

Based on the visualization of the testing phase results, the

RE distribution (%) of SVR model exceeds -10%, and

generally, the fluctuation of the RE ranged between 6 and

-8% for more than 70% of the testing data set. On the

other hand, the performance of the hybrid SVR–FFA

model was quite good in comparison with SVR. The error

distribution between most of the tested data ([80%) was

within the range of (-5 and ?5)%, while three of the cases

showed a distribution error of ?8, -8 and -7%, respec-

tively. This outcome can better be explained as an

improved attribute of the firefly optimization algorithm

which is capable of tuning the internal variables of the

predictive SVR model and leads to obtain better mimicking

the pattern variables from water quality parameters which

influenced the WQI.

To estimate the importance of each variable in pre-

dicting the water quality, the sensitivity analysis was

carried out. In data mining, fitting or even model building,

sensitivity analysis is usually referred to as the assessment

of the predictors of importance in the fitted models. The

sensitivity prediction usually ranks the variables of the

predictor according to the decline in model performance

which ensues when a variable is pulled out of the model.

Also, the variables which can be safely ignored and those

that must be retained in subsequent analyses can be

identified [77]. The results of the analysis could be useful

mainly for the sake of information or for pruning of input

variable. The importance of each input parameter is

reported in Fig. 5.

Table 1 presents the best performance evaluation crite-

ria when using both predictive models. Based on Table 1,

the best coefficient of determination of the models and their

degree of agreement was (0.82–0.90) and (0.83–0.95),

respectively, for SVR and SVR–FFA models. These indi-

cated the hybrid model performed well as shown by the

best fit goodness of the modeling process. The absolute

errors which include the error of the root mean square and

the mean absolute error for SVR and SVR–FFA models

were (4.91–2.81) and (4.27–1.77), respectively. The SVR–

FFA model augmentation over the SVR model can be

expressed as 42% for RMSE and 58% for MAE. There is

generally an observable enhancement in the prediction

modeling using the SVR–FFA approach (Table 2).

It is worthy to state that the application of the hybrid

SVR–FFA provided a better tool which can solve complex

problems, including the assessment of river water quality.

The uncertainties and randomness which are involved in

the characterization of river water quality might at a certain

time be captured by the SVR–FFA model. It could also

capture the nonlinearity of the problem modeled in com-

parison with standalone SVR modeling.

5 Conclusions and remarks

With this in mind, conclusion can be made that the

assessment of river WQI particularly in semiarid regions

such as Iraq using hybrid model SVR–FFA and AVR

models has advantages when compared to the routine or the

manual computational methods. The classical method

which was recommended to subjective empirical (sub-

indices) requires added efforts and additional time to

transform the fourteen raw data into its subindices. Fur-

thermore, all the calculations when using this model

depended on the subindices formulas that were gotten from

the rating curves instead of from the original parameters.

But the hybrid SVR–FFA approach uses the variables of

the raw water quality for the training and testing instead of

depending on the subindices which can lead to a more

direct prediction of the WQI. Therefore, the soft computing

models present a more direct, convenient and rapid tech-

nique for testing the WQI rather than the conventional

methods.

This research accordingly highlighted the fact that the

hybrid SVR–FFA model can well be a valuable tool for

predicting water quality, especially in semiarid riverine

environments since the calculation of the WQI is so sim-

plified, thereby reducing substantially the time and efforts

required for the optimization of the computations. These

forms of approaches can be used worldwide in any aquatic
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system. This study, therefore, recommends that managers

and water authorities should make use of the soft com-

puting methods which are better in reliability and more

direct alternatives for water quality prediction in wetlands

as well as other water bodies.

It is also worthy to emphasize that the findings of the

study contributed immensely to the proper identification

of all the impacts of the activities of river basin devel-

opment on river water quality. Further insight into the

environmental consequences of land use change can also

be available to decision makers from the findings of this

study. The linking of the quality of river water with the

land use types can allow for proper prediction of the

quality of water in rivers depending on the variables used.

The advantage of this is the reduction of the effort and

provision of an intelligence-based mathematical model

alternative. These policies will be those making policies

and decisions to have a balance between the water

resource usage and the sustainable developments. In view

of these, an efficient soft computing technique such as AI

is recommended to be used for the long-term analysis of

water quality and for environmental monitoring records.

The agencies responsible for water quality monitoring and

their allies are encouraged by the results of this study to

implement the AI-based models when assessing river

water quality.
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Appendix

r2 ¼
Pn

i¼1 WQIa �WQIa
� �

� WQIp �WQIp
� �	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 WQIa �WQIa

� �2Pn
i¼1 WQIp �WQIp

� �2q

d ¼ 1�
Pn

i¼1 WQIa �WQIp
� �2

Pn
i¼1 WQIp �WQIa

�� ��þ WQIa �WQIa
�� ��� �2

" #

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn

t¼1

WQIa �WQIPð Þ2
s

MAE ¼ 1

N

Xn

t¼1

WQIa �WQIPj j

RE% ¼ WQIa �WQIP
WQIa

� 
� 100

where WQIa andWQIP are the actual and predicted values

of the water quality indicator and n is the number of

observations over which the errors are predicted. WQI

indicates the mean values of the actual or predicted

records.
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