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ABSTRACT
The presented study suggests a new nature–inspired metaheuristic optimization algorithm referred to as Red Colobuses Mon-
key (RCM) that can be used for optimization problems; this algorithm mimics the behavior related to red monkeys in nature.
In preparation for proving the suggested algorithm’s advantages, a set of standard unconstrained and constrained test functions
is employed, sixty–four of identified test functions utilized in optimization were applied as benchmarks for checking the RCM
performance. The solutions have also been upgrading their positions based on the optimal solution, which was reached thus far.
Also, RCM can replace the worst red monkey by the best child found so far to give an extra enhancement to the solutions. Also,
comparative performance checks with Biogeography–Based Optimizer (BBO), Artificial–Bee–Colony (ABC), Particle Swarm
Optimization (PSO), and Gravitational Search Algorithm (GSA) were done. The acquired results showed that RCM is compet-
itive in comparison to the chosen metaheuristic algorithms.

© 2021 The Authors. Published by Atlantis Press B.V.
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1. INTRODUCTION

Optimization utilizing metaheuristics is of high importance; for
instance, Particle Swarm Optimization (PSO) [1], Genetic Algo-
rithm (GA) [2], and Ant Colony Optimization (ACO) [3]. Also,
along with the various theoretical researches, there were various
applications to optimization methods in many fields. Four signif-
icant reasons were explaining such matters: derivation free mech-
anism, simplicity, flexibility, and local optima avoidance. Gener-
ally, there were based on fundamental notions [4]. The stochas-
tic optimization (metaheuristic) algorithms belong to a family in
which their algorithms have stochastic operations involving evolu-
tionary algorithms; yet, randomness is the main character or such
algorithm. PSO [5] seeks inputs for finding the optimum ones with
the best fitness value over the iteration course for enhancing the
rest of the solutions. Due to the high–flexibility, gradient–free tech-
nique, and low probability of local optima stagnation, applications
utilized various meta–heuristics in many industry and science areas
[6]. The swarm–based approaches are mimicking the social behav-
ior regarding groups of animals. PSO is the primary algorithm ini-
tially introduced via Eberhart and Kennedy [7]; such an algorithm
was inspired by the bird flocking’s social behavior. The algorithm
applies some particles (candidate solutions) flying around in search
space for finding the best solution (for instance, optimal position).
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In the meantime, they are all tracking the best location (best solu-
tion) in their paths. Put differently; particles consider their best
solutions and the best solution obtained so far by the swarm.

This paper provides a study regarding the development of an opti-
mization algorithm utilizing primary mathematical function in the
metaheuristic field, the resulted algorithm called Red Colobuses
Monkey ( RCM). This algorithm has a few parameters that make
it easy to implement. The proposed algorithm can also balance
between exploitation and exploration stages that suit various opti-
mization problems. The rest of this study is provided in the follow-
ing way: Section 2 shows the relevant works. Section 3 presents the
inspiration of the RCM Algorithm. Section 4 shows the mathemati-
cal model and the algorithm of RCM. Section 5 presents the discus-
sion and results of the test functions. Section 6 presents the main
conclusions of the paper. Finally, we suggest several future research
directions.

2. LITERATURE REVIEW

Single solutions based and population–based are the two main
types of stochastic optimization techniques. The single based class
of algorithms operates the optimization process with a single ran-
dom solution and improves it over a predefined number of gen-
erations. Also, the population–based can either work together or
compete against each other. Three population–based algorithms
are based on inspiration: Swarm inspired, evolution inspired, and

https://doi.org/10.2991/ijcis.d.210301.004\relax 
https://www.atlantis-press.com/journals/ijcis/
https://orcid.org/0000-0003-3066-0790
https://orcid.org/0000-0003-2601-2803
http://creativecommons.org/licenses/by-nc/4.0/


W. J. AL–kubaisy et al. / International Journal of Computational Intelligence Systems 14(1) 1108–1118 1109

physics–inspired algorithms [7]. The swarm–based algorithms are
majorly mimicking the individual and social behavior regarding
herds, swarms, schools, or groups of creatures in nature. One of
the most known algorithms inspired by the birds’ behavior is the
PSO algorithm [8]. This algorithm mimics the collective behavior of
birds in the population faces sudden changes. There are some other
swarms and nature–inspired algorithms; those are Firefly Algo-
rithm (FA) that is used effectively in various domains of optimiza-
tion problems. The process of identifying the optimal solution while
keeping something as useful and functional as possible, by reduc-
ing or adding the problem’s parameters when needed, called the
Optimization process. Several optimization problems are addressed
by inspiring fireflies’ behavior; those problems are multiobjective,
chaotic, discrete, and many more. It was found that researchers that
are solved the optimization problems in the computer science and
engineering domain mostly applied FA. Some of them are improved
or hybridized with other techniques for obtaining better perfor-
mance [9].

Crow Swarm Optimization (CSO) can be defined as one of the
novel metaheuristic optimization techniques proposed to solve the
multidepot multiple traveling salesmen problem (MMTSP). CSO is
derived from the behavior of American Crow in finding the shortest
path while searching for food. In solving the MMTSP, the algorithm
is observed with randomly chosen cities as depots, then visiting as
much as a possible number of cities by a salesman. The implemen-
tation is observed with several datasets from Traveling Salesman
Problem Library (TSPLIB) [10].

Meerkat Swarm Optimization (MSO) algorithm is used for solv-
ing Multiple Traveling Salesman Problem and guarantee good qual-
ity solution in a reasonable time for real–life problems. MSO is
one of the metaheuristic optimization algorithms developed from
the meerkat’s behavior in finding the shortest path. MSO is a new
intelligent method proposed for examining timetabling problems
inspired by meerkat swarm’s behavior in nature. The MSO algo-
rithm simulates cooperative behavior such as caring and foraging
of meerkats. Meerkats in the MSO algorithm has its leader (called
alpha), and they divided into two subgroups, one for foraging while
the other stays as a babysitter for pups in burrows [11].

Blue Monkey (BM) algorithm is defined as one of the novel meta-
heuristic algorithms inspired by blue monkeys’ behavior in nature,
while such an approach identifies the number of males in a sin-
gle group. Typically, blue monkey groups have just a single adult
male than the other forest guenons [12]. Majorly, Evolutionary
Algorithms (EAs) were equipped with recombination and selection
operators for exploring the search spaces.

This work aims to study the effect of the suggested transfer
functions in the RCM for observing their efficiency when used to
various heuristic algorithms. PSO is operating to enhance the vec-
tor, whereas GA was utilized to modify the decision vectors using
genetic operators. The balance between exploitation and explo-
ration capabilities was further enhanced by incorporating genetic
operators, mutation, and crossover in PSO. Also, the problem’s con-
straints were managed by using a parameter–free penalty function
[13]. Intuitionistic fuzzy set (IFS) through using uncertain, impre-
cise, and vague data. In the literature, the IFS membership func-
tions were evaluated using fuzzy arithmetic operations in collected
data and therefore contain many uncertainties. So, there is a need

to optimize such spread by formulating nonlinear optimization
problems via ordinary arithmetic operations rather than fuzzy
operations. PSO was utilized to construct their membership func-
tions [14–30].

From all the above, it can be seen that no one metaheuristics algo-
rithm can solve all kinds of problem domains; therefore, there is
always a need for new algorithms that can address many types of
problem domains.

3. THE INSPIRATION OF THE RED
COLOBUSES MONKEY

In the Gambia and other West African forests, the Western Red
Colobus Monkeys, also referred to as bay colobus, were found.
These herbivores’ main characters are leaves eaters and tend to
gather in groups of 20–80 individuals, even though they are split-
ting into small groups in foraging. Leopards were from the natural
predators’ groups develop a hierarchy of dominance specified via
aggressive behavior. Initially, food, grooming, and sexual partners
were distributed among high–ranking individuals and succeeded
via low-ranking individuals [13]. The majority of these monkeys
live in large troops of 80 individuals, whereas the average number
might be approximately (20–40). Those groups tend to have more
females at a 2:1 ratio compared to males.

In some families of these monkeys’ troops, the male monkeys usu-
ally choose to stay close to the original groups. However, the female
monkeys, on the other hand, tend to move together in smaller
numbers. Red colobus monkeys have mixed with other troops. The
results of such interactions are either violent or passive; one troop
is trying to control the rest. Remarkable behaviors appear when red
turn to be angry and restless and somewhat nomadic [14], such state
was reached in the case when young monkeys are deserting their
natal troops and attempt to join another group, this is not merely
because of the suspicion of some troops to any new guest, and they
turn to be violent when new monkeys attempt to join. The diet–
related to red colobus monkeys majorly includes flowers, young
leaves, and unripe fruits, while the red–tailed monkeys were active
in the evening and early morning, which was specified as a diur-
nal activity. Charcoal or clay could also be a food choice for them
for helping with cyanide combating that a few leaves could contain.
A mother could transfer the medicinal sure of the plans they eat
to their children. Therefore, some appear to have better digestion
for the toxic plans than the other primates [15]. The red colobus
monkeys were majorly suitable to their vegetarian and changed
diet tendency for wasting time in the forest’s habitats, which has
been associated with the presence of fruit resources and struc-
tural characteristics such as large fruit patches [16]. One male and
females, along with their offspring, are usually the ones dominant
for each group. Generally, these groups choose to stay close for a
long period, except for the male who reaches maturity. Such a habit
is teaching babies for reacting with all the monkeys in later years.

4. THE ALGORITHM AND THE
MATHEMATICAL MODEL

This section is providing the RCM algorithm as well as its
mathematical model.
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4.1. Group Division

RCM algorithmic program is mimicking the red monkey’s behav-
ior. For modeling, these interactions, each of the clusters in the
monkey area unit required maneuvering over the search area. As
it has been indicated previously, in the case where they have been
divided to teams, every team of monkeys will have one male, and no
necessary the male is the leader, but the choice of leader depended
on body and combat power, who will be looking for food places at
the areas of long distance, while the stronger monkey is not within
the scope of the conventional vision. Also, there are not many inter-
actions between male Cercopithecus mitis and young ones. Young
males must go out quickly due to the territorial aspect associated
with Cercopithecus mitis to be more successful, as they are enter-
ing challenges with dominant males from other families. If they can
defeat that male, they will be leaders in the family and offer places
to live, food supplies, and socialization for the young males.

4.2. Position Update

The position update regarding every one of the red monkeys in a
group is based on the position of the best red monkey of the group;
such behavior was delineating through the following formulas:

PBi+1 = (PAi × PBi) + (Wleader −Wi) × rand × (Xbest − Xi) (1)

Xi+1 = Xi + PBi+1 (2)

PBi+1 = PAi × rand (3)

where,

• PB represents the monkey body power (a random number
between [−5, 5]);

• PA represents the monkey combat power (a randomly chosen
number between [0, 1]);

• Wleader represents the leader weight;

• Wi represents the monkey weight (random numbers in the
range of [4, 6]);

• X represents the position of the red monkey;

• Xbest represents the position of the leader. In contrast, rand
represents any number between [0, 1].

To update the position related to the children of red monkey, the
next equations have been utilized:

PBchi+1 = (PAi × PBchi)+
+ (Wchleader −Wchi) × rand × (Xchbest − Xchi)

(4)

Xchi+1 = Xchi + PBchi+1 (5)

PAchi+1 = PAchi × rand (6)

where,

• PBch represents the power rate of the child body;

• PAch is representing the child combat power rate;

• Wchleader representing the weight of the child of the leader

• Wchi representing the child weight where all of the weights
were specified for being random numbers in the range of [4, 6];

• Xch represent the position of the child;

• Xchbest represents the position of leader child, and

• “rand” represents a random number in the range of [0, 1]. Also,
this position must be renewed in all iterations.

The major steps of RCM might be summarized as the pseudo–code
indicated in the Algorithm 1.

It is worth mentioning that all parameters of RCM can be set either
by experiments or depending on the problem’s nature, which must
be solved. RCM is characterized by a few parameters that make it
easy to implement; RCM can also balance between exploitation and
exploration phases, making it suitable to solve many optimization
problems.

5. RESULTS AND DISCUSSION

Concerning the presented section, the RCM will be tested and esti-
mated utilizing 64–benchmark functions, a few of the functions,
the first 23 referred to as unimodal, traditional, and simple ones.
In contrast, the others are referred to as multimodal (not fixed and
fixed), which are utilized via various research; the functions were
selected for testing RCM performance and comparing the results
of this work with other standard metaheuristic results algorithms.
Also, the chosen 64–test functions will be displayed in Tables 1–3 in
which D represents the function dimensions, range represents the
limits of the search space related to the function, whereas Opt rep-
resents optimum value.

Generally, the used test functions were minimization functions that
have been multimodal or unimodal benchmark functions (not fixed
and fixed).

The proposed RCM is carried out thirty times for each bench-
mark function, while the statistical results (average as well as
standard deviation) regarding the comparison of RCM with
Artificial–Bee–Colony (ABC) [17], PSO [18], Gravitational Search
Algorithm ( GSA) [19], Grey Wolf Optimizer (GWO) [20] and
Biogeography–Based Optimizer (BBO) [21] are provided in Table 3
for unimodal functions as well as in Table 4 for multimodal func-
tions

5.1. Exploitation Analysis

Unimodal functions were suitable for benchmarking exploitation
based on the previously indicated operators. Table 4 shows that
RCM is outperforming the other chosen algorithms in most of
the chosen 23 functions concerning unimodal functions showing
the advantage of RCM to exploit optimal value. Figure 1 shows a
comparison regarding an average value taken between RCM, ABC,
BBO, GWO, and PSO for the unimodal benchmark functions.
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Table 1 Unimodal benchmark functions.
Equation Test Name D Range Opt

f1 (x) =
∑n

i=1 x
2
i Sphere 30 100, –100 0

f2 (x) =
∑n

i=1 |xi| +
∏n

i=1 |xi| Schwefel 2.22 2 100, −100 0

f3 (x) = maxi
{|xi|, 1 ≤ i ≤ n

}
Schwefel 2.21 2 100, −100 0

f4 (x) =
∑n

i=1

(∑i
j=1 xj

)2
Schwefel 1.2 2 100, −100 0

f5
(
x, y

)
= −200e −0.2

√
x2 + y2 Ackley 2 2 32, −32 −200

f6 (x) = x2
1 + x2

2 − 0.3 cos
(

3𝜋x1
)
− 0.4 cos

(
4𝜋x2

)
+ 0.7 Bohachevskyn N.1 2 100, −100 0

f7 (x) =
(
x1 + 2x2 − 7

)2
+
(

2x1 + x2 − 5
)2 Booth 2 10, −10 0

f8 (x) =
∑n

i=1 x
2
i +

(∑n
i=1 0.5ixi

)2
+
(∑n

i=1 0.5ixi
)4 Zakharov 2 5.12, −5.12 0

f9 (x) = (x1 − 1)2 +
∑d

i=2 i
(

2x2
i − xi−1

)2 Dixon–Price 2 10, −10 0

f10 (x) = −exp
(
−0.5

∑n
i=1 x

2
i
)

Exponential 30 1, −1 −1

f11 (x) = 0.26
(
x2

1 + x2
2
)
− 0.48x1x2 Matyas 2 10, −10 0

f12 (x) =
∑n

i=1 x
10
i Schwefel 2.23 2 100, −100 0

f13 (x) =
∑n

i=1 |xi| Schwefel 2.20 2 100, −100 0

f14 (x) = 0.5 +
sin2(x2−y2)−0.5

(1+0.001(x2+y2))
2 Schaffer N2 2 36, −36 0

f15 (x) = 0.5 +
sin2(cos(|x2−y2|))−0.5

(1+0.001(x2+y2))
2 Schaffer N3 2 100, −100 0.00156

f16 (x) = 0.5 +
sin2(x2

1−x
2
2)

2
−0.5

[1+0.001(x2
1−x

2
2)]

2 Schaffer N1 2 100, −100 0

f17 (x) =
∑d∕4

i=1

[(
x4i−3 + 10x4i−2

)2
+ 5

(
x4i−1 + x4i

)2 Powell 10 5, −4 0

+
(
x4i−2 + x4i−1

)4
+ 10

(
x4i−3 + x4i

)4

Continued
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Table 1 Unimodal benchmark functions. (Continued)
Equation Test Name D Range Opt

f18 (x) =
∑d

i=1

[(∑d
i=1 x

i
j

)
− bi

]2
Power Sum 4 4, 0 0

f19 (x) = −

⎛
⎜⎜⎝
1 +

cos
(

12
√

x2
1+x

2
2

)

0.5(x2
1+x

2
2)+2

⎞
⎟⎟⎠

Drop wave 2 −5.12, 5.12 −1

f20 (x) =
∑m

i=1 ci exp
(

1
𝜋

∑d
i=1

(
xi − Aij

)2
)

cos
(
𝜋
∑d

i=1
(
xi − Aij

)2
)

Langermann 2 −1, 4 −2.1950

f21 (x) = (x + 10)2 +
(
y + 10

)2
+ e Brent 2 −20, 0 e−200

f22 (x) = 100
(
y − x3

)2
+ (1 − x)2 Leon 2 0, 10 0

f23 (x) =
∑m

i=1 ix
2
i Sum Squares 10 −10, 10 0

Table 2 Multimodal benchmark functions (not fixed).
Equation Test Name Type D Range Opt

f24(x) = −20 exp
(

−0.2
√∑n

i=1 x
2
i

)
− Ackley N 2 10, −10 0

− exp
(

1
n
∑n

i=1 cos
(

2𝜋xi)
)
+ 20 + e

f25(x) =
∑n

i=1 ∥ xi ∥ Step 1 N 30 100, −100 0

f26(x) =
∑n

i=1 ix
4
i + random[0, 1) Quartic N 10 1.28, –1.28 0

f27(x) =
(

4 − 2.1x2
1 +

x4
1

3

)
x2

1 + x1x2 + (−4 + 4x2
2)x

2
2 Six–Hump

Camel
N 2 5, −5 −1.0316

f28(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2+ Goldstein Price N 2 2, −2 3

6x1x2 + 3x2
2)] × [30 + (2x1 + 3x2)

2(18 − 32x1 + 12x2
1

−48x2 + 36x1x2 + 27x2
2)]

f29(x) = 418.9829n −
∑n

i=1 xi sin
(√|xi|

)
Schwefel 2.26 N 30 500, −500 −12569.5

f30(x) =
𝜋

30
{10 sin2(𝜋y1)+

∑n−1
i=1 (yi−1)2 [1 + 10 sin2(𝜋yi+1

]
Penalized 1 N 2 50, −50 0

+(yn − 1)2} +
∑n

i=1 u(xi, 10, 100, 4)

f31(x) = 0.1{10 sin2(3𝜋y1)+
∑n−1

i=1 (xi−1)2 [1 + sin2(3𝜋yi+1
]

Penalized 2 N 2 50, −50 0

+(xn − 1)2} +
∑n

i=1 u(xi, 5, 100, 4)

f32(x) = 2x2
1 − 1.05x4

1 +
x6

1
6
+ x1x2 + x2

2 Three–Hump
Camel

N 2 5, −5 0

f33(x) = x2
1 + 2x2

2 − 0.3 cos(3𝜋x1) cos(4𝜋x2) + 0.3 Bohachevskyn
N.2

N 2 10, −10 0

f34 = sin(x)e(1−cos(y))2
+ cos(x)e(1−sin(x))2

+ (x − y)2 Brid N 2 2𝜋,−2𝜋 −106.7645

f35 =

(||||||
sin

(
x1
)

sin
(
x2
)

exp

(|||||
1 −

√
x1

2+x
2
2

𝜋

|||||

)||||||
+ 1

)
Cross in Tiny N 2 10, −10 −2.06261

f36 = −
sin2(x−y) sin2(x+y)√

x2+y2
Keane N 2 10, 0 −0.6737

f37 = −
(
x2 + 47

)

sin
(√|||x2 +

x1
2
+ 47|||

)
− x1 sin

(√||x1 − x2 + 47||
)

Egg Holder N 2 512, −512 −959.641

Continued
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Table 2 Multimodal benchmark functions (not fixed). (Continued)
Equation Test Name Type D Range Opt

f38 = −

||||||
sin(x1) exp

(|||||
1 −

√
x2

1+x
2
2

𝜋

|||||

)||||||
Holder N 2 10, −10 −19.2085

f39 = 418.9829d −
∑n

i=1 xi sin
(√|xi|

)
Schwefel N 2 500, −500 0

f40 = −
∑d

i=1 sin(xi) sin2m
(

ix2
i
𝜋

)
Michalewics N 2 2.21, 1.57 −1.8013

f41 = f(x1, ..., xn) = 1 + n
∑n

i=1 sin 2(xi) − 0.1e
(∑n

i=1 x
2
i
)

Periodic N 30 −10, 10 0.9

f42 =
∑n

i=1
(
x2 − i

)2 Qing N 10 −500, 500 0

f43 = 1 − cos(2𝜋
√

D
∑

i=1 x2
i ) + 0.1

√
D
∑

i=1 x2
i Salomon N 10 −100, 100 0

f44 =
∑n

i=1 |xi| exp(−
∑n

i=1 sin(x2
i )) xin-

sheyangn2fcn
N 10 −2𝜋, 2𝜋 0

f45 = (
∑n

i=1 sin 2(xi) − e −
∑n

i=1 x
2
i )e −

∑n
i=1 sin

√|xi| Xin–She Yang
N. 4

N 10 −10, 10 −1

f46(x) =
∑n

i=1(x2i)(x2i+1 + 1) + (x2i + 1)(x2i+1) Brown N 10 −1, 4 0

Table 3 Multimodal benchmark functions (fixed).
Equation Test Name Type D Range Opt

f47(x) = a(x2−bx2
1+cx1−r)2+s(1−t) cos(x1)+s Branin F 2 15, −5 0.3979

f48(x) = −
∑4

i=1 ciexp
(
−
∑3

i=1 aij(xj − pij)2
)

Hartmann 6–D F 3 1, 0 −3.8628

f49(x) = −
∑4

i=1 ciexp
(
−
∑6

i=1 aij(xj − pij)2
)

Hartmann 6–D F 6 1, 0 −3.3224

f50(x) = −200e−0.2
√
x2+y2

+ 5ecos(3x)+sin(3y) Ackley 3 F 2 32, −32 −195.629

f51(x) = − cos(x1) cos(x2) exp(−(x1 − 𝜋)2 −
(x2 − 𝜋)2)

Easom F 2 100, −100 −1

f52(x) = −
∑d

i=1(xi − 1)2 −
∑n

i=2 xix(i − 1) Trid F 6 36, 36 −50

f53(x) =
sin(10𝜋x)

2x
+ (x − 1)4 Gramacy & Lee F 1 2.5, 0.5 −0.869

f54(x) =
∑

i=1
||xi sin(xi) + 0.1xi|| Alpine N. 1 F 2 −1, 2 0

f55(x) =
∏

i=1
√
xi sin(xi) Alpine N.2 F 2 0, 10 2.2808n

f56(x) = ||x2 + y2 + xy|| + |sin(x)| + ||cos(y)|| Bartels Conn F 2 −500, 500 1

f57(x) = (1.5 − x + xy)2 + (2.25 − x + xy2)2 +
(2.625 − x + xy3)2

Beale F 2 −4.5, 4.5 0

f58(x) = 100
√||y − 0.01x2|| + 0.01 |x + 10| Bukin N. 6 F 2 −3, 3 0

f59(x) = 105x2 + y2 −(x2 + y2)2 + 10−5(x2 + y2)4 Deckkers–Aarts F 2 −20, 20 −24771.09375

f60(x) = x2 + y2 + 25(sin 2(x) + sin 2(y)) Egg Crate F 2 −5, 5 0

f61(x) = [(∥ x ∥2 − n)2]𝛼 + ln(12∥ x ∥2 +∑n
i=1 xi) + 12

Himmelblau F 2 −6, 6 0

f62 (x) = sin2 (3πx)+(x − 1)2 (1 + sin2 (3πy
))
+(

y − 1
)2 (1 + sin2 (2πy

)) Levi N. 13 F 2 −10, 10 0

f63(x) = sin(x + y) + (x − y)2 − 1.5x + 2.5y + 1 McCormick F 2 −1.5, 4 −1.9133

f64(x) =
4
3
(x2 + y2 − xy)0.75 + z wolfefcn F 3 0, 2 0
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Table 4 Results of unimodal benchmark functions.
RCM ABC PSO

Function Average Std Average Std Average Std
F1 9.04E–13 1.32E–12 0.001253 0.0008112 2.54E–08 7.98E–08
F2 6.69E–47 0 0.0002537 0.0001524 1.05E–55 5.15E–55
F3 3.61E–47 0 0.0016628 0.0010982 2.03E–51 1.10E–50
F4 9.12E–91 0 4.55E–06 6.63E–06 1.86E–90 1.02E–89
F5 −200 0 −199.9998 0.0001017 −200 0
F6 0 0 1.42E–05 1.41E–05 1.67E–16 5.89E–16
F7 0 0 4.52E–07 5.79E–07 6.97E–30 2.48E–29
F8 9.86E–95 0 1.84E–09 1.70E–09 4.08E–104 2.08E–103
F9 3.70E–32 5.67E–48 2.20E–06 2.14E–06 0.0852267 0.4084247
F10 −1 0 −0.999941 3.82E–05 −1 0
F11 1.00E–89 0 1.33E–07 1.36E–07 6.77E–66 3.71E–65
F12 0 0 2.95E–31 9.24E–31 0 0
F13 1.11E–45 0 0.0005619 0.000278 9.14E–46 5.01E–45
F14 0 0 5.26E–09 7.66E–09 6.96E–16 2.23E–15
F15 0.00156 4.95E–14 0.0017172 0.0001441 0.0150509 0.069811
F16 0 0 1.06E–05 8.71E–06 1.33E–16 5.70E–16
F17 7.10E–05 2.46E–05 0.0001361 8.18E–05 0.0266473 0.0851797
F18 0.0025838 0.0083586 0.0204492 0.0108011 1863.4313 6520.0885
F19 −9.86E–01 1.86E–02 −0.999206 0.000601 −1 0
F20 −2.19E+00 1.64E–04 −4.15512 0.0008614 −1.78566 2.7131708
F21 1.38E–87 2.31E–103 1.16E–09 1.53E–09 1.38E–87 0
F22 1.79E–01 3.73E–01 0.0002751 0.0003715 9.99E–12 1.89E–11
F23 3.73E–71 8.67E–71 1.98E–07 3.47E–07 2.08E–41 4.63E–41

BBO GSA GWO

Function Average Std Average Std Average Std
F1 2.77E–03 6.89E–04 2.14E–17 5.64E–18 8.32E–62 2.01E–61
F2 5.84E–09 1.15E–08 9.31E–11 5.16E–11 8.74E–216 0
F3 4.46E–07 6.06E–07 6.02E–11 2.99E–11 1.26E–189 0
F4 2.10E–09 4.81E–09 6.08E–21 6.02E–21 2.89E–306 0
F5 −200 0 −200 0 −200 0
F6 3.02E–12 1.62E–11 0 0 0 0
F7 8.95E–10 2.23E–09 1.85E–20 1.43E–20 1.54E–07 1.11E–07
F8 7.83E–16 2.00E–15 3.11E–20 4.09E–20 0 0
F9 1.29E–08 1.66E–08 7.21E–20 7.49E–20 3.46E–08 3.12E–08
F10 −0.999951 1.21E–05 −1 0 −1 0
F11 2.80E–08 5.51E–08 1.57E–21 1.19E–21 8.42E–204 0
F12 2.26E–69 1.24E–68 1.72E–99 4.23E–99 0 0
F13 1.70E–08 3.53E–08 1.52E–10 6.47E–11 3.21E–214 0
F14 1.66E–13 9.09E–13 0.0053314 0.0069589 0 0
F15 0.0018911 0.0004756 0.0034187 0.002053 0.001567 2.40E–07
F16 4.39E–15 2.35E–14 0.0201506 0.0319938 0 0
F17 0.000199 0.0001048 7.38E–05 5.67E–05 4.95E–07 6.10E–07
F18 0.0179502 0.0156638 0.0283999 0.0332044 0.1068024 0.261323
F19 −0.96175 0.0349173 −0.98456 0.013051 −1 0
F20 −3.54788 0.7826331 N/A N/A −4.1558 0
F21 5.38E–20 5.79E–20 48.08614 0.2497944 7.53E–07 5.45E–07
F22 0.4519644 0.3586338 0.02696 0.0086705 3.73E–07 3.94E–07
F23 2.15E–07 2.06E–07 1.39E–20 8.25E–21 4.26E–119 8.21E–119
ABC, Artificial–Bee–Colony; BBO, Biogeography–Based Optimizer; GSA, Gravitational Search Algorithm; PSO, Particle Swarm Optimization; RCM, Red Colobuses Monkey

5.2. Exploration Analysis

In the multimodal functions, various local optima could be
recognized, with the number increasing exponentially with the
dimension. Thus, multimodal functions were suitable to test the
algorithm’s exploration strength. Also, results in the Tables 5 and 6

showed that RCM is outperforming GWO, GSA, ABC, and PSO
in the majority of the chosen 41 functions for multimodal func-
tions (not fixed and fixed). The RCM in multimodal functions (not
fixed) is similar to BBO and sometimes even outperforming it. The
acquired results show the superiority of RCM concerning explo-
ration; Figures 2 and 3 show a comparison regarding the average
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value of the multimodal benchmark functions between RCM, ABC,
BBO, GWO, and PSO.

Figure 1 Unimodal benchmark function for Red Colobuses Monkey
(RCM) with other algorithms.

Based on the results of unimodal test functions shown in
Table        4, RCM achieves optimum value in 7 test functions (F5, F6,
F7, F10, F12, F14, and F16). In contrast, it converges to optimal val-
ues in 8 test functions (F1, F11, F13, F15, F18, F19, F20, and F22).
It must be indicated that such values were better in comparison to
values regarding other chosen algorithms utilizing identical testing
functions.

RCM results are showing that it is effective and competitive in com-
parison to the algorithms mentioned above. Also, it is superior to
them in the majority of tests. Such results also showed the accuracy,
flexibility, and efficiency of the RCM in exploitation means of view.

According to the results which were provided in the Table 5 con-
taining a multimodal test (not–fixed), RCM achieves optimal value
in 6 test functions (F27, F28, F33, F36, F38, and F40). In contrast,
it was too close to optimal values in 3 test functions (F34, F35,

Table 5 Results of multimodal benchmark functions (not fixed).
RCM ABC PSO

Function Average Std Average Std Average Std
F24 −2.02E+00 4.60E–16 −7.85E+102 1.75E+103 −1.8758 0.2775018
F25 8.88E–16 1.02E–31 0.0003463 0.0001776 1.95E–15 1.66E–15
F26 4.20E–10 7.08E–12 0.5423613 0.4570343 1.19E–08 1.94E–08
F27 0.0141401 0.204522 0.0089275 0.00297 0.6950133 0.7717305
F28 −1.0316 4.60E–16 −1.0316 6.78E–16 15.759714 0.0088599
F29 3 9.19E–16 3 0 3 0.4632838
F30 −6111.09 782.48996 −1.20E+119 6.05E+119 −3262.1366 0.059923
F31 2.36E–31 4.53E–47 1.75E–07 1.67E–07 14.018373 3246.0832
F32 1.35E–32 2.83E–48 5.12E–07 6.48E–07 1.35E–32 4.45E–47
F33 2.05E–93 0 2.50E–09 2.06E–09 2.27E–100 5.57E–48
F34 0 0 3.18E–05 2.96E–05 2.96E–17 3.57E–05
F35 −106.7645 1.47E–14 −106.7645 7.23E–14 −103.11511 5.78E–17
F36 −2.0626 4.60E–16 −2.0626 1.36E–15 −2.0623387 19.988736
F37 −0.6737 2.30E–16 −0.67367 0 −0.6737 0
F38 −952.47733 1.3805245 −6.38E+111 2.29E+112 95.542387 0
F39 −19.2085 0 N/A N/A −15.140224 0
F40 2.546E–05 0 −1.97E+113 1.03E+114 711.51431 5.42E–15
F41 −1.8013 4.60E–16 −1.8788467 0.0784205 −1.8010867 447.09172
F42 0.0112751 0.019188 1.04E–05 2.86E–06 3.00E–15 0.0003598
F43 1.11E–29 3.36E–30 15.67116 8.5558629 1.22E–29 1.76E–30
F44 0.2999 0 0.364346 0.0534167 0.27762 0.0702805
F45 0 0 −5.26E+104 7.12E+88 0.3054 0.52373
F46 1.30E–31 2.86E–31 0.0002641 6.57E–05 4.07E–31 5.57E–31

BBO GSA GWO

Function Average Std Average Std Average Std
F24 −2.0218 0 −5.12666 0.0008961 −2.0218 0
F25 4.74E–09 1.64E–08 1.71E–10 1.07E–10 8.88E–16 4.01E–31
F26 1.0636183 0.2073279 2.23E–17 5.39E–18 0.551828 0.3234955
F27 0.0014383 0.0009173 0.0044705 0.0020576 0.0009717 0.0009025
F28 −1.0316 6.78E–16 −1.0316 6.78E–16 −1.0316284 4.31E–09
F29 3 0 3 0 3.0000079 9.28E–06
F30 −8198.7707 572.13167 −2841.2 399.65132 −6095.8133 790.14897
F31 1.91E–10 4.11E–10 3.16E–21 2.91E–21 1.45E–08 1.50E–08
F32 3.41E–12 1.70E–11 1.84E–21 1.57E–21 1.48E–08 1.90E–08
F33 0.0398187 0.1032536 6.25E–21 7.71E–21 0 0
F34 0.065493 0.1017525 0 0 0 0
F35 −106.11605 3.5517252 −106.7645 7.23E–14 −106.11607 3.5517344

Continued
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Table 5 Results of multimodal benchmark functions (not fixed). (Continued)
RCM ABC PSO

Function Average Std Average Std Average Std
F36 −2.0626 1.36E–15 −2.0626 1.36E–15 −2.0626119 3.30E–09
F37 −0.519266 0.1923383 −0.6708967 0.0041723 −0.6737 1.13E–16
F38 −791.28165 147.33382 −727.02819 123.86803 −922.42745 208.90989
F39 −18.88504 1.7716634 −19.179587 0.0424768 −19.208493 8.18E–06
F40 46.717473 64.847441 206.868 81.44366 59.219524 74.583411
F41 −1.8013 1.07E+02 −1.8013 6.78E–16 −1.8013 6.78E–16
F42 1.10E–11 1.95E–11 1.54E–11 2.86E–06 0 0
F43 0.002171 0.0018676 6.59E–17 8.5558629 3.3787 4.1156058
F44 0.19987 0 0.285 0.0534167 0.0999 0
F45 0 0 0.01294 7.12E+88 0 0
F46 2.86E–12 3.55E–12 3.74E–22 6.57E–05 2.14E–09 5.83E–10
ABC, Artificial–Bee–Colony; BBO, Biogeography–Based Optimizer; GSA, Gravitational Search Algorithm; PSO, Particle Swarm Optimization; RCM, Red
Colobuses Monkey

Figure 2 Multimodal benchmark function (not fixed) for Red
Colobuses Monkey ( RCM) with other algorithms.

Figure 3 Multimodal benchmark function (fixed) for Red Colobuses
Monkey ( RCM) with other algorithms.

and F37). It must be indicated that the values which are close to
optimal in 5 test function (F26, F41, F42, F43, and F44) were better
in comparison to the values of other algorithms utilizing identical
testing functions. Concerning the rest 9 test functions (F21, F22,
F28, and F43), RCM can be close to the best values regarding the
chosen algorithms.

According to the results which have been reached, the optimal value
in twelve test functions (F47, F48, F49, F50, F51, F52, F53, F56, F57,
F60, F61, and F64), whereas it was too close to optimal values in
3 test functions (F54, F58, and F59), it must be indicated that the
values were better in comparison to values of the rest of the chosen

algorithms utilizing the same testing functions. Furthermore, in the
rest 3 test functions (F55, F62, and F63), RCM can be close to the
chosen algorithms’ best values.

The findings indicate that in contrast to the unimodal performance,
RCM achieves excellent results in detecting the optimal solution
value in a multimodal function, suggesting that the RCM has been
superior in the exploration search.

6. CONCLUSION AND FUTURE WORK

This study provided a new nature–inspired metaheuristic algorithm
based on the social behavior of Red Colobuses Monkey. Also, RCM
is proposed as an approach used for solving optimization prob-
lems. In RCM, the solutions have been essential for upgrading
their positions based on the optimal solution, which was achieved
thus far. RCM can also replace the worst red monkey by the best
child identified, thus improving solutions. Updating the position
allows a solution for moving outwards or towards the destination
point to ensure exploration and exploitation of search space. Over-
all, 64 test functions were used to test the effectiveness and power
of RCM concerning exploration and exploitation. The obtained
results showed that RCM is superior to BBO, GSA, ABC, and GWO,
while the results acquired from unimodal test functions indicated
the RCM’s exploitation superiority. Then, the exploration ability of
RCM is shown via the results acquired from multimodal bench-
mark functions. Furthermore, RCM might solve different optimiza-
tion problems (parameters optimization, maintenance, scheduling,
and many others).

Many research directions might be suggested for studies with the
suggested algorithm, such as to build a multiobjective type of RCM
algorithm and solve various optimization problems.
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Table 6 Results of multimodal benchmark functions (fixed).
RCM ABC PSO

Function Average Std Average Std Average Std
F47 7.02E–108 1.50E–107 6.67E–10 5.56E–10 1.67E–41 2.27E–41
F48 0.3979 1.15E–16 0.39789 1.69E–16 0.482471 91.465336
F49 −3.8628 9.19E–16 −3.8628 3.16E–15 −3.8627821 0
F50 −3.3224 1.38E–15 −3.3224 1.36E–15 −3.2704748 1.36E–15
F51 −195.629 0 −195.629 5.78E–14 −195.62902 8.67E–100
F52 −1 0 −1 0 −1 0.0014962
F53 −50 0 −49.997403 0.0024609 −50 1.13E–16
F54 −0.869 2.30E–16 −2.8739 9.03E–16 0.0625 376.90308
F55 −2081.5926 2747.1414 −2.73E+116 3.91E+100 43.40452 193.60026
F56 1 0 1.00044 0.0002408 1 0
F57 0 0 2.58E–06 2.67E–06 0 0
F58 0.1331051 0.031829 5.08E–06 2.76E–06 21.39248 22.479063
F59 −24776.518 3.77E–12 −24776.516 0.0036263 −24777 0
F60 0 0 1.29E–06 9.74E–07 1.43E–103 3.20E–103
F61 0 0 5.03E–05 3.29E–05 4.73E–31 4.32E–31
F62 1.35E–31 4.53E–47 5.97E–07 4.52E–07 1.35E–31 0
F63 −0.8026685 1.5316153 −384.9026 193.93391 −0.6411 0
F64 1 0 7.76328 0.5372398 1.8879 2.48E–16
F65 0.0027813 4.14E–05 0.0077256 0.0023395 0.0017367 0.0018951

BBO GSA GWO

Function Average Std Average Std Average Std
F47 7.42E–09 4.23E–09 7.84E–18 5.56E–10 5.96E–120 9.10E–120
F48 0.39789 1.69E–16 0.3979 0 0.3978879 5.98E–07
F49 −3.8628 3.16E–15 −3.8627967 1.83E–05 −3.8620812 0.001938
F50 −3.27472 0.0593941 −3.3224 1.36E–15 −3.2642539 0.0998765
F51 −195.629 5.78E–14 −195.629 5.78E–14 −195.62903 2.85E–08
F52 −1 0 −1 0 −1 0
F53 −50 0 −50 0 −49.99989 8.03E–05
F54 −0.769653 0.1456735 −0.869 1.13E–16 −0.869 1.13E–16
F55 −6.1295 0 −4035.32 3.91E+100 −12266.82 6663.9663
F56 1 0 1 0.0002408 1 0
F57 1.67E–06 1.88E–06 2.75E–20 2.67E–06 6.44E–08 5.08E–08
F58 0.0948764 0.0142888 0.10288 2.76E–06 0.14548 0.0329826
F59 −24776.518 0 −39.6307 0.0036263 −24777 0
F60 1.03E–14 2.31E–14 2.45E–19 9.74E–07 0 0
F61 2.06E–14 4.59E–14 2.56E–19 3.29E–05 5.80E–06 6.32E–06
F62 2.06E–14 4.60E–14 3.37E–20 4.52E–07 1.07E–07 9.60E–08
F63 −1.9105 0 −1.91022 193.93391 −1.9105 0
F64 1.01135 0.0014387 1 0.5372398 1.23078 0.0955472
F65 0.0008756 0.0002102 0.0005661 0.0023395 0.0014036 0.0007647
ABC, Artificial–Bee–Colony; BBO, Biogeography–Based Optimizer; GSA, Gravitational Search Algorithm; PSO, Particle Swarm Optimization;
RCM, Red Colobuses Monkey.
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